JPH02429B2 - - Google Patents
Info
- Publication number
- JPH02429B2 JPH02429B2 JP1142181A JP1142181A JPH02429B2 JP H02429 B2 JPH02429 B2 JP H02429B2 JP 1142181 A JP1142181 A JP 1142181A JP 1142181 A JP1142181 A JP 1142181A JP H02429 B2 JPH02429 B2 JP H02429B2
- Authority
- JP
- Japan
- Prior art keywords
- tape
- alloy
- wire
- shaped
- compound superconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910045601 alloy Inorganic materials 0.000 claims description 32
- 239000000956 alloy Substances 0.000 claims description 32
- 150000001875 compounds Chemical class 0.000 claims description 29
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 claims description 26
- 239000002887 superconductor Substances 0.000 claims description 26
- 229910017755 Cu-Sn Inorganic materials 0.000 claims description 24
- 229910017927 Cu—Sn Inorganic materials 0.000 claims description 24
- 229910052751 metal Inorganic materials 0.000 claims description 23
- 239000002184 metal Substances 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 18
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 6
- 239000011261 inert gas Substances 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 5
- 238000007796 conventional method Methods 0.000 claims description 4
- 230000009467 reduction Effects 0.000 claims description 4
- 239000007789 gas Substances 0.000 description 17
- 239000002131 composite material Substances 0.000 description 16
- 239000010949 copper Substances 0.000 description 10
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 229910052718 tin Inorganic materials 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 238000000137 annealing Methods 0.000 description 4
- 229910052733 gallium Inorganic materials 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 3
- 229910000906 Bronze Inorganic materials 0.000 description 2
- 229910000807 Ga alloy Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 239000010974 bronze Substances 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 238000005491 wire drawing Methods 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- -1 For example Substances 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000001192 hot extrusion Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
Description
【発明の詳細な説明】
本発明はNb3Sn系又はV3Ga系化合物超電導体
の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a Nb 3 Sn-based or V 3 Ga-based compound superconductor.
従来から、Nb3Sn又はV3GaをCuなどの常電導
金属中に埋設して成る化合物系超電導体が実用化
されている。これらの超電導体、例えばNb3Snは
ブロンズ法と呼ばれている方法にて製造されてい
る。即ち、このブロンズ法とはSnの重量比が13.5
%以下のCu−Sn合金から成るビレツトに多数の
貫通孔を穿設し、この貫通孔にNb棒を挿入し、
その後ビレツトに押出し、引抜き等の成形加工及
び熱処理を施こすことによりNbとCu−Sn合金の
界面にNb3Sn層を形成する方法である。 BACKGROUND ART Compound superconductors in which Nb 3 Sn or V 3 Ga is embedded in a normal conducting metal such as Cu have been put into practical use. These superconductors, such as Nb 3 Sn, are manufactured by a method called the bronze method. That is, in this bronze method, the weight ratio of Sn is 13.5.
% or less of Cu-Sn alloy, a large number of through holes are drilled in the billet, and Nb rods are inserted into these through holes.
This method forms a Nb 3 Sn layer at the interface between Nb and the Cu-Sn alloy by subsequently subjecting the billet to forming processes such as extrusion and drawing, and heat treatment.
かかる製造方法はビレツトサイズに応じて大形
の線材を製造することができる長所を有するが、
Cu−Sn合金のSn濃度が高くなるに従つて該合金
に偏析が生じ易く、しかも高温の金属間化合物で
あるCu4Sn化合物を析出してしまうためビレツト
が不均質になり、かつ加工性も低下するという短
所を有する。このため、この製造方法においては
実際には加工性、均質性などを考慮してSn濃度
が10%以下のCu−Sn合金を用いざるを得ず、こ
のようにSn濃度が低い場合には熱処理時にNb棒
の約25%以下が反応するだけであり、従つて生成
されるNb3Sn層が小なく、電流特性の優れた超電
導体を得ることができなかつた。 This manufacturing method has the advantage of being able to manufacture large wire rods depending on the billet size, but
As the Sn concentration in a Cu-Sn alloy increases, segregation tends to occur in the alloy, and Cu 4 Sn compounds, which are intermetallic compounds at high temperatures, precipitate, making the billet non-uniform and reducing workability. It has the disadvantage that it decreases. For this reason, in this manufacturing method, it is actually necessary to use a Cu-Sn alloy with a Sn concentration of 10% or less in consideration of workability, homogeneity, etc., and when the Sn concentration is low, heat treatment is required. Sometimes, only about 25% or less of the Nb rod reacts, and therefore the Nb 3 Sn layer produced is small, making it impossible to obtain a superconductor with excellent current characteristics.
本発明はSn又はGa濃度が10%以上であつても
加工性、均質性を損なうことなく、しかも電流特
性の優れた化合物超電導体の製造方法を提供する
ことを目的とする。 An object of the present invention is to provide a method for manufacturing a compound superconductor that does not impair workability or homogeneity even when the Sn or Ga concentration is 10% or more and has excellent current characteristics.
即ち、本発明は、Sn又はGa濃度が重量比にお
いて10〜30%であるCu−Sn系又はCu−Ga系の溶
湯を、不活性ガスを介して噴射することにより
Cu−Sn系又はCu−Ga系合金を作成し、この得ら
れたCu−Sn系又はCu−Ga系合金に、Nb系又は
V系金属及びCu−Sn系又はCu−Ga系若しくは
Cu系金属容器内に収容し、該金属容器に断面縮
小加工及び熱処理を施こしてNb3Sn系又はV3Ga
系化合物を生成することを特徴とする化合物超電
導体の製造方法及び該方法により得た化合物超電
導体である。 That is, in the present invention, by injecting a Cu-Sn-based or Cu-Ga-based molten metal with a Sn or Ga concentration of 10 to 30% by weight through an inert gas.
A Cu-Sn-based or Cu-Ga-based alloy is created, and a Nb-based or V-based metal and a Cu-Sn-based, Cu-Ga-based, or
Nb 3 Sn-based or V 3 Ga
The present invention relates to a method for producing a compound superconductor, characterized in that a compound superconductor is produced, and a compound superconductor obtained by the method.
以下、本発明の実施例態様を説明する。 Hereinafter, embodiments of the present invention will be described.
第1図には本発明の実施態様に用られる坩堝1
が示され、この坩堝1の下部には下方に吹出口2
Aを有する円筒状の吹出部2が設けられている。
そして、この坩堝1にはその略半部と吹出部2を
覆つた状態でガス供給筒4が取付けられており、
このガス供給筒4は側壁にガス供給口4Bが、又
下部に吹出口2Aと整合し下方に開口するガス噴
射口4Aが設けられている。ガス噴射口4Aの下
方には第1図において時計方向に高速回転する高
速回転ロール5が配されている。 FIG. 1 shows a crucible 1 used in an embodiment of the present invention.
is shown, and the lower part of this crucible 1 has an air outlet 2 downward.
A cylindrical blow-off portion 2 having a diameter A is provided.
A gas supply cylinder 4 is attached to this crucible 1 so as to cover approximately half of the crucible and the blowing part 2.
This gas supply tube 4 is provided with a gas supply port 4B on the side wall, and a gas injection port 4A that aligns with the blow-off port 2A and opens downward at the bottom. A high-speed rotation roll 5 that rotates at high speed clockwise in FIG. 1 is arranged below the gas injection port 4A.
先ずSn重量比が20%であるCu−Sn溶湯3を作
成し、この溶湯3を上記坩堝1に注ぐと共に、ガ
ス供給筒4内に供給口4Bを介して不活性ガス、
例えばアルゴンガス7を高圧で供給し、前記溶湯
3を吹出口2A及びガス噴射口4Aから高速回転
ロール5上に噴射し急冷する。このように溶湯3
をロール5上に噴射した場合Sn重量比が20%で
あるCu−Sn合金テープ6を得ることができる。
本実施例では幅20mm、厚さ80μmのCu−Sn合金テ
ープ6を作成した。 First, a Cu-Sn molten metal 3 with a Sn weight ratio of 20% is prepared, and this molten metal 3 is poured into the crucible 1, and an inert gas,
For example, argon gas 7 is supplied at high pressure, and the molten metal 3 is injected onto the high-speed rotating roll 5 from the blow-off port 2A and the gas injection port 4A to rapidly cool it. In this way, molten metal 3
When sprayed onto the roll 5, a Cu-Sn alloy tape 6 having a Sn weight ratio of 20% can be obtained.
In this example, a Cu-Sn alloy tape 6 having a width of 20 mm and a thickness of 80 μm was prepared.
得られた合金テープ6を複数のNbテープを介
して積層し、即ち、例えば第2図に示すように、
合金テープ6二枚でNbテープ8をサンドイツチ
状に挾んだ状態で30層積層し、この積層体を、内
側寸法が8mm、幅21mm、肉厚0.3mmのNb管9と内
側寸法が高さ9mm、幅22mm、肉厚2.5mmのCu管1
0とから構成したCu−Nb複合管11内に配設す
る。そして、このCu−Nb複合管11に圧延加工
と軟化焼鈍処理を繰返して施こし、厚さ0.35mmの
テープを作成し、更にこのテープに680℃で100時
間熱処理を施こしてNbテープ8の表面にNb3Sn
を形成し、Nb3Sn化合物超電導体を作成し得るも
のである。 The obtained alloy tape 6 is laminated with a plurality of Nb tapes interposed therebetween, that is, for example, as shown in FIG.
Thirty layers of Nb tape 8 are sandwiched between two pieces of alloy tape 6 in a sandwich pattern, and this laminate is stacked with Nb tube 9 whose inner dimensions are 8 mm, width is 21 mm, and wall thickness is 0.3 mm. Cu tube 1 of 9mm, width 22mm, wall thickness 2.5mm
It is arranged in a Cu-Nb composite pipe 11 composed of 0 and 0. Then, this Cu-Nb composite tube 11 was repeatedly subjected to rolling processing and softening annealing treatment to create a tape with a thickness of 0.35 mm, and this tape was further heat-treated at 680°C for 100 hours to form a Nb tape 8. Nb 3 Sn on the surface
It is possible to form a Nb 3 Sn compound superconductor.
このNb3Sn化合物超電導体に4.2Kでバイアス
磁場を加えてその臨界電流特性を測定したとこ
ろ、第3図に示す特性曲線Aを得ることができ
た。尚、比較のために従来の製造方法により作成
したNb3Sn化合物超電導体の臨界電流特性を曲線
Bにて示す。この第3図から明らかなように、本
発明方法により作成したNb3Sn化合物超電導体は
優れた超電導特性を有することが判る。 When a bias magnetic field was applied to this Nb 3 Sn compound superconductor at 4.2 K and its critical current characteristics were measured, characteristic curve A shown in FIG. 3 was obtained. For comparison, curve B shows the critical current characteristics of a Nb 3 Sn compound superconductor produced by a conventional manufacturing method. As is clear from FIG. 3, the Nb 3 Sn compound superconductor produced by the method of the present invention has excellent superconducting properties.
実施例 2
上記実施態様にて用いた装置により、重量比に
おいてGaが25%のCu−Ga合金テープ(幅20mm、
厚さ80μm)を作成し、この合金テープ2枚にて
幅20mm、厚さ80μmのVテープを挾んだ状態で28
層積層し、この積層体を、内側寸法が高さ8mm、
幅21mm、肉厚0.3mmのTa管と内側寸法が高さ9
mm、幅22mm、肉厚2.5mmのCu管とから構成したCu
−Ta複合管内に配置し、上記実施例態様と同様
に圧延加工と軟化焼鈍処理を繰返して施こし厚さ
0.35mmのテープを作成した。得られたテープに
600℃で80時間熱処理を施こしてVテープの表面
にV3Gaを形成し、V3Ga化合物超電導体を作成
した。Example 2 Using the apparatus used in the above embodiment, a Cu-Ga alloy tape (width 20 mm,
80μm thick) was made, and a V tape with a width of 20mm and a thickness of 80μm was sandwiched between two pieces of this alloy tape.
The layers are laminated, and this laminate has an inner dimension of 8 mm in height,
Ta tube with a width of 21 mm and a wall thickness of 0.3 mm and an inner dimension of height 9
mm, width 22mm, wall thickness 2.5mm Cu tube
- Placed in a Ta composite tube, and repeated rolling and softening annealing treatments in the same manner as in the above embodiments to reduce the thickness.
A 0.35mm tape was made. On the resulting tape
Heat treatment was performed at 600° C. for 80 hours to form V 3 Ga on the surface of the V tape, creating a V 3 Ga compound superconductor.
得られたV3Ga化合物超電導体の臨界電流特性
を上記実施例1と同一条件にて測定したところ、
極めて良好な超電導特性を示した。 The critical current characteristics of the obtained V 3 Ga compound superconductor were measured under the same conditions as in Example 1 above.
It showed extremely good superconducting properties.
実施例 3
上記実施態様と同様にして、重量比において
Snが30%で幅及び厚さがそれぞれ30mmと100μm
のCu−Sn合金テープを作成し、この合金テープ
を、直径1.8mmのNb−1wt0/oZr棒に螺旋状に巻
き付け、直径2.8mmの複合棒を得た。次にこの複
合棒約470本を、外径72mm、内経68mmの拡散障壁
として用いられるTaパイプを内側に有する外径
80mm、内径72mm、長さ200mmの純Cu製容器内に詰
め込むことにより複合ビレツトを形成し、このビ
レツトの一端を電子ビーム溶接にて密封した後
600℃にて熱間押出を行ない外径16mmの線状体を
得た。そして、この線状体に冷間伸線と中間の焼
鈍熱処理を多数回繰返して施こし、最終的に線径
が0.2mmの線材を形成し、この線材に650℃で50時
間熱処理を施こすことにより複合多心Nb3Sn化合
物素線を作成した。Example 3 Similar to the above embodiment, in weight ratio
Sn is 30%, width and thickness are 30mm and 100μm respectively
A Cu-Sn alloy tape was prepared, and this alloy tape was spirally wound around a Nb-1wt 0 /oZr rod with a diameter of 1.8 mm to obtain a composite rod with a diameter of 2.8 mm. Approximately 470 of these composite rods were then assembled into a tube with an outer diameter of 72 mm and an inner diameter of 68 mm, each with a Ta pipe inside to be used as a diffusion barrier.
A composite billet is formed by packing it into a pure Cu container with a diameter of 80 mm, an inner diameter of 72 mm, and a length of 200 mm, and one end of this billet is sealed by electron beam welding.
Hot extrusion was performed at 600°C to obtain a linear body with an outer diameter of 16 mm. This linear body is then subjected to cold wire drawing and intermediate annealing heat treatment many times to form a wire rod with a final wire diameter of 0.2 mm, and this wire rod is heat treated at 650°C for 50 hours. By this method, a composite multi-core Nb 3 Sn compound wire was fabricated.
この化合物素線に4・2Kでバイアス磁場を加
えその臨界電流特性を測定したところ、極めて良
好な超電導特性を示した。 When a bias magnetic field was applied to this compound wire at 4.2 K and its critical current characteristics were measured, it showed extremely good superconducting characteristics.
実施例 4
第4図には他の実施態様装置が示され、図中
1′は坩堝を示している。この坩堝1′はその下部
に吹出口2′が設けられている。この吹出口2′の
下方にはガス供給室4′が設けられており、この
ガス供給室4′はその上・下壁に吹出口2′と整合
して溶湯吹込口4′Bと噴射口4′Aとが設けられ
ている。また、この噴射口4′Aの下方には水槽
12が設されている。Embodiment 4 FIG. 4 shows another embodiment of the apparatus, in which 1' indicates a crucible. This crucible 1' is provided with an air outlet 2' at its lower part. A gas supply chamber 4' is provided below this outlet 2', and this gas supply chamber 4' has a molten metal inlet 4'B and an injection port aligned with the outlet 2' on its upper and lower walls. 4'A is provided. Further, a water tank 12 is provided below the injection port 4'A.
先ず溶解炉13にてSn重量比が20%のCu−Sn
溶湯14を作成し、この溶湯14を上記坩堝1′
内に注ぐと共に、ガス供給室4′内にガス供給管
16を介してアルゴンガス7を高圧で供給し、前
記溶湯14を吹出口2′及び噴射口4′Aから水槽
12内の水に高速で噴射し急冷する。このように
溶湯14を水槽12内に噴射した場合Sn重量比
が20%で粒径が3〜30μmのCu−Sn合金粉15を
作成することができる。 First, Cu-Sn with a Sn weight ratio of 20% is melted in the melting furnace 13.
A molten metal 14 is created, and this molten metal 14 is put into the crucible 1'.
At the same time, argon gas 7 is supplied at high pressure into the gas supply chamber 4' through the gas supply pipe 16, and the molten metal 14 is poured into the water in the water tank 12 at high speed from the outlet 2' and the injection port 4'A. Spray and quench. When the molten metal 14 is injected into the water tank 12 in this manner, Cu-Sn alloy powder 15 having a Sn weight ratio of 20% and a particle size of 3 to 30 μm can be produced.
得られた合金粉15を、Sn重量比が8%で、
外径80mm、内径72mm、長さ200mmのCu−Sn合金製
容器17内に、第5図に示すように、外径40mm、
長さ130mmのNb棒18と共に充填(充填密度68
%)して複合ビレツト19を作成し、このビレツ
ト19の一端を電子ビーム溶接にて密封した後こ
のビレツト19に550℃にて熱間押出を施こし外
径18mmのCu−Sn合金で被覆された複合Nb棒を作
成すると共にこのNb棒表面に生成した酸化スケ
ール部分を研削し削除し更に伸線した。その後こ
の伸線した複合Nb棒19本を、再び外径80mm、内
径72mm、長さ200mm、Sn重量比が8%のCu−Sn
容器内に充填して熱間押出を行なうと共にその表
面の酸化スケール部分を削除し伸線して複合線雑
材を得た後この複合線材19本に上記熱間押出、
酸化スケール部分の削除及び伸線処理を計3回施
こすことにより複合素線を作成した。得られた複
合素線と、外径16.0mm、内径14.8mmのNb管及び外
径19.5mm、内径16.5mmの無酸素銅管とに、縮径加
工と軟化焼鈍処理を繰返して施こした後ピツチ30
mmのツイスト加工を更に施こし、最終線径が1mm
の複合多心Nb3Sn化合物素線を作成し、この素線
に680℃で100時間熱処理を施こすことにより
Nb3Sn化合物線材を得た。 The obtained alloy powder 15 was mixed with a Sn weight ratio of 8%,
As shown in FIG.
Filled with Nb rod 18 with a length of 130 mm (filling density 68
%) to create a composite billet 19, and after sealing one end of this billet 19 by electron beam welding, this billet 19 was hot extruded at 550°C and coated with a Cu-Sn alloy with an outer diameter of 18 mm. A composite Nb rod was prepared, and the oxide scale formed on the surface of the Nb rod was ground and removed, and the wire was drawn. After that, the 19 wire-drawn composite Nb rods were reassembled into Cu-Sn wire with an outer diameter of 80 mm, an inner diameter of 72 mm, a length of 200 mm, and a Sn weight ratio of 8%.
Filled into a container and hot extruded, the oxidized scale portion on the surface was removed and wire drawn to obtain a composite wire miscellaneous material.
A composite wire was created by removing the oxide scale portion and performing wire drawing treatment three times in total. After repeatedly performing diameter reduction processing and softening annealing treatment on the obtained composite wire, a Nb tube with an outer diameter of 16.0 mm and an inner diameter of 14.8 mm, and an oxygen-free copper tube with an outer diameter of 19.5 mm and an inner diameter of 16.5 mm. Pitzchi 30
After further twisting of mm, the final wire diameter is 1mm.
By creating a composite multi-core Nb 3 Sn compound wire and heat-treating this wire at 680℃ for 100 hours,
A Nb 3 Sn compound wire was obtained.
この化合物線材に4.2Kでバイアス磁場を加え
その臨界電流特性を測定したところ、上記実施例
と同様に良好な超電導特性を示した。 When a bias magnetic field was applied to this compound wire at 4.2K and its critical current characteristics were measured, it showed good superconducting characteristics similar to the above example.
本発明において、Nb又はVにAl、Mg、Mn、
Ga、Hf、Ta、Zrなどの超電導特性を向上させ
る金属元素を添加し、又はCu−SnやCu−Gaに
Al、Ga、In、Mg、Mn、Pb、Snなどの特性を向
上させる金属元素を添加するのが好ましく、更に
はNb、V、Cu−Sn又はCu−Gaに超電導特性に
有害ならざる元素を添加してもよい。 In the present invention, Nb or V includes Al, Mg, Mn,
Adding metal elements that improve superconducting properties such as Ga, Hf, Ta, and Zr, or adding metal elements such as Ga, Hf, Ta, and Zr to Cu-Sn and Cu-Ga.
It is preferable to add metal elements that improve the properties of Al, Ga, In, Mg, Mn, Pb, Sn, etc. Furthermore, elements that are not harmful to superconducting properties are added to Nb, V, Cu-Sn, or Cu-Ga. May be added.
また、Cu−SnやCu−Ga合金の配設方法や化合
物超電導体の構成は上記実施例に限られるわけで
はなく、各種の工夫が可能であり、これにより本
発明の特長を損うものではない。 Furthermore, the method of disposing the Cu-Sn or Cu-Ga alloy and the structure of the compound superconductor are not limited to the above-mentioned embodiments, and various modifications can be made without detracting from the features of the present invention. do not have.
以下説明したように本発明の製造方法によれ
ば、Sn又はGa濃度が重量比において10〜30%で
あるCu−Sn系又はCu−Ga系の溶湯を、不活性ガ
スを介して噴射することにより、テープ状又は粉
末状のCu−Sn系又はCu−Ga系合金を作成する工
程、このテープ状のCu−Sn系又はCu−Ga系合金
を、テープ状又は棒状のNb系又はV系金属と組
み合わせ、これをCu系又はCu−Sn系もしくはCu
−Ga系合金のいずれかからなる容器内に挿入す
る工程、しかる後、この容器に断面縮小加工及び
熱処理加工を施してNb3Sn又はV3Ga化合物超電
導体のテープ又は線材を作成する工程、を備える
ことによりNb3SnやV3Gaの生成量の多い、即ち
臨界電流特性の優れた化合物超電導体を得ること
ができ、又単位断面積当たりのNb3Sn又はV3Ga
の量が多いことから高い電流密度が得られる。そ
して、本発明方法は上記合金を従来法により作成
した低濃度のこの種の合金と組み合わせて化合物
超電導体を製造するので、加工性の低下を生ずる
こともなく、又濃度勾配を有することから化合物
超電導体を容易に製造することができる。 As explained below, according to the manufacturing method of the present invention, Cu-Sn-based or Cu-Ga-based molten metal having a Sn or Ga concentration of 10 to 30% by weight is injected through an inert gas. The process of creating a tape-shaped or powdered Cu-Sn-based or Cu-Ga-based alloy is performed by converting this tape-shaped Cu-Sn-based or Cu-Ga-based alloy into a tape-shaped or rod-shaped Nb-based or V-based metal. In combination with Cu-based or Cu-Sn-based or Cu
- a step of inserting into a container made of any of the Ga-based alloys, and then a step of subjecting this container to cross-sectional reduction processing and heat treatment to create a tape or wire of a Nb 3 Sn or V 3 Ga compound superconductor; By providing a large amount of Nb 3 Sn or V 3 Ga, it is possible to obtain a compound superconductor with excellent critical current characteristics.
Since the amount of is large, a high current density can be obtained. Since the method of the present invention produces a compound superconductor by combining the above-mentioned alloy with a low-concentration alloy of this type prepared by a conventional method, there is no deterioration in workability, and since the compound superconductor has a concentration gradient, Superconductors can be easily manufactured.
第1図は本発明方法に用いる装置の概略断面
図、第2図は第1図の装置により作成したテープ
状合金をNbテープと共にCu容器内に配設した状
態を示す斜視図、第3図は本発明方法により得た
化合物超電導体と従来法により得た化合物超電導
体との臨界電流特性を示す図、第4図は本発明の
他の実施例に用いる装置の概略断面図、第5図は
第4図の装置により得た合金粉をSn濃度の低い
Cu−Sn合金製容器に充填した状態を示す断面図
である。
1,1′……坩堝、2……吹出部、2′……吹出
口、3,14……溶湯、4……ガス供給筒、4′
……ガス供給室、4A,4′A……ガス噴射口、
5……高速回転ローラ、6……テープ状合金、7
……アルゴンガス、8……Nbテープ、9……Nb
管、10……Cu管、11……Cu−Nb複合管、1
2……水槽、13……溶解炉、15……合金粉、
16……ガス供給管、17……合金製容器、18
……Nb棒、19……複合ビレツト。
Figure 1 is a schematic sectional view of the apparatus used in the method of the present invention, Figure 2 is a perspective view showing the tape-shaped alloy produced by the apparatus of Figure 1 placed in a Cu container together with Nb tape, and Figure 3. is a diagram showing the critical current characteristics of a compound superconductor obtained by the method of the present invention and a compound superconductor obtained by a conventional method, FIG. 4 is a schematic cross-sectional view of an apparatus used in another embodiment of the present invention, and FIG. The alloy powder obtained by the apparatus shown in Fig. 4 has a low Sn concentration.
FIG. 3 is a cross-sectional view showing a state in which a Cu-Sn alloy container is filled. 1, 1'... Crucible, 2... Blower part, 2'... Blower outlet, 3, 14... Molten metal, 4... Gas supply tube, 4'
...Gas supply chamber, 4A, 4'A...Gas injection port,
5... High-speed rotating roller, 6... Tape-shaped alloy, 7
...Argon gas, 8...Nb tape, 9...Nb
Pipe, 10...Cu pipe, 11...Cu-Nb composite pipe, 1
2...water tank, 13...melting furnace, 15...alloy powder,
16... Gas supply pipe, 17... Alloy container, 18
...Nb rod, 19...composite billet.
Claims (1)
−Sn系の溶湯を、不活性ガスを介して噴射する
ことにより、テープ状又は紛末状のCu−Sn系合
金を作成する工程、 このテープ状又は粉末状のCu−Sn系合金を、
テープ状又は棒状のNb系金属と組み合わせて、
これをCu系又は常法により得たCU−Sn系合金の
いずれかからなる容器内に挿入する工程、 しかる後、この容器に断面縮小加工及び熱処理
加工を施してNb3Sn化合物超電導体のテープ又は
線材を作成する工程、 を備えたことを特徴とする化合物超電導体の製造
方法。 2 Ga濃度が重量比において10〜30%であるCu
−Ga系の溶湯を、不活性ガスを介して噴射する
ことにより、テープ状又は粉末状のCu−Ga系合
金を作成する工程、 このテープ状又は粉末状のCu−Ga系合金を、
テープ状又は棒状のV系金属と組み合わせ、これ
をCu系又は常法により得たCu−Ga系合金いずれ
かからなる容器内に挿入する工程、 しかる後、この容器に断面縮小加工及び熱処理
加工を施してV3Ga化合物超電導体のテープ又は
線材を作成する工程、 を備えたことを特徴とする化合物超電導体の製造
方法。[Claims] 1 Cu whose Sn concentration is 10 to 30% by weight
- A step of creating a tape-shaped or powdered Cu-Sn-based alloy by injecting a Sn-based molten metal through an inert gas;
In combination with tape-shaped or rod-shaped Nb-based metal,
A process of inserting this into a container made of either a Cu-based alloy or a CU-Sn-based alloy obtained by a conventional method, and then subjecting this container to cross-sectional reduction processing and heat treatment to form a Nb 3 Sn compound superconductor tape. A method for manufacturing a compound superconductor, comprising: or a step of creating a wire. 2 Cu with a Ga concentration of 10 to 30% by weight
- A process of creating a tape-shaped or powdered Cu-Ga-based alloy by injecting Ga-based molten metal through an inert gas;
The process of combining a tape-shaped or rod-shaped V-based metal and inserting it into a container made of either a Cu-based metal or a Cu-Ga-based alloy obtained by a conventional method.Then, this container is subjected to cross-section reduction processing and heat treatment processing. 1. A method for producing a compound superconductor, comprising the steps of: producing a tape or wire of a V 3 Ga compound superconductor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1142181A JPS57126929A (en) | 1981-01-28 | 1981-01-28 | Compound-type superconductive body and preparation thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1142181A JPS57126929A (en) | 1981-01-28 | 1981-01-28 | Compound-type superconductive body and preparation thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57126929A JPS57126929A (en) | 1982-08-06 |
JPH02429B2 true JPH02429B2 (en) | 1990-01-08 |
Family
ID=11777584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1142181A Granted JPS57126929A (en) | 1981-01-28 | 1981-01-28 | Compound-type superconductive body and preparation thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57126929A (en) |
-
1981
- 1981-01-28 JP JP1142181A patent/JPS57126929A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS57126929A (en) | 1982-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3465430A (en) | Method of making superconductor stock | |
US4411712A (en) | Method of manufacture of multifilamentary intermetallic superconductors | |
US6436554B2 (en) | Method for producing Nb-Sn compound superconducting wire precursor and wire | |
US3838503A (en) | Method of fabricating a composite multifilament intermetallic type superconducting wire | |
US4055887A (en) | Method for producing a stabilized electrical superconductor | |
US5753862A (en) | Compound superconducting wire and method for manufacturing the same | |
US3509622A (en) | Method of manufacturing composite superconductive conductor | |
US4224735A (en) | Method of production multifilamentary intermetallic superconductors | |
JPS6215967B2 (en) | ||
US3836404A (en) | Method of fabricating composite superconductive electrical conductors | |
US4153986A (en) | Method for producing composite superconductors | |
JPH02429B2 (en) | ||
EP0440799A1 (en) | Superconductive wire material and method of producing the same | |
EP0498413B1 (en) | Method of manufacturing Nb3Sn superconducting wire | |
Flukiger et al. | Composite core Nb/sub 3/Sn wires: preparation and characterization | |
EP3961658B1 (en) | Blank for producing a long nb3 sn-based superconducting wire | |
WO1988008618A2 (en) | Ceramic superconducting devices and fabrication methods | |
Xu et al. | Development of internal-tin diffusion multifilamentary Nb/sub 3/Sn conductors including hydrostatic extrusion | |
JPH0350368B2 (en) | ||
JPH0737445A (en) | Compound superconductive wire | |
JPH04277409A (en) | Compound superconducting wire and manufacture thereof | |
JPH04289615A (en) | Manufacture of compound superconducting rod | |
JPH05242742A (en) | Superconducting wire and its manufacture | |
JPS61271716A (en) | Manufacture of compound superconductor | |
JPH06333439A (en) | Compound superconductive wire |