JPS59126961A - Measuring device of large current - Google Patents

Measuring device of large current

Info

Publication number
JPS59126961A
JPS59126961A JP58003163A JP316383A JPS59126961A JP S59126961 A JPS59126961 A JP S59126961A JP 58003163 A JP58003163 A JP 58003163A JP 316383 A JP316383 A JP 316383A JP S59126961 A JPS59126961 A JP S59126961A
Authority
JP
Japan
Prior art keywords
coil
current
integrating circuit
coaxial cable
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58003163A
Other languages
Japanese (ja)
Inventor
Masaki Yamabe
山部 正樹
Masahiro Okabe
岡部 正博
Yoshitaka Kitamura
北村 芳隆
Yasuo Furukawa
古川 泰男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58003163A priority Critical patent/JPS59126961A/en
Publication of JPS59126961A publication Critical patent/JPS59126961A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make the observation of a waveform in a high speed possible and to simplify the handling, by connecting a buffer amplifier to the output terminal of an RC integrating circuit which is connected in parallel to a coil which detects the variance of the magnetic field generated by a current to be measured. CONSTITUTION:When a pulse large current (i) is flowed, an electromotive force is induced in a coil 1 by the magnetic field generated by the large pulse current, and a voltage is generated between both ends of a load resistance 2. This voltage is integrated by an integrating circuit 5 consisting of a resistance 3 and a capacitor 4 to generate a voltage waveform corresponding to the current (i) to be measured. This voltage waveform is inputted to an oscilloscope through a high-input impedance buffer amplifier 9, load resistance 10, and a coaxial cable 7. Thus, the operation of the integrating circuit 5 is not affected at all even if the coaxial cable 7 is terminated by a terminal resistance 8, and the load resistance 2, the integrating circuit 5, the amplifier 9, an the resistance 10 can be stored in a shield case which is made into one body together with a case incorporating the coil 1.

Description

【発明の詳細な説明】 (a)発明の技術分野 本発明は、電流の作る磁界の変化を検出して電流値なら
びに電流波形を測定する電流測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a current measuring device that measures current values and current waveforms by detecting changes in magnetic fields created by current.

(b)技術の背景 数10〜数100K Aの大電流を測定する方法として
は、電流が作る磁界の変化を検出するマグネチックプロ
ーブ法、電流トランス法および磁気光学効果を利用する
方法等の間接的な方法と、被測定電流を抵抗に流し、該
抵抗での電圧降下を測定する直接的な方法とがある。
(b) Technical Background Methods for measuring large currents of tens to hundreds of kiloamps include indirect methods such as the magnetic probe method that detects changes in the magnetic field created by the current, the current transformer method, and methods that utilize the magneto-optical effect. There is a direct method in which the current to be measured is passed through a resistor and the voltage drop across the resistor is measured.

このうち、マグネチックプローブ法は手軽に測定を行う
ことができ、かつ高精度が得られるために多用されてい
る。
Among these, the magnetic probe method is widely used because it allows easy measurement and provides high accuracy.

マグネチックプローブ法においては、被測定電流が作る
磁界によってコイルに誘起される起電力が電流の時間微
分に比例するので、該コイルに並列に接続された負荷抵
抗の両端の電圧を積分することによって電流値ならびに
電流波形を観測するものであるが、このための積分器と
して、通常、RC積分回路が用いられる。
In the magnetic probe method, the electromotive force induced in the coil by the magnetic field created by the current to be measured is proportional to the time derivative of the current, so by integrating the voltage across a load resistor connected in parallel to the coil, The current value and current waveform are observed, and an RC integration circuit is usually used as an integrator for this purpose.

(C)従来技術と問題点 大電流の測定においては、ノイズの影響を受は易く、と
くにパルス大電流の場合には十分なノイズ対策が必要で
ある。このために、電流波形を観測するためのオソシロ
スコープを電流測定個所から遠く (例えば、5m以上
)離すことが必要である。
(C) Prior Art and Problems Measurement of large currents is easily affected by noise, and particularly in the case of pulsed large currents, sufficient noise countermeasures are required. For this reason, it is necessary to place the oscilloscope used to observe the current waveform far away from the current measurement location (eg, 5 m or more).

この場合、該電流測定個所とオノシロスコープとの間は
同軸ケーブルによって接続されるのであるが、該同軸ケ
ーブルの特性インピーダンスは50Ω程度であり、該同
軸ケーブル内における信号の反射を防止するために、該
同軸ケーブルを同軸ケーブルの特性インピーダンスに等
しい抵抗値をもつ終端抵抗で終端することが必要である
In this case, the current measurement point and the onoscilloscope are connected by a coaxial cable, and the characteristic impedance of the coaxial cable is approximately 50Ω, and in order to prevent signal reflection within the coaxial cable. , it is necessary to terminate the coaxial cable with a terminating resistor having a resistance value equal to the characteristic impedance of the coaxial cable.

しかしながら、RC積分回路は、その負荷抵抗が50Ω
程度になると、積分器として正常に動作しなくなる。こ
のために、従来はRC積分回路をオアシロスコープの入
力端に直接に接続し、かつ高入力インピーダンスのオソ
シロスコープを使用せざるを得なかった。
However, the RC integrating circuit has a load resistance of 50Ω.
If this happens, the integrator will no longer function properly. For this reason, in the past, it was necessary to connect the RC integration circuit directly to the input end of the oscilloscope and to use an oscilloscope with a high input impedance.

その結果、マグネチックプローブとRC積分回路とを一
体化できず、測定系の取扱が不便であり、また、広帯域
である入力インピーダンスが50Ωのオノシロスコープ
を使用できないために、立上りの速い電流波形を観測で
きない等の欠点があった。
As a result, it is not possible to integrate the magnetic probe and the RC integration circuit, making it inconvenient to handle the measurement system.Also, since it is not possible to use a wide-band onoscilloscope with an input impedance of 50Ω, the current waveform has a fast rise. There were drawbacks such as the inability to observe

(d)発明の目的 本発明は、上記のような従来の欠点を解決し、高速度の
波形観測が可能であり、かつ取扱の便利な大電流測定装
置を提供することを目的とする。
(d) Object of the Invention The object of the present invention is to solve the above-mentioned conventional drawbacks, and to provide a large current measuring device that is capable of high-speed waveform observation and is convenient to handle.

(e)発明の構成 本発明は、被測定電流の作る磁界の変化を検出するコイ
ルと、該コイルに並列に接続された負荷抵抗と、該負荷
抵抗に並列に接続された、抵抗およびコンデンサーから
成るRC積分回路とから構成される大電流測定装置にお
いて、前記RC積分回路の出力端に高入力インピーダン
スのバッファーアンプを接続し、また、前記コイルの負
荷抵抗、RC積分回路、バッファーアンプおよび該バッ
ファーアンプの負荷抵抗が、前記コイルを内蔵する金属
製ケースと一体化されたシールドケース内に収納されて
いることを特徴とする。
(e) Structure of the Invention The present invention consists of a coil for detecting changes in the magnetic field created by a current to be measured, a load resistor connected in parallel to the coil, and a resistor and a capacitor connected in parallel to the load resistor. A high current measuring device comprising an RC integrator circuit, in which a buffer amplifier with high input impedance is connected to the output terminal of the RC integrator circuit, and a load resistance of the coil, the RC integrator circuit, the buffer amplifier, and the buffer The load resistance of the amplifier is housed in a shield case that is integrated with the metal case that houses the coil.

(f)発明の実施例 以下に本発明の実施例を図面を参照して説明する。(f) Examples of the invention Embodiments of the present invention will be described below with reference to the drawings.

第1図(A)はマグネチックプローブ法による大電流測
定の原理を示し、例えばパルス大電流iが流れると、該
パルス大電流の作る磁界によってコイルlに起電力が誘
起され、負荷抵抗2の両端に電圧が発生する。該電圧は
抵抗3およびコンデンサー4から成る積分回路5によっ
て積分され、抵抗6の両端に被測定電流iに対応する電
圧波形を生ずる。
Figure 1 (A) shows the principle of large current measurement using the magnetic probe method. For example, when a pulsed large current i flows, an electromotive force is induced in the coil l by the magnetic field created by the pulsed large current, and the load resistor 2 A voltage is generated at both ends. The voltage is integrated by an integrating circuit 5 consisting of a resistor 3 and a capacitor 4, producing a voltage waveform across the resistor 6 corresponding to the current i to be measured.

抵抗6の抵抗値が高インピーダンスの場合には、同図(
B)に示すように、該電圧波形は被測定電流iの波形と
等しくなるが、低インピーダンスの場合には、同図(C
)に示すように、極端に速い立上りを有する歪んだ波形
となる。
When the resistance value of resistor 6 is high impedance, the same figure (
As shown in Figure B), the voltage waveform is equal to the waveform of the current to be measured i, but in the case of low impedance,
), the result is a distorted waveform with an extremely fast rise.

従来は、上記のように、高インピーダンスの抵抗6を用
いる必要があったために、積分回路5の後段に同軸ケー
ブルおよび該同軸ケーブルの終端抵抗を接続することが
できず、第2図に示すような回路構成が採られていた。
Conventionally, as mentioned above, it was necessary to use a high-impedance resistor 6, so it was not possible to connect a coaxial cable and a terminating resistor of the coaxial cable after the integrating circuit 5. A circuit configuration was adopted.

すなわち、マグネチックプローブのコイル1と積分回路
5との間を同軸ケーブル7によって接続し、かつ該同軸
ケーブル7の両端を負荷抵抗2および同軸ケーブル7の
終端抵抗8により終端し、積分回路5は高インピーダン
スの入力抵抗(例えばIMΩ)を有するオソシロスコー
プ(図示省略)の直前に接続するのである。
That is, the coil 1 of the magnetic probe and the integrating circuit 5 are connected by a coaxial cable 7, and both ends of the coaxial cable 7 are terminated by the load resistor 2 and the terminating resistor 8 of the coaxial cable 7. It is connected just before an oscilloscope (not shown) that has a high impedance input resistance (for example, IMΩ).

本発明においては、第3図に示すように積分回路5の後
段にバッファーアンプ9を設けている。
In the present invention, a buffer amplifier 9 is provided after the integrating circuit 5, as shown in FIG.

該バッファーアンプ9は、その前段の回路と後段の回路
とが互いに影響しないようにするためのもので、高入力
インピーダンスのものが適している。この目的にICの
オペレーショナルアンプを使用すれば、容易に数100
MΩ程度の入力インピーダンスを実現できる。
The buffer amplifier 9 is used to prevent the circuits in the preceding stage and the circuit in the succeeding stage from influencing each other, and a buffer amplifier 9 having a high input impedance is suitable. If you use an IC operational amplifier for this purpose, you can easily
An input impedance of about MΩ can be achieved.

第3図の構成によれば、バッファーアンプ9の出力を負
荷抵抗10を介して同軸ケーブル7でオノシロスコープ
(図示省略)に接続し、かつ同軸ケーブル7を該同軸ケ
ーブル7の終端抵抗8によって終端しても、積分回路5
の動作に対して何等影響しない。
According to the configuration shown in FIG. 3, the output of the buffer amplifier 9 is connected to the onoscilloscope (not shown) via the coaxial cable 7 via the load resistor 10, and the coaxial cable 7 is connected to the terminating resistor 8 of the coaxial cable 7. Even if the terminal is terminated, the integral circuit 5
It has no effect on the operation.

したがって、負荷抵抗2と積分回路5とバッファーアン
プ9および抵抗10を、マグネチ・7クブローブのコイ
ル1を内蔵したケースと一体化されたシールドケース内
に収納した構造の装置が可能となる。
Therefore, it is possible to construct a device in which the load resistor 2, the integrating circuit 5, the buffer amplifier 9, and the resistor 10 are housed in a shielded case that is integrated with a case containing the magnetic 7-tube coil 1.

第4図は入力インピーダンスが50Ωのオアシロスコー
プを使用する場合の回路構成であり、同軸ケーブル7の
終端抵抗を設けることなしに同軸ケーブル7を直接に該
オソシロスコープ(図示省略)に接続している。
Figure 4 shows the circuit configuration when using an oscilloscope with an input impedance of 50Ω, in which the coaxial cable 7 is directly connected to the oscilloscope (not shown) without providing a terminating resistor for the coaxial cable 7. ing.

この場合においても、バッファーアンプ9があるために
、積分回路5の動作は圧密に行われる。
Even in this case, since the buffer amplifier 9 is provided, the operation of the integrating circuit 5 is performed in a sealed manner.

(g)発明の効果 本発明によれば、大電流測定において、より高精度の波
形観測を可能とする効果がある。またオソシロスコープ
側は単に同軸ケーブルの特性インピーダンスで終端して
おけばよく、さらに、低入力インピーダンスのオソシロ
スコープを使用する場合には同軸ケーブルを直接するの
みでよいために、測定装置の取扱が簡便化できる効果が
ある。
(g) Effects of the Invention According to the present invention, there is an effect that it is possible to observe waveforms with higher precision in large current measurements. In addition, on the oscilloscope side, you only need to terminate the coaxial cable with its characteristic impedance, and if you are using an oscilloscope with low input impedance, you only need to connect the coaxial cable directly. This has the effect of simplifying the process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はマグネチックプローブを用いる電流測定方法の
原理を説明するための図、第2図はマグネチックプロー
ブを用いる従来の電流測定回路構成を示す図、第3図お
よび第4図は本発明に係る電流測定装置の回路構成図で
ある。 図において、1はコイル、2と3と6と8と10は抵抗
、4はコンデンサー、5は積分回路、7は同軸ケーブル
、9はバッファーアンプである。 321− J
Fig. 1 is a diagram for explaining the principle of a current measurement method using a magnetic probe, Fig. 2 is a diagram showing a conventional current measurement circuit configuration using a magnetic probe, and Figs. 3 and 4 are diagrams according to the present invention. FIG. 2 is a circuit configuration diagram of a current measuring device according to the present invention. In the figure, 1 is a coil, 2, 3, 6, 8, and 10 are resistors, 4 is a capacitor, 5 is an integrating circuit, 7 is a coaxial cable, and 9 is a buffer amplifier. 321-J

Claims (2)

【特許請求の範囲】[Claims] (1)被測定電流の作る磁界の変化を検出するコイルと
、該コイルに並列に接続された負荷抵抗と、該負荷抵抗
に並列に接続された、抵抗およびコンデン号−から成る
RC積分回路とから構成される大電流測定装置において
、前記RC積分回路の出力端に高入力インピーダンスの
ハソファーアンプを接続したことを特徴とする大電流測
定装置。
(1) An RC integrating circuit consisting of a coil that detects changes in the magnetic field created by the current to be measured, a load resistor connected in parallel to the coil, and a resistor and capacitor connected in parallel to the load resistor. A large current measuring device comprising: a high input impedance Hasofer amplifier connected to the output end of the RC integrating circuit.
(2)コイルの負荷抵抗と、RC積分回路と、ハソファ
ーアンプおよび該ハソファーアンプの負荷抵抗とを、前
記コイルを内蔵する金属製ケースと一体化されたシール
ドケース内に収納したことを特徴とする特許請求の範囲
第1項記載の大電流測定装置。
(2) The load resistance of the coil, the RC integration circuit, the HaSofa amplifier, and the load resistance of the HaSofa amplifier are housed in a shield case that is integrated with the metal case that houses the coil. A large current measuring device according to claim 1.
JP58003163A 1983-01-12 1983-01-12 Measuring device of large current Pending JPS59126961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58003163A JPS59126961A (en) 1983-01-12 1983-01-12 Measuring device of large current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58003163A JPS59126961A (en) 1983-01-12 1983-01-12 Measuring device of large current

Publications (1)

Publication Number Publication Date
JPS59126961A true JPS59126961A (en) 1984-07-21

Family

ID=11549684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58003163A Pending JPS59126961A (en) 1983-01-12 1983-01-12 Measuring device of large current

Country Status (1)

Country Link
JP (1) JPS59126961A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6170774U (en) * 1984-10-17 1986-05-14
US5408176A (en) * 1988-03-21 1995-04-18 Blatt; David W. E. Monitoring and fault protection of high voltage switch yards
CN103792409A (en) * 2014-01-18 2014-05-14 宁波海得工业控制系统有限公司 Measuring circuit for quickly-changed high currents
CN110940845A (en) * 2019-11-22 2020-03-31 国网山西省电力公司大同供电公司 Fiber bragg grating current transformer attached to surface of cable sheath grounding wire

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6170774U (en) * 1984-10-17 1986-05-14
US5408176A (en) * 1988-03-21 1995-04-18 Blatt; David W. E. Monitoring and fault protection of high voltage switch yards
CN103792409A (en) * 2014-01-18 2014-05-14 宁波海得工业控制系统有限公司 Measuring circuit for quickly-changed high currents
CN103792409B (en) * 2014-01-18 2016-05-11 宁波海得工业控制系统有限公司 The measuring circuit of fast-changing large electric current
CN110940845A (en) * 2019-11-22 2020-03-31 国网山西省电力公司大同供电公司 Fiber bragg grating current transformer attached to surface of cable sheath grounding wire

Similar Documents

Publication Publication Date Title
KR100566547B1 (en) Magnetic field detection device
US4034291A (en) Electronic measuring instrument combining an oscilloscope and a digital multimeter
US9588147B2 (en) Electronic integrator for Rogowski coil sensors
EP0067796A1 (en) Device for indicating pole-zero cancellation, in particular for amplifiers for ionizing radiation spectroscopy
JPS59126961A (en) Measuring device of large current
JPS6211184A (en) Method and device for measuring current
EP0349168A2 (en) Circuit element measuring apparatus
US3727129A (en) Logarithmic-response corona detector
US2567276A (en) Electric current integrating apparatus
US3729676A (en) Ratemeter
Petrucha et al. Testing and application of an integrated fluxgate sensor DRV425
US3936732A (en) Traveling wave tube body current sensor
JPH0568663B2 (en)
SU1606115A1 (en) Rheoplethysmograph
SU1161885A1 (en) Device for measuring current parameters
KR930002777Y1 (en) Tiny little electric current testing circuit
Chen Supported by United States Department of Energy Contract DE-AC02–78ET51013.
SU838765A1 (en) Device for measuring voltage-current characteristics of neavy-current superconductors
KR930002778Y1 (en) Input impedance testing circuit of amplifier
SU1504791A1 (en) High-ohmic simulator of electric resistance
SU1178207A1 (en) Device for measuring magnetic field
SU1324800A1 (en) Instrument transducer of welding current
JPS60131473A (en) High resistance measuring instrument
JPH01321373A (en) Highly accurate current sensor
EP3428661A1 (en) Device for average current measurements of pulsed electrical signals