JPH0244176B2 - - Google Patents

Info

Publication number
JPH0244176B2
JPH0244176B2 JP56090806A JP9080681A JPH0244176B2 JP H0244176 B2 JPH0244176 B2 JP H0244176B2 JP 56090806 A JP56090806 A JP 56090806A JP 9080681 A JP9080681 A JP 9080681A JP H0244176 B2 JPH0244176 B2 JP H0244176B2
Authority
JP
Japan
Prior art keywords
signal
waveform
backward
linear
predicted value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56090806A
Other languages
Japanese (ja)
Other versions
JPS57206135A (en
Inventor
Kazuhiko Ozeki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Broadcasting Corp filed Critical Japan Broadcasting Corp
Priority to JP9080681A priority Critical patent/JPS57206135A/en
Publication of JPS57206135A publication Critical patent/JPS57206135A/en
Publication of JPH0244176B2 publication Critical patent/JPH0244176B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)
  • Noise Elimination (AREA)

Description

【発明の詳細な説明】 本発明は、音響信号等の波形歪除去方式に関
し、特に、例えばピーククリツプされた信号波形
のように部分的に歪を受けた信号波形において、
その歪を受けた部分を、歪を受けない部分から推
定することにより復元し、その歪を除去しようと
する信号復元方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a waveform distortion removal method for acoustic signals, etc., and in particular, for a partially distorted signal waveform such as a peak-clipped signal waveform.
This invention relates to a signal restoration method that attempts to remove the distortion by restoring the distorted part by estimating it from the non-distorted part.

従来、非線型歪を受けた信号波形は、その非線
型特性の逆特性が実現可能な場合には、その逆特
性を入出力特性として持つ回路を通すことにより
復元可能であつたが、例えばハードクリツプのよ
うに逆特性を持たないような非線型歪を受けた信
号波形は従来は復元不可能であつた。
Conventionally, a signal waveform that has undergone nonlinear distortion could be restored by passing it through a circuit that has input/output characteristics with the inverse characteristic of the nonlinear characteristic, if the inverse characteristic of the nonlinear characteristic can be realized. Conventionally, it has been impossible to restore signal waveforms that have undergone nonlinear distortion and do not have inverse characteristics, such as clips.

そこで、本発明の目的は、部分的に信号欠落の
ある信号波形を信号欠落のない部分から線形予測
するにあたり、上述した欠点の除去を図つた信号
復元方式を提供することにある。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a signal restoration method that eliminates the above-mentioned drawbacks when linearly predicting a signal waveform with partial signal loss from a portion without signal loss.

かかる目的を達成するために、本発明は、部分
的に信号欠落のある信号波形を、信号欠落のない
部分から線形予測によつて復元する信号復元方式
において、前記信号欠落の発生する以前の信号波
形から前向き線型予測により前向き推定波形を形
成し、前記信号欠落の終了後の信号波形から後向
き線型予測により後向き推定波形を形成し、前記
前向き推定波形と前記後向き推定波形との荷重平
均波形を形成し、該荷重平均波形を前記信号欠落
の部分に復元信号として配置することを特徴とす
る。
In order to achieve such an object, the present invention provides a signal restoration method for restoring a signal waveform with partial signal loss from a part without signal loss by linear prediction. A forward estimated waveform is formed from the waveform by forward linear prediction, a backward estimated waveform is formed by backward linear prediction from the signal waveform after the end of the signal loss, and a weighted average waveform of the forward estimated waveform and the backward estimated waveform is formed. The method is characterized in that the weighted average waveform is arranged as a restored signal in the signal missing portion.

以下に図面を参照して本発明を詳細に説明す
る。
The present invention will be described in detail below with reference to the drawings.

まず、本発明信号復元方式の基礎となる前向き
線型予測手法について説明する。音響信号(人の
声を含む)は、殆んどの場合、線型微分方程式に
よつて記述されるような振動系から発生するもの
であり、そのような振動系から発生する信号は良
い精度で線型予測することができる。すなわち、
標本化された信号を ……,xl-2,xl-1,xl,xl+1,xl+2,…… とすると、前向き線型予測値 x^lPk=1 αkxl-k (1) はxlの前向きの良い推定値となつている。ここ
で、α1,α2,……,αpは、R(m)を信号のm次
の自己相関係数とするとき、連立一次方程式 の解である。ただし、pは信号の性質に応じて適
切に定める必要がある。
First, a forward linear prediction method, which is the basis of the signal restoration method of the present invention, will be explained. Acoustic signals (including the human voice) most often originate from vibrating systems that are described by linear differential equations, and signals generated from such vibrating systems can be linearized with good accuracy. Can be predicted. That is,
If the sampled signals are ..., x l-2 , x l-1 , x l , x l+1 , x l+2 , ..., then the forward linear predicted value x^ l = Pk=1 α k x lk (1) is a good forward estimate of x l . Here, α 1 , α 2 , ..., α p are the simultaneous linear equations where R(m) is the m-th order autocorrelation coefficient of the signal. This is the solution. However, p needs to be appropriately determined depending on the characteristics of the signal.

この事実を用いると、信号の或る区間をその隣
接する区間から推定することができる。すなわ
ち、標本化された信号 ……,xi-2,xi-1,xi,xi+1,……,xj,xj+1
… において、xi,xi+1,……,xjの区間が何らかの
理由で未知であるとし、それを推定することを考
えよう。まず、既知の区間のデータから自己相関
係数R(0)、R(1),……,R(p)を計算し、(2)
式を解いてα1,……,αpを求める。次に、(1)式を
繰返し用いて、xi,xi+1,……,xjの前向き線型
予測値x^i,x^i+1,……,x^jにより順次求める。このようにしてxi,……,xj
の推定値が得られ、原波形を近似的に復元するこ
とができる。しかし、未知の信号区間が長くなる
と、これれだけでは問題が起こる場合がある。つ
まり、kが大きくなる程前向き線型予測値x^kと真
の値xkとの間の誤差が大きくなり、未知区間の最
後の標本化信号に相当する前向き線型予測値x^j
未知区間終了後の最初の標本化信号値xj+1との接
続部で波形に段差が生ずる場合がある。
Using this fact, one section of the signal can be estimated from its adjacent sections. That is, the sampled signals ..., x i-2 , x i-1 , x i , x i+1 , ..., x j , x j+1 ,
Let's assume that the interval of x i , x i+1 , ..., x j is unknown for some reason in ..., and consider estimating it. First, calculate the autocorrelation coefficients R(0), R(1), ..., R(p) from the data in the known interval, and (2)
Solve the equation to find α 1 , ..., α p . Next, by repeatedly using equation (1), the forward linear predicted values x ^ i , x^ i+1 , ..., x^ j of x i , x i+1 , ..., x j are calculated. Find them sequentially. In this way, x i , ..., x j
The estimated value of is obtained, and the original waveform can be approximately restored. However, if the unknown signal section becomes long, this alone may cause problems. In other words, as k increases, the error between the forward linear predicted value x^ k and the true value x k increases, and the forward linear predicted value x^ j corresponding to the last sampled signal of the unknown interval and the unknown interval A step may occur in the waveform at the connection with the first sampled signal value x j+1 after completion.

そこで、本発明ではこのような欠点を取り除く
ことを意図し、信号の歪を受けた区間を未知の区
間として、歪を受けていない区間からの前向き線
型予測値と後向き線型予測値とから段差の生じな
い信号の復元を可能にする。
Therefore, the present invention aims to eliminate such drawbacks, and uses the distorted section of the signal as an unknown section, and calculates the level difference from the forward linear predicted value and backward linear predicted value from the undistorted section. Enables restoration of signals that do not occur.

更に詳述すると、後向き線型予測値 xlPk=1 αkxl+k (4) もxlの後向きの良い推定値となつているので、(4)
式を繰返し用い、xi,……,xjの後向き線型予測
値xi,……,xjにより順次に求める。そして、前向き予測値と後
向き予測値の荷重平均、例えばk =1/j−i((j−k)x^k+(k−i)xk) (6) (k=i,……,j) をxi,……,xjの推定値とする。kは、xi-1に近
い部分は前向き線型予測値、またj+1に近い部
分は後向き線型予測値に重みがかかつたxkの推定
値であり、i=x^ij=xjが成立するので、上記
の接続部における段差の問題は生じない。
More specifically, the backward linear predicted value x l = Pk=1 α k x l+k (4) is also a good backward estimate of x l , so (4)
Using the formula repeatedly, the backward linear predicted values x i , ..., x j of x i , ..., x j are Find them sequentially by Then, the weighted average of the forward predicted value and the backward predicted value, for example, k = 1/j-i ((j-k) x^ k + (k-i) x k ) (6) (k = i, ..., j) Let be the estimated values of x i , ..., x j . k is the estimated value of x k in which the part close to x i-1 is weighted with the forward linear predicted value, and the part close to j+ 1 is weighted with the backward linear predicted value, i = x^ i , j = x j Since this holds true, the above-mentioned problem of the difference in level at the connecting portion does not occur.

ここで、本発明信号復元方式による信号波形歪
を除去する装置の構成の一例を第1図に示す。第
1図において、端子Aに供給された信号は標本化
フイルタ1を通過した後、A/D変換器2によつ
てデイジタル信号に変換され、デイジタル入力バ
ツフア3に一時蓄えられる。このデイジタル入力
バツフア3に蓄えられた信号のうち、処理される
べき部分が時間窓によつて切り出されて処理バツ
フア4に蓄えられる。5は、処理バツフア4に蓄
えられた信号のうち、信号波形の歪を受けていな
い区間を検知する無歪区間検知部であり、クリツ
プ歪を例とつて説明すると、第2図に示すような
ピーククリツプされた波形において、振幅がクリ
ツプレベルより小さい部分(第2図の実線部分)
が歪を受けていない区間として検知される。
FIG. 1 shows an example of the configuration of an apparatus for removing signal waveform distortion using the signal restoration method of the present invention. In FIG. 1, a signal supplied to a terminal A passes through a sampling filter 1, is converted into a digital signal by an A/D converter 2, and is temporarily stored in a digital input buffer 3. Of the signals stored in the digital input buffer 3, a portion to be processed is extracted using a time window and stored in the processing buffer 4. Reference numeral 5 denotes a distortion-free section detection unit that detects an undistorted section of the signal waveform among the signals stored in the processing buffer 4. Taking clip distortion as an example, it is as shown in FIG. In the peak clipped waveform, the part where the amplitude is smaller than the clip level (solid line part in Figure 2)
is detected as an undistorted section.

6は、処理バツフアに蓄えられた信号のうち、
歪を受けていない信号区間のデータから自己相関
係数R(0),R(1),……,R(p)を計算する自
己相関係数計算部であり、ここで計算された自己
相関係数は連立一次方程式求解部7に導かれ、こ
こで(2)式の解α1,α2,……,αpが求められる。
6 is the signal stored in the processing buffer,
This is an autocorrelation coefficient calculation unit that calculates autocorrelation coefficients R(0), R(1), ..., R(p) from data in undistorted signal sections, and the autocorrelation coefficients calculated here are The relationship coefficients are led to the simultaneous linear equation solving section 7, where the solutions α 1 , α 2 , . . . , α p of equation (2) are found.

ここで、音声信号の場合などは自己相関係数が
急激に変化することはないので、信号欠落部近傍
の標本化信号から求めた自己相関係数が前向き、
後向きいずれの線型予測にも用い得るので、求解
部7からの結果は前向き予測器8の端子Bおよび
後向き予測器9の端子Dに転送される。前向き予
測器8は前向き線型予測値を計算する部分であ
り、その詳細例を第3図に示す。ここで、信号…
…,xi-2,xi-1,xi,xi+1,……,xj,xj+1,……
において、xi,……,xjを歪を受けた区間とす
る。第3図において、21はシフトレジスタであ
り、シフトレジスタ段21−1,21−2,…
…,21−pから成り、これらシフトレジスタ段
21−1,21−2,……,21−pには、処理
バツフア4からの前向き線型予測の各初期値
xi-1,xi-2,……,xi-pを初期値設定器22を介
して設定しておくものとする。求解部7で求めら
れた解α1,α2,……,αpを係数器23−1,23
−2,……,23−pにそれぞれ設定しておく。
各レジスタ段21−1〜21−pからの出力をそ
れぞれ係数器23−1〜23−pを経て得た値
α1xi-1,α2xi-2,……,αpxi-pを加算器24に供
給し、その加算出力を出力端子25より取り出
す。これにより、シフトレジスタ21に供給され
る1クロツク毎に、xi,xi+1,……,xjの前向き
線型予測値x^i,x^i+1,……,xj^が出力端子25
から順次に得られる。
Here, in the case of audio signals, the autocorrelation coefficient does not change rapidly, so the autocorrelation coefficient obtained from the sampled signal near the signal missing part is forward-looking,
Since it can be used for either backward linear prediction, the result from the solver 7 is transferred to the terminal B of the forward predictor 8 and the terminal D of the backward predictor 9. The forward predictor 8 is a part that calculates a forward linear predicted value, and a detailed example thereof is shown in FIG. Here, the signal...
..., x i-2 , x i-1 , x i , x i+1 , ..., x j , x j+1 , ...
Let x i , ..., x j be the distorted sections. In FIG. 3, 21 is a shift register, and shift register stages 21-1, 21-2, . . .
..., 21-p, and each initial value of the forward linear prediction from the processing buffer 4 is stored in these shift register stages 21-1, 21-2, ..., 21-p.
It is assumed that x i-1 , x i-2 , . . . , x ip are set via the initial value setter 22. The solutions α 1 , α 2 , .
-2, . . . , 23-p, respectively.
Values α 1 x i-1 , α 2 x i-2 , α p x ip obtained by passing the outputs from each register stage 21-1 to 21-p through coefficient units 23-1 to 23-p, respectively is supplied to the adder 24, and the added output is taken out from the output terminal 25. As a result, for every clock supplied to the shift register 21, the forward linear predicted values x ^ i , x ^ i+1 , ..., x j ^ of x i , x i+1 , ..., x j are Output terminal 25
can be obtained sequentially from

後向き線型予測値を計算する後向き予測器9は
前向き予測器8と同様に構成でき、第3図におい
て、求解部7で計算されたα1,α2,……,αpを係
数器23−1〜23−pに設定し、処理バツフア
4からxj+1+xj+2,……,xj+pをシフトレジスタ
21の各段21−1〜21−pの初期値として設
定しておけば、1クロツク毎に順次にxj,xj-1
……,xiの後向き線型予測値xj,xj-1,……,xi
が得られる。
The backward predictor 9 that calculates backward linear predicted values can be constructed in the same way as the forward predictor 8 , and in FIG . 1 to 23-p, and set x j+1 +x j+2 , ..., x j+p from the processing buffer 4 as the initial value of each stage 21-1 to 21-p of the shift register 21. If you set x j , x j-1 ,
..., backward linear predicted value of x i x j , x j-1 , ..., x i
is obtained.

前向き予測器8からの前向き線型予測値xi^,
xi+1,……,xj^および後向き予測器9からの後
向き線型予測値xj,xj-1,……,xiをそれぞれ荷
重平均部10の端子FおよびGに供給する。この
荷重平均部10において、前向き線型予測値xi
^,……,xj^と後向き線型予測値xi,…,xj
荷重平均i,……,jが計算され、その結果は波
形接続部11に導かれる。この波形接続部11に
は、処理バツフア4からの信号も供給され、その
うちの歪を受けた信号区間xi,xi+1,……,xj
その推定値ixi +1,……,iで置き換えられる。
このようにして処理が終了した信号区間は出力バ
ツフア12を介して、デイジタル信号の形態で出
力するか、D/A変換器13に供給され、ここで
D/A変換され、更に標本化フイルタ14を通過
して、音声信号として出力端子Hから取り出され
る。
Forward linear predicted value x i ^ from forward predictor 8,
x i+1 , . . . , x j ^ and backward linear predicted values x j , x j-1 , . In this weighted average unit 10, the forward linear predicted value x i
Weighted averages i, ..., j of ^ , ..., x j ^ and backward linear predicted values x i , ..., x j are calculated, and the results are led to the waveform connector 11. The signal from the processing buffer 4 is also supplied to this waveform connection unit 11, of which the distorted signal sections x i , x i+1 , ..., x j have their estimated values i , x i +1 , ..., replaced by i .
The signal section for which processing has been completed in this manner is outputted in the form of a digital signal via the output buffer 12, or is supplied to the D/A converter 13, where it is D/A converted, and then sent to the sampling filter 14. , and is taken out from output terminal H as an audio signal.

以上から明らかなように、本発明によれば、部
分的に歪を受け、かつ歪を受けた区間を検知する
ことができるような信号の歪を低減することがで
き、例えば、ピーククリツプされた音響信号の歪
除去に応用され、聴覚的な歪感を低減させる効果
がある。
As is clear from the above, according to the present invention, it is possible to reduce the distortion of a signal that is partially distorted and can detect the distorted section. It is applied to remove distortion from acoustic signals, and has the effect of reducing the auditory sense of distortion.

以上説明したように、本発明は信号の未知の部
分を既知の部分から推定するという原理にもとづ
いているので、歪に限らず、部分的に雑音が混入
した信号あるいは部分的に欠落がある信号の波形
の復元にも有効に応用することができる。
As explained above, the present invention is based on the principle of estimating the unknown part of a signal from the known part. It can also be effectively applied to restoring waveforms.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による信号復元装置の構成の一
例を示すブロツク線図、第2図はピーククリツプ
波形例を示す波形図、第3図は線型予測器の構成
例を示すブロツク線図である。 1…標本化フイルタ、2…A/D変換器、3…
デイジタル入力バツフア、4…処理バツフア、5
…無歪区間検知部、6…自己相関係数計算部、7
…連立一次方程式求解部、8…前向き予測器、9
…後向き予測器、10…荷重平均部、11…波形
接続部、12…出力バツフア、13…D/A変換
器、14…標本化フイルタ、21…シフトレジス
タ、21−1〜21−p…シフトレジスタ段、2
2…初期値設定器、23−1〜23−p…係数
器、24…加算器、25…出力端子。
FIG. 1 is a block diagram showing an example of the configuration of a signal restoration device according to the present invention, FIG. 2 is a waveform diagram showing an example of a peak clip waveform, and FIG. 3 is a block diagram showing an example of the configuration of a linear predictor. . 1... Sampling filter, 2... A/D converter, 3...
Digital input buffer, 4... Processing buffer, 5
...Distortion-free interval detection unit, 6...Autocorrelation coefficient calculation unit, 7
...Simultaneous linear equation solving unit, 8...Forward predictor, 9
... Backwards predictor, 10... Weighted average section, 11... Waveform connection section, 12... Output buffer, 13... D/A converter, 14... Sampling filter, 21... Shift register, 21-1 to 21-p... Shift register stage, 2
2... Initial value setter, 23-1 to 23-p... Coefficient unit, 24... Adder, 25... Output terminal.

Claims (1)

【特許請求の範囲】 1 部分的に信号欠落のある信号波形を、信号欠
落のない部分から線型予測によつて復元する信号
復元方式において、前記信号欠落の発生する直前
の所定区間の信号波形から前向き線型予測により
前向き推定波形を形成し、前記信号欠落の終了直
後の所定区間の信号波形から後向き線型予測によ
り後向き推定波形を形成し、前記前向き推定波形
と前記後向き推定波形との荷重平均波形を下記式k =1/j−i((j−k)x^k+(k−i)xk) (k=i,…,j) [k:荷重平均 x^k:前向き線型予測値 xk:後向き線型予測値] に基づいて形成し、該荷重平均波形を前記信号欠
落の部分に復元信号として配置することを特徴と
する信号復元方式。
[Claims] 1. In a signal restoration method in which a signal waveform with partial signal loss is restored by linear prediction from a portion without signal loss, the signal waveform of a predetermined section immediately before the signal loss occurs. A forward estimated waveform is formed by forward linear prediction, a backward estimated waveform is formed by backward linear prediction from the signal waveform of a predetermined section immediately after the end of the signal loss, and a weighted average waveform of the forward estimated waveform and the backward estimated waveform is calculated. The following formula k = 1/j-i ((j-k) x^ k + (k-i) x k ) (k = i,..., j) [ k : Weighted average x^ k : Forward linear predicted value x k : backward linear predicted value] and arranges the weighted average waveform as a restored signal in the signal missing portion.
JP9080681A 1981-06-15 1981-06-15 Signal restoring system Granted JPS57206135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9080681A JPS57206135A (en) 1981-06-15 1981-06-15 Signal restoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9080681A JPS57206135A (en) 1981-06-15 1981-06-15 Signal restoring system

Publications (2)

Publication Number Publication Date
JPS57206135A JPS57206135A (en) 1982-12-17
JPH0244176B2 true JPH0244176B2 (en) 1990-10-03

Family

ID=14008827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9080681A Granted JPS57206135A (en) 1981-06-15 1981-06-15 Signal restoring system

Country Status (1)

Country Link
JP (1) JPS57206135A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8304214A (en) * 1983-12-07 1985-07-01 Philips Nv METHOD FOR CORRECTING ERROR VALUES FROM SAMPLES OF AN EQUIDISTANT SAMPLED SIGNAL AND APPARATUS FOR CARRYING OUT THE METHOD
JPS62204625A (en) * 1986-03-05 1987-09-09 Matsushita Electric Ind Co Ltd Noise elimination device
JP4606264B2 (en) 2005-07-19 2011-01-05 三洋電機株式会社 Noise canceller

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5375911A (en) * 1976-12-16 1978-07-05 Nippon Columbia Pcm recorder reproducer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5375911A (en) * 1976-12-16 1978-07-05 Nippon Columbia Pcm recorder reproducer

Also Published As

Publication number Publication date
JPS57206135A (en) 1982-12-17

Similar Documents

Publication Publication Date Title
US6889183B1 (en) Apparatus and method of regenerating a lost audio segment
JPH09146595A (en) Recovery of signal by using left-side and right-side self-regression parameters
US4689759A (en) Process and installation for the analysis and retrieval of a sampling and interpolation signal
EP0887797A3 (en) Method, equipment and recording device for suppressing pulsed interference in analogue audio and/or video signals
JPH0244176B2 (en)
JP4070835B2 (en) Method and apparatus for filtering audio signals
JPH10209889A (en) Periodic noise elimination device and periodic noise eliminating method
JP3010864B2 (en) Noise suppression device
JP3171756B2 (en) Noise removal device
JP2989219B2 (en) Voice section detection method
JPH02294120A (en) Dc offset elimination circuit for digital signal
JP3041928B2 (en) Audio signal interpolation device
JPH0248831A (en) Noise suppression method
JP2004295039A (en) Method and device for input signal estimation, input signal estimating program, and recording medium therefor
JPH06101666B2 (en) Adaptive noise eliminator
JP4057496B2 (en) 1 channel equalization method, apparatus thereof, 1 channel equalization program and recording medium thereof
JPH0380612A (en) Unnecessary signal eliminater
JP2899001B2 (en) Digital signal processing method
JP2003308093A (en) Method and device for extracting signal component
JP3553792B2 (en) Howling detection method and howling detection device
KR0157493B1 (en) Digital main emphasis circuit
JP2779425B2 (en) DC offset remover
JPH0511448B2 (en)
KR20220118894A (en) Method for extracting audio signals from damaged digital video and apparatus thereof
JP2005136544A (en) Distorted speech restoring device and restoring method