JPH0242613B2 - - Google Patents

Info

Publication number
JPH0242613B2
JPH0242613B2 JP11910582A JP11910582A JPH0242613B2 JP H0242613 B2 JPH0242613 B2 JP H0242613B2 JP 11910582 A JP11910582 A JP 11910582A JP 11910582 A JP11910582 A JP 11910582A JP H0242613 B2 JPH0242613 B2 JP H0242613B2
Authority
JP
Japan
Prior art keywords
machining
surfactant
water
processing
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11910582A
Other languages
Japanese (ja)
Other versions
JPS5914431A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11910582A priority Critical patent/JPS5914431A/en
Priority to US06/506,448 priority patent/US4551602A/en
Priority to EP83303580A priority patent/EP0098711B1/en
Priority to DE8383303580T priority patent/DE3377864D1/en
Priority to DE198383303580T priority patent/DE98711T1/en
Publication of JPS5914431A publication Critical patent/JPS5914431A/en
Publication of JPH0242613B2 publication Critical patent/JPH0242613B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H3/00Electrochemical machining, i.e. removing metal by passing current between an electrode and a workpiece in the presence of an electrolyte
    • B23H3/10Supply or regeneration of working media
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/10Supply or regeneration of working media

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、水を主成分とする放電加工液を用い
る放電加工等の電気加工装置における加工液処理
装置に関する。 放電加工の分野に於ける棒状や総型形状電極を
使用する穿孔、型彫加工の分野に於ては、加工液
として通常ケロシン(白灯油)やトランス油等の
炭化水素油系のものが常用されており、他方ワイ
ヤ電極を使用する所謂ワイヤカツト放電加工の分
野に於ては、加工液として通常水、特に純水系の
ものが常用されて来ている。 前者に於てケロシンが用いられるのは、機械の
防錆上等に好都合なこともあるが、一般的に加工
速度は遅いが加工面粗さが小さくて寸法精度の高
い仕上げ加工の加工条件領域から、加工面粗さは
荒いが加工速度が早い荒加工の加工条件領域迄の
全加工条件領域にわたつて各種の加工性能が、一
般に他より優れていて、かつ設定加工条件にほゞ
比例的に安定して得られること、及び比較的安価
で入手し易く、また比較的長寿命で加工中及び廃
棄等の後処理に当り、格別公害等の問題が生じな
いが、処理が比較的容易なこと等によるものと思
惟される。 しかして、斯種ケロシンやトランス油等の炭化
水素油系加工液の最大の欠点としては、該加工液
が可燃性であると言うことであつて、放電加工等
の電気加工は該加工液中で、又は該加工液を介し
て一対の電極(一方が加工用電極で、他方が被加
工物)を微小間隙を隔てゝ相対向させ該間隙に通
電して間欠的な放電や放電々解等を継続的に繰り
返し発生維持させて加工を行なうものであり、他
方斯種電気加工装置はその稼動運転中に、運転作
業者が機械装置に常時付いていることなく自動運
転加工を行なう類のものである所から、上記加工
液としてはケロシンに各種添加物を添加等して発
火温度を上昇させたものが使用されているも
のゝ、また近時火災検知の自動消火装置が一台一
台の各放電加工装置に付設される状況にあるも
のゝ依然として発火火災を生ずる危険性があり、
このため上述の如く自動運転加工の機械装置であ
りながら、例えば無人では、及び又は終夜運転に
は供し難いものであつた。後者の加工液水は、火
災等の危険は全くなく、又防錆剤等の各種添加剤
等が仮りに必要としても極めて安価であり、処理
も容易、また炭化水素油のように人の皮膚等に障
害を与えることもない等炭化水素油系加工液に比
較して種々の優れた点があり、また加工性能の点
でも、例えば電圧パルスの持続時間が約数10μS
前後以下で、加工面粗さ約数10μRmax以下の所
謂仕上げ加工条件領域に於ては炭化水素油系加工
液に充分比肩し得るものゝ、上記以上程度の加工
面粗さの中加工乃至荒加工に近い加工条件領域に
なると、或いはまた加工電極の加工面積が大きく
なると、種々の加工性能中、加工速度が極端に低
下するとか、加工が困難になつたり、また電極消
耗が増大して電極低消耗の加工ができないとかの
欠点があり、このため上記の加工液水は、加工条
件が所謂仕上げ加工の加工条件領域に限られる、
或いはさらに加工面積が大きくない加工態様の場
合に該当するワイヤカツト放電加工(通常数値制
御方式)に於て使用されるに止つている。 しかしながら、例えば5×103Ωcm以上の所謂
純水を加工液とする限りに於ては(勿論数%前後
以下の防錆剤等を添加したものを含む)、加工電
圧パルス(又は放電電流パルス)の幅(τpo又は
τD)が約30〜20μRmax前後程度またはそれ以上
の加工条件領域、即ち中加工条件以上になると、
例えば電圧パルス(τpo)の無負荷電圧を格別に
大きくするとか、又は放電々流パルス(τD)の放
電々流振幅(Ip)を格別に大きくした場合等の格
別特殊な加工条件、即ち従来通常の電圧パルス
(τpo)又は放電パルス(τD)、また必要ならば電
圧パルス(τpo)間休止時間(τpff)の各条件、又
はそれらに比較的容易に可能な程度の工夫を凝ら
した限りでは、前述の如く加工速度の急減、電極
消耗の増大等のため実用に供し得ないのが現状で
ある。 そこで本発明者らは既に水を主成分とし、表面
活性剤を10数%以下、数%前後程度混合した、或
いはさらに、同時に炭化水素油系の所謂従来の加
工液成分を数%前後程度混合した放電加工液、或
いはさらに数μmφ前後以下の金属粉等微細導電
粉粒を体積比(見掛け)で1%以下の微量添加し
た放電加工液を開発している。表面活性剤、或い
はさらに炭化水素油を夫々微量混合した放電加工
液を用いれば、加工速度の低下や電極消耗の度合
が少なくなる上、火災発生の危険性がないため例
えば数値制御方式の終夜無人運転による加工が可
能となる。しかしながら、斯種表面活性剤は一般
に高価であるという欠点がある。 このため、例えば特願昭56−176128号や特願昭
56−181567号等の先願発明に於ては、前記の如き
表面活性剤の入つた加工液を殆んど無駄なく消費
し尽すような新規な放電加工方法等を提案した。
即ち、例えば「加工用電極と被加工物電極とを微
小間隔を隔てゝ相対向させて形成され、かつ加工
液が供給介在せしめられる前記対向微小加工間隙
に休止時間を置きながら間欠的な電圧パルスを印
加して発生する放電により、前記被加工物電極の
加工用電極対向部分の除去加工を行ない、かつ前
記加工の進行に伴う前記加工間隙の維持制御送り
を行なうようにした電気加工方法に於て、前記加
工液として水を主成分とする実質上非可燃性の水
系加工液を用いると共に、前記加工用電極として
数cm2前後以上の加工面積を有する穿孔又は型彫等
の総型電極を用い、該加工用電極と被加工物電極
とを少くとも前記加工間隙が貯溜加工液外の気中
に於て形成保持されるように気中に配置した状態
で加工間隙に前記加工液を連続的又は間欠的に注
入しつゝ前記放電により加工を行なうに当り、前
記加工間隙の外周縁部より放電加工屑、火花、加
工液及びその分解生成物等の加工間隙介在物及び
生成物が周囲の気中に放射噴出、飛散する状態を
前記放電により保ちつゝ前記加工が進行するよう
に、前記加工液の加工間隙への供給注入を制限制
御することを特徴とする電気加工方法。」と言つ
た類のもので、前記加工液の加工間隙への供給注
入の制限制御は、加工間隙に供給された加工液の
殆んど全部が、気化、蒸気化、分解、及び燃焼等
して使い尽される状態を理想とするものである
が、加工面積、加工形状、加工電極形状、加工液
供給ノズルの設け方、加工液供給路及び開口の電
極又は被加工物への形成又は設け方、加工の進行
に応ずる加工形状、加工条件、又は加工状態等に
よつては、上記の加工液を上記の如く加工間隙で
消費し尽す以上の、例えば数倍の供給量で加工間
隙に噴出供給するか、結果としてそのような加工
液供給となることがあることは避けられず、かゝ
る場合には、上記先願発明にも記載されているよ
うに、過剰供給の加工液を一部以上の加工屑及び
廃棄処分をしても良い加工液滓(例えば、表面活
性剤等の有効成分を含まない加工屑や有効成分の
燃焼滓等を含む水)と共に混合状態で回収し、固
形屑分の分離その他の処理をして再循環供給を行
なう訳であるが、前記処理が仲々難しいものであ
つた。 即ち、通常高価な表面活性剤以外の水(純水で
あつたもの)及び必要に応じて微量添加されたス
ピンドル油等の炭化水素油系、及び防錆剤等必要
に応じて添加されたその他の添加物等は比較的安
価であるから必ずしも回収する必要はないが、上
記表面活性剤を水に溶解したまゝ回収しようとす
ると、放電加工に際して生成した種々の不純物等
が分離除去できないだけでなく、加工液の比抵抗
の向上回復ができず、上記加工液の再生処理は難
しいものであつた。 即ち、上記の如き加工液の処理には、表面活性
剤と炭化水素油等の有機物系のものと、水その他
の無機物系のものとに分離して、後者のものを脱
イオン処理するか、該後者のものを廃棄して新し
い純水等を使用するようにする以外には加工液の
再生、表面活性剤の回収再使用は難しかつた。 本発明は、火災等の発生の心配がなく、無人の
終夜運転等も可能になり、しかも経済的に実現で
きるという利点を有する表面活性剤、或いはさら
に炭化水素油や微細導電粉を夫々微量含む水が主
成分の放電加工液を用いた放電加工装置における
加工液の処理装置を提供することを目的とする。 本発明は高価な表面活性剤を使用後は回収して
再使用しようとするもので、表面活性剤として、
その水溶液の温度の上昇によつて溶解度が大巾に
減少する(すなわち曇点を持つ)ものを用いると
共に、加工済液を加熱して水から固形分として分
離するようにした表面活性剤回収装置を備え、該
表面活性剤回収装置は、加工済液を溜める再生処
理槽と、該再生処理槽内の加工済液を曇点以上の
温度に加熱する加熱装置と、加熱によつて析出す
る表面活性剤を付着させることにより表面活性剤
の分離を促進させる被付着物と、再生処理槽内の
加工済液をかく拌するかく拌装置と、表面活性剤
が沈積した状態における上澄液を再生処理槽の外
部に排出する装置と、該上澄液排出後に再生処理
槽内に水(純水)を流入させることにより低温化
して表面活性剤を水に再溶解させる水供給装置と
を備えたことを特徴とする。 そして、このような構成にすることにより、上
記特願昭56−176128号等の先願発明記載の如き水
系加工液を用いる放電加工を加工液の点から見る
限りに於て経済的に実用可能にすると共に、上記
先願発明に記載した特殊な放電加工方法以外の従
来慣用の放電加工方法にも、上記水系加工液を使
用することを可能としたもので、また、所謂ワイ
ヤカツト放電加工に用いても、加工性能が水(純
水)と同等程度以上で、電極消耗が少ない所から
有用と思惟されるものである。 以下本発明を図面により説明する。図面は本発
明の一実施例であり、1は電極2とワーク3とを
セツトした放電加工槽であり、放電加工液は、電
極2とワーク3間の加工間隙に制限的に、必要な
量宛噴出供給され、加工屑、分解生成物等を含む
使用済放電加工液4は、後述のように回収され、
少くともその内の表面活性剤を再生回収して再使
用に供せられる。 本発明においては、該放電加工液4として、水
を主成分とし、少なくとも表面活性剤を混合して
曇点を持たせた水溶液を用いる。放電加工槽1に
て使用後の加工済液は沈澱槽5に導き、加工屑1
0その他の生成固形物を沈澱させる。該沈澱槽5
には上下方向に間隔を有して2つの液位検出用リ
ミツトスイツチLS1,LS2が設けてあり、かつか
く拌装置7が設けてある。8は再生処理槽であ
り、該再生処理槽8は前記沈澱槽5の数分の1程
度の容積を有し、前記リミツトスイツチLS1が作
動するとポンプ9および配管9aにより沈澱槽5
内の加工済液を再生処理槽8内に導入し、リミツ
トスイツチLS2、又はLS3が作動するとその導入
を停止する。再生処理槽8内には、固形物の大部
分が沈澱により除去された加工済液を曇点以上に
加熱する加熱装置11と、かく拌装置12と、温
度センサー13と、液位検出用リミツトスイツチ
LS3,LS4とが設置してあり、また加熱時に表面
活性剤を付着させる微細粉末、例えば鉄粉14が
沈積させてある。 15は加工液にケロシン油等の油を混入した場
合に、表面活性剤を含まず、廃棄処分にする加工
液滓(大部分は水で再生処理槽8から汲み上げた
上澄液)から油及び一部汲み上げられた鉄粉(加
工屑を一部含む)を分離さらには回収するために
設けた油分離槽であり、再生処理槽8と該油分離
槽15とは、ポンプ16を有する排出管17と、
ポンプ18を有する鉄粉(温度を保てば表面活性
剤が一部付着している)戻し管19とにより接続
されている。該油分離槽15は水と油の比重差に
よつて油を水(排液)から分離するもので、中間
の仕切板20によつて油分離側と排出側に分割し
てあり、排出側には鉄粉や加工屑を除くフイルタ
21が設置され、フイルタ21の排液出口側には
加工によつて生じたイオンの濃度センサー22が
設けてあり、濃度センサー22による濃度検出後
は排液管23により放流するようになつている。
ポンプ18は適宜作動させて、沈積鉄粉を再生処
理槽8に帰還させて処理槽8の鉄粉の消費損耗を
防止する。 24は表面活性剤を冷純水の注入により溶解さ
せた溶液を処理槽8から汲み上げ加工液として再
使用する際にその汲み上げた加工液から、同時に
汲み上げられた鉄粉を沈降により分離する鉄粉分
離槽であり、該分離槽24と前記再生処理槽8と
は、ポンプ25を有する再使用加工液の吸出管2
6と、ポンプ27を有する鉄粉戻り管28とによ
り接続されている。29は処理槽8から汲み上げ
た加工液中の鉄粉を除くために必要に応じて設け
られるフイルタ、30は該フイルタにより鉄粉を
除いた加工液を再使用のために加工液槽31に導
く戻り管である。 加工液槽31においては、必要に応じてケロシ
ン油等の油、表面活性剤その他32が必要量添加
又は補充のために混合され、ポンプ33により、
弁34および配管35,36を介して前記電極2
又は加工槽1の一方又は両方から被加工体3との
間の加工間隙に、或いは加工槽1充満のために供
給されるようになつている。 37は水道水38のイオン分を除去するイオン
交換樹脂、39はイオン除去後の純水を溜めてお
く純水槽であり、該純水槽39内の純水は、ポン
プ40により弁41を有する配管42を介して加
工液と合流して電極2等の加工部に供給しうるよ
うになつており、また弁43を有する配管44を
介して前記再生処理槽8に冷純水として導入させ
ることができるようになつている。 次にこの装置の作用について説明する。加工槽
1に於ける加工使用済液が沈澱槽5に供給され、
液位がリミツトスイツチLS1に達するとスイツチ
オンとなつたポンプ9により、再生処理槽8に加
工済液を流入させ、該処理槽8内の液位がリミツ
トスイツチLS3に達するとポンプ9はスイツチオ
フとなりその後、加熱装置11によつて好ましく
は急速に加熱すると共に、例えば導入加工済液の
約20体積%を予め充填した3μφの鉄粉と共に該加
工済液をかく拌装置12によつて例えば0.5m/
secの速度で強制的に、即ち鉄粉14が浮遊して
処理槽8内を万辺なく移動するようにかく拌す
る。加工済液が曇点(例えば55℃)以上に加熱さ
れると、加工済液中の表面活性剤は鉄粉の表面に
吸着され、前記表面活性剤に対する充分な量の鉄
粉14としておくことにより加工済液中に溶解し
ていた表面活性剤の殆んど全ては鉄粉14表面に
吸着され、かく拌停止によつて再生処理槽8の底
部に沈降する。一方、放電加工によつて生じたイ
オン分は上澄液中に取り残され、また各槽分解物
等も水に浮遊性のものは大部分上澄液中に残存
し、また油分が混入されていれば油分も液中、又
は浮上して残る。従つて、かく拌を停止した後に
或る程度の沈降時間を置いて、或いは例えば磁気
的等の手段で強制沈降させ、上澄液を下方のリミ
ツトスイツチLS4が作動するまでポンプ16によ
つて油分離槽15に導入して静置することによ
り、加工済液中のイオン分及び分解生成物等の中
の浮遊物のほとんどを純度の低下した水と共に汲
み上げ除去することができる。また油分は必要な
らば油分離槽15で回収することができる。油分
を除きかつフイルタ21で固形分を除いた加工済
液は純度の低下した水であるから、樹脂槽37に
供給して再使用しても良いが、樹脂37を痛める
ことがあるので、通常は排液管23を介して放流
される。 上澄液を放流した後は、弁43を開放し、ポン
プ40を駆動して純水槽39内の純水(冷水であ
ることが望しいので、槽39との間に必要に応じ
て冷却装置を設ける。)を配管44を介して再生
処理槽8にリミツトスイツチLS3が作動するまで
流入させてかく拌することにより、表面活性剤が
付着している鉄粉14が浮遊し、該鉄粉に吸着さ
れている表面活性剤を水に溶解させ、加工液とし
て再生させる。再生された加工液はかく拌停止及
び沈降により鉄粉を分離し、上澄の再生加工液を
鉄粉分離槽24およびフイルタ29によつて鉄粉
を充分除いた加工液を戻り管30を介して加工液
槽31に戻し、必要に応じてケロシン油等の油、
表面活性剤、その他32を加え又は補充して混合
し、ポンプ33により弁34および配管35,3
6を介して電極2等の加工部に供給される。 なお、上述実施例における具体例においては、
再生処理槽8の上方のリミツトスイツチLS3まで
の容積を10とし、1回の処理量を6、毎分当
りの処理量を200c.c./min、1回のサイクルタイ
ムを30分とした。そしてこの場合の表面活性剤の
回収率は95%であつた。 また、例えば、前述特願昭56−181567号等の先
願発明記載の如き放電加工においては、加工条件
(電気的条件)および加工形状の難易度によつて
加工液流量が変化し、実際の流量fRと、最適最小
流量f(v)min関係は次のようになる。 fR=f(v)min+F ここで、f(v)minは電圧パルスτpoと電流パ
ルスIp等の加工条件に関連して変化し、Fは加工
に関与しない流量、即ち加工形状や加工状態等に
より加工間隙の各部に所望のように加工液が介在
するように供給するには、必要量以上の加工液を
供給する必要があるが、その結果、過剰であつた
加工液の流量である。この加工に関与しない流量
Fは未使用の加工液であり、従つて電極2等の加
工部に供給する必要のある総合純水(加工液)供
給量FTは、 FT=F+f(v)min×α となる。ただし、αは加工条件によつて変わる係
数である。この総合純水供給量FTを制御するこ
とにより、再生加工液となる。このような純水の
供給は、再生処理槽8に対してのみならず、加工
液槽31に対して行うようにしてもよく、また弁
41を介して配管36で合流させて供給するよう
にしてもよい。上記図示実施例に於て処理槽8に
於て加工済液を処理して表面活性剤を鉄粉14に
付着沈降せしめ、上澄液をポンプ16により油水
分離槽15に汲み出した後、純水槽39からポン
プ40により処理槽8に供給する純水の量は、上
記加工液の未使用流量下に正確に相当する量であ
れば、配管30によつて液槽31に帰還する液中
の表面活性剤の濃度が初期未使用加工液のそれと
一致することになるが、加工によつて消費される
流量α×f(v)minは、加工間隙の時々刻々の
加工状態等によつて相当程度変化するから、上
記、純水槽39から処理槽8に供給する純水の量
は、上記流量下に相当する純水の量より多目の、
例えば処理槽8で処理した加工済液、即ち油分離
槽15に汲み上げた液の約60%前後として、加工
液槽31またはその前段に於て表面活性剤その他
の濃度調整を行なうようにすることが望ましい。
勿論必要ならば加工状態の継続的検知により流量
α×f(v)minを検知してポンプ40による処
理槽8への純水供給量をその都度自動制御するよ
うにしても良い。 なお、前記表面活性剤としては、ポリエチレン
グリコール型非イオン表面活性剤、エチレンオキ
サイドを付加したラウリルアルコールやノニルフ
エノール系のもの、あるいは前記先願の特願昭56
−176128号に記載したシリコーン油系の各種の表
面活性剤、或いはまたアルキルフエノール系のも
のが用いられ、これらの混合量としては、重量百
分比で0.1〜15%程度、特に0.1〜5%程度が好ま
しい。 また、特に電極の消耗量増大防止のため、或い
はさらに加工速度等加工性能惟持の安定化のため
に、例えばスピンドル油やケロシン油等の炭化水
素油を約10%程度以下、好ましくは4〜5%以下
の数%前後程度を添加し、また必要ならば加工状
態の安定化と加工速度の向上のために微細金属粉
等の導電粉を0.01〜0.5%前後混合するのが好ま
しい。そして前記のような炭化水素油は上述の如
き表面活性剤が添加されていることにより、主成
分の水中に微小油滴状となつて均一に分散する。
また処理槽8に於ける被付着物であると共に高速
分離のためである磁界分離のために加える鉄粉は
ほぼ0.1μ〜20μ程度のサイズで、混合量としては
重量百分比は0.1〜10%程度であることが望まし
い。なお、磁界分離をしない場合は、上記鉄粉に
代えて、水に溶解しない砂、その他のセラミツク
粉末や非磁性金属粉末その他を用いることができ
る。また、磁界を加えて分離する以外に、鉄粉に
代えて合成樹脂粉等誘電体性物の粉を用い直流ま
たは交流電界を加えて静電又は誘電分離するよう
にしたり、また前述の如く加工液中に、必要に応
じグラフアイト、鉄、銅、ニツケル、亜鉛の微細
粉末等を加えて放電加工するような水主成分の放
電加工液の場合には、鉄粉14の補助に、加工屑
及び上記微細粉を処理槽8に於ける被吸着物粉と
して利用するようにしても良い。何れにしても処
理槽8内の鉄粉等被吸着物が減少すると、該処理
槽8に於ける目的とする処理が行なえなくなるの
で、油分離槽15及び分離槽24に於て捕足して
処理槽8へ帰還させるように構成したのである。
また、粉末の代りに各種の鋼状物を用いかく拌翼
の周りと処理槽8内周壁間に多重に筒状等に挿設
して被吸着体として用いると良い。 なお、前記の磁界、電界による分離効果を実験
結果により説明すると、105Ωcmの比抵抗の水に
非イオン系のシリコーン油系表面活性剤1%とス
ピンドル油1%を添加した加工液で放電加工後、
1%のノニフエノールにエチレンオキサイドを12
モル付加したものを混入し、さらに5μφの鉄粉を
15%混合してかく拌しつつ65℃に迄加熱した所、
鉄粉と加工屑に活性剤が付着し、水スピンドル
油、及びその他の水溶解物と分離して別に存在
し、約3時間の自然沈澱で沈降させ、上澄液を汲
み出し、沈澱物を冷却し純水を加わえて溶解した
ところ、約96%の表面活性剤が回収できた。ま
た、上記のかく拌後50Hzで1100G(ガウス)の磁
場を加えたとき、35分で99.5%の加工屑と表面活
性剤が沈澱分離及び次いで水溶解により回収でき
た。直流磁界を加えたときは98%の回収ができ
た。 また、前記実施例においては、再生処理槽8に
おける上澄液を鉄粉等等の固形分、及び油水分離
後放流するようにしたが、上澄液をイオン交換樹
脂に通して再使用するようにしてもよい。 上澄液を再使用するようにすれば、水が節約さ
れると共に、放電加工液放流による公害問題の発
生がなくなる。 なお、放電加工液として、ポリエーテル変性シ
リコンオイルを表面活性剤に用いたものに例をと
り、放電加工を行つた実験結果を第1表に記して
おく。実験においては、加工用電極として約30mm
φの銅電極を用い、S55C鉄材を被加工物とし、
電圧パルスの持続時間(τpo)約60μS、休止時間
(τpff)約20μS、及び放電電流の振幅(Ip)約45A
とし、種々の加工液を用いて加工した所、次の第
1表の結果が得られた。
The present invention relates to a machining fluid treatment device for electrical machining equipment such as electrical discharge machining that uses an electrical discharge machining fluid whose main component is water. In the field of drilling and die-sinking using rod-shaped or full-shaped electrodes in the field of electric discharge machining, hydrocarbon oil-based fluids such as kerosene (white kerosene) and transformer oil are usually used as machining fluids. On the other hand, in the field of so-called wire cut electrical discharge machining using wire electrodes, ordinary water, especially pure water, has been commonly used as the machining fluid. In the former case, kerosene is sometimes used because it is convenient for preventing rust in the machine, but it is generally used in the processing condition range of finishing processing where the processing speed is slow but the machined surface roughness is small and dimensional accuracy is high. The machining performance of each type is generally better than others over the entire machining condition range, from rough machining where the machined surface is rough but the machining speed is high, and is approximately proportional to the set machining conditions. It is relatively cheap and easy to obtain, has a relatively long life, and does not cause any particular pollution problems during processing or after-treatment such as disposal, but it is relatively easy to dispose of. It is thought that this is due to the following reasons. However, the biggest drawback of hydrocarbon oil-based machining fluids such as kerosene and transformer oil is that the fluids are flammable, and electrical machining such as electrical discharge machining is carried out in the machining fluids. Alternatively, a pair of electrodes (one is a machining electrode and the other is a workpiece) are faced to each other with a minute gap in between, and current is applied to the gap to generate intermittent electrical discharge, electrical discharge, etc. On the other hand, this type of electrical processing equipment performs automatic processing without an operator being present at the machine all the time during its operation. For this reason, the processing fluid used is kerosene with various additives added to raise the ignition temperature, and in recent years, automatic fire extinguishing devices for fire detection have been installed in each machine. Items that are attached to electrical discharge machining equipment still pose a risk of ignition and fire.
For this reason, although it is a machine for automatic processing as described above, it is difficult to operate unattended or overnight. The latter, processing liquid water, poses no danger of fire or the like, and even if various additives such as rust preventive agents are required, they are extremely cheap and easy to dispose of, and unlike hydrocarbon oils, they are not harmful to human skin. It has various advantages over hydrocarbon oil-based machining fluids, such as those that do not cause problems with machining fluids, etc., and in terms of machining performance, for example, the duration of voltage pulses is approximately several tens of microseconds.
It is fully comparable to hydrocarbon oil-based machining fluids in the so-called finish machining condition range where the machined surface roughness is less than about 10 μRmax, and is suitable for medium to rough machining with machined surface roughness of more than the above. When the machining conditions are close to 1, or when the machining area of the machining electrode becomes large, the machining speed may drop dramatically, machining becomes difficult, or the electrode wear increases and the electrode decreases. There is a drawback that consumable machining cannot be performed, so the machining conditions for the above-mentioned machining liquid water are limited to the so-called finishing machining condition range.
Furthermore, it is only used in wire cut electric discharge machining (usually numerical control method), which corresponds to machining modes where the machining area is not large. However, as long as the so-called pure water of 5×10 3 Ωcm or more is used as the machining fluid (of course, it also includes those to which around a few percent or less of rust preventive agents etc. are added), the machining voltage pulse (or discharge current pulse) ) width (τ po or τ D ) is around 30 to 20 μRmax or above, i.e., when the processing conditions are higher than medium processing conditions,
For example, extremely special machining conditions such as when the no-load voltage of the voltage pulse (τ po ) is made particularly large, or when the discharge current amplitude (Ip) of the discharge pulse (τ D ) is made particularly large; Conventional conventional voltage pulses (τ po ) or discharge pulses (τ D ), and if necessary, each condition of the pause time (τ pff ) between voltage pulses (τ po ), or modifications to these that are relatively easily possible. At present, even if the method is elaborated, it cannot be put to practical use because of the sudden decrease in processing speed and increase in electrode wear as described above. Therefore, the present inventors have already mixed water as the main component with a surfactant of about 10% or less, or around a few percent, or, at the same time, mixed a hydrocarbon oil-based so-called conventional machining fluid component of around a few percent. Furthermore, we are developing an electrical discharge machining fluid to which a microscopic amount of less than 1% by volume (apparent) of fine conductive particles such as metal powder of around several μm diameter or less is added. If an electric discharge machining fluid containing a small amount of a surface active agent or hydrocarbon oil is used, the machining speed will decrease and the degree of electrode wear will be reduced, and there will be no risk of fire, so for example, numerically controlled overnight unattended machines can be used. Machining by driving becomes possible. However, such surfactants have the disadvantage that they are generally expensive. For this reason, for example, Japanese Patent Application No. 56-176128 and Japanese Patent Application No.
In prior inventions such as No. 56-181567, a novel electrical discharge machining method was proposed in which the machining fluid containing the above-mentioned surfactant was consumed with almost no waste.
That is, for example, "a machining electrode and a workpiece electrode are opposed to each other with a minute interval between them, and a voltage pulse is applied intermittently while there is a rest period in the opposed micromachining gap where machining fluid is supplied. In the electric machining method, the part of the workpiece electrode facing the machining electrode is removed by an electric discharge generated by applying the same, and the machining gap is maintained and controlled as the machining progresses. In this method, a substantially non-flammable water-based machining fluid containing water as the main component is used as the machining fluid, and a total type electrode for drilling or engraving having a machining area of around several cm 2 or more is used as the machining electrode. The machining fluid is continuously applied to the machining gap while the machining electrode and the workpiece electrode are placed in air so that at least the machining gap is formed and maintained in the air outside the stored machining fluid. When machining is performed by the electric discharge that is injected selectively or intermittently, machining gap inclusions and products such as electric discharge machining debris, sparks, machining fluid and its decomposition products are removed from the outer periphery of the machining gap. An electric machining method characterized by controlling and restricting the supply of the machining fluid into the machining gap so that the machining progresses while maintaining the state in which the machining fluid is ejected and scattered into the air by the electric discharge. In this type of control, the control to limit the supply of machining fluid into the machining gap ensures that almost all of the machining fluid supplied to the machining gap is used by vaporizing, vaporizing, decomposing, burning, etc. The ideal state is that the process is completed, but the processing area, processing shape, processing electrode shape, how to provide the processing fluid supply nozzle, how to form or provide the processing fluid supply path and opening on the electrode or the workpiece, Depending on the machining shape, machining conditions, or machining state depending on the progress of machining, the above machining liquid may be sprayed and supplied to the machining gap at a supply amount, for example, several times the amount that is consumed in the machining gap as described above. However, it is inevitable that such machining fluid may be supplied as a result, and in such a case, as described in the above-mentioned prior invention, more than a portion of the excessively supplied machining fluid is removed. The solid waste is recovered in a mixed state with processing waste and processing liquid slag that can be disposed of (for example, processing waste that does not contain active ingredients such as surfactants, water containing combustion slag of active ingredients, etc.). The method is to perform separation and other treatments before recirculating and supplying the raw materials, but these treatments are quite difficult. In other words, water other than the usually expensive surfactant (pure water), hydrocarbon oils such as spindle oil added in small amounts as necessary, and others added as necessary such as rust preventives. Since these additives are relatively inexpensive, it is not necessarily necessary to recover them. However, if you try to recover the above-mentioned surfactants while they are dissolved in water, you will not be able to separate and remove the various impurities generated during electrical discharge machining. Therefore, the specific resistance of the machining fluid could not be improved or recovered, and the regeneration treatment of the machining fluid was difficult. That is, in the treatment of the above-mentioned processing fluid, it is necessary to separate the organic matter such as surfactant and hydrocarbon oil into the organic matter such as water and other inorganic matter, and then deionize the latter. It was difficult to regenerate the processing fluid and recover and reuse the surfactant except by discarding the latter and using fresh pure water. The present invention has the advantage that there is no fear of the occurrence of fire, etc., unmanned overnight operation is possible, and it can be realized economically, or it further contains a small amount of hydrocarbon oil or fine conductive powder. An object of the present invention is to provide a machining fluid processing device in an electrical discharge machining machine that uses an electrical discharge machining fluid whose main component is water. The present invention aims to recover and reuse expensive surfactants after use, and as a surfactant,
A surfactant recovery device that uses an aqueous solution whose solubility significantly decreases (that is, has a cloud point) as the temperature of the aqueous solution increases, and that heats the processed solution to separate it from water as a solid component. The surface active agent recovery device includes a regeneration treatment tank that stores the processed liquid, a heating device that heats the processed liquid in the regeneration treatment tank to a temperature higher than the clouding point, and a surface active agent that is precipitated by heating. A stirring device that stirs the adhered material that promotes the separation of the surfactant by adhering the surfactant to the processed liquid in the regeneration treatment tank, and a regeneration of the supernatant liquid in which the surfactant is deposited. Equipped with a device for discharging the supernatant to the outside of the treatment tank, and a water supply device that flows water (pure water) into the regeneration treatment tank after discharging the supernatant liquid to reduce the temperature and redissolve the surfactant in the water. It is characterized by With such a configuration, electric discharge machining using a water-based machining fluid as described in the invention of the prior application such as the above-mentioned Japanese Patent Application No. 56-176128 can be economically practical as far as the machining fluid is concerned. In addition, the water-based machining fluid can be used in conventional electrical discharge machining methods other than the special electrical discharge machining method described in the prior invention. However, it is considered to be useful because its processing performance is equivalent to or higher than that of water (pure water), and there is less electrode wear. The present invention will be explained below with reference to the drawings. The drawing shows one embodiment of the present invention, and 1 is an electrical discharge machining tank in which an electrode 2 and a workpiece 3 are set, and the electrical discharge machining fluid is supplied in a limited amount to the machining gap between the electrode 2 and the workpiece 3 in a necessary amount. The used electrical discharge machining fluid 4 containing machining waste, decomposition products, etc., which is sprayed and supplied to the destination, is collected as described below.
At least the surfactant contained therein can be recovered and reused. In the present invention, as the electrical discharge machining fluid 4, an aqueous solution containing water as a main component and having a cloud point by mixing at least a surfactant is used. The machined liquid after being used in the electrical discharge machining tank 1 is led to the sedimentation tank 5, and the machined waste 1
0 Other product solids are precipitated. The settling tank 5
Two limit switches LS 1 and LS 2 for detecting liquid level are provided with an interval in the vertical direction, and a stirring device 7 is also provided. Reference numeral 8 denotes a regeneration tank. The regeneration tank 8 has a volume that is approximately a fraction of that of the sedimentation tank 5. When the limit switch LS 1 is activated, the pump 9 and piping 9a cause the sedimentation tank 5 to be drained.
The processed liquid inside is introduced into the regeneration treatment tank 8, and when the limit switch LS 2 or LS 3 is activated, the introduction is stopped. Inside the regeneration treatment tank 8, there are a heating device 11 that heats the processed liquid from which most of the solids have been removed by precipitation above the clouding point, an agitation device 12, a temperature sensor 13, and a limit switch for detecting the liquid level.
LS 3 and LS 4 are installed, and fine powder such as iron powder 14 is deposited to attach the surfactant during heating. 15, when oil such as kerosene oil is mixed into the machining fluid, it does not contain a surfactant and is extracted from the machining fluid slag (mostly water and the supernatant liquid pumped from the recycling tank 8) to be disposed of. This oil separation tank is provided to separate and recover partially pumped iron powder (including some processing scraps), and the regeneration treatment tank 8 and the oil separation tank 15 are connected to a discharge pipe with a pump 16. 17 and
It is connected by a return pipe 19 having a pump 18 and a return pipe 19 to which the iron powder (surfactant is partially attached if kept at a temperature). The oil separation tank 15 separates oil from water (drained liquid) based on the difference in specific gravity between water and oil, and is divided into an oil separation side and a discharge side by an intermediate partition plate 20. A filter 21 is installed to remove iron powder and processing waste, and a concentration sensor 22 for ions generated by processing is installed on the drain outlet side of the filter 21. After the concentration sensor 22 detects the concentration, the drain The water is discharged through a pipe 23.
The pump 18 is operated appropriately to return the deposited iron powder to the regeneration treatment tank 8 to prevent consumption and loss of the iron powder in the treatment tank 8. Reference numeral 24 denotes an iron powder for separating the iron powder that is simultaneously pumped up from the pumped processing liquid by sedimentation when a solution in which a surfactant is dissolved by injecting cold pure water is pumped up from the processing tank 8 and reused as a processing liquid. The separation tank 24 and the regeneration treatment tank 8 are a separation tank, and the separation tank 24 and the regeneration treatment tank 8 are a reuse processing fluid suction pipe 2 having a pump 25.
6 and an iron powder return pipe 28 having a pump 27. 29 is a filter provided as necessary to remove iron powder from the machining fluid pumped up from the processing tank 8; 30 is a filter that guides the machining fluid from which the iron powder has been removed to the machining fluid tank 31 for reuse. It is a return pipe. In the processing liquid tank 31, oil such as kerosene oil, surfactant, etc. 32 are mixed in order to add or replenish the necessary amount, and a pump 33 is used to
The electrode 2 is connected to the electrode 2 via a valve 34 and piping 35, 36.
Alternatively, it is supplied from one or both of the processing tanks 1 to the processing gap between the workpiece 3 or to fill the processing tank 1. 37 is an ion exchange resin for removing ions from the tap water 38; 39 is a pure water tank for storing pure water after ion removal; the pure water in the pure water tank 39 is pumped by a pump 40 to a pipe having a valve 41; 42, it can be combined with the processing liquid and supplied to the processing parts such as the electrode 2, and can also be introduced as cold pure water into the regeneration treatment tank 8 via a pipe 44 having a valve 43. I'm starting to be able to do it. Next, the operation of this device will be explained. The processed liquid in the processing tank 1 is supplied to the settling tank 5,
When the liquid level reaches the limit switch LS 1 , the pump 9 is turned on and the processed liquid flows into the regeneration treatment tank 8. When the liquid level in the treatment tank 8 reaches the limit switch LS 3 , the pump 9 is turned off and then , preferably rapidly heated by a heating device 11, and stirred the processed liquid together with iron powder of 3μφ pre-filled with about 20% by volume of the introduced processed liquid, for example, by a stirring device 12, for example, 0.5 m//.
The iron powder 14 is forcibly stirred at a speed of sec, that is, so that the iron powder 14 floats and moves throughout the processing tank 8. When the processed liquid is heated above the cloud point (for example, 55 ° C.), the surfactant in the processed liquid is adsorbed on the surface of the iron powder, and the amount of iron powder 14 is sufficient for the surface active agent. Almost all of the surfactant dissolved in the processed liquid is adsorbed onto the surface of the iron powder 14, and settles to the bottom of the regeneration tank 8 when the stirring is stopped. On the other hand, ions generated by electrical discharge machining are left behind in the supernatant liquid, and most of the decomposition products from each tank that are floatable in water remain in the supernatant liquid, and oil is mixed in. If so, the oil will remain in the liquid or float to the surface. Therefore, after agitation is stopped, a certain amount of sedimentation time is allowed, or the sedimentation is forcibly performed, for example, by magnetic means, and the supernatant liquid is pumped into oil by the pump 16 until the lower limit switch LS 4 is activated. By introducing the liquid into the separation tank 15 and allowing it to stand still, most of the suspended matter in the ions and decomposition products in the processed liquid can be pumped up and removed together with the water with reduced purity. Further, oil can be recovered in an oil separation tank 15 if necessary. The processed liquid from which oil and solids have been removed by the filter 21 is water with reduced purity, so it may be supplied to the resin tank 37 and reused, but since this may damage the resin 37, it is usually is discharged via the drain pipe 23. After discharging the supernatant liquid, open the valve 43 and drive the pump 40 to drive the pure water (preferably cold water) in the pure water tank 39, so if necessary, install a cooling device between the tank 39 and the pure water. ) is allowed to flow into the regeneration treatment tank 8 through the piping 44 until the limit switch LS 3 is activated, and the iron powder 14 to which the surfactant is attached is suspended, and the iron powder is The adsorbed surfactant is dissolved in water and regenerated as a processing fluid. The iron powder is separated from the recycled machining fluid by stopping stirring and settling, and the supernatant regenerated machining fluid is passed through the iron powder separation tank 24 and the filter 29 to sufficiently remove the iron powder, and the machining fluid is returned through the return pipe 30. and return it to the machining liquid tank 31, and add oil such as kerosene oil or
Add or replenish surfactant and others 32, mix, and pump 33 to valve 34 and piping 35, 3.
6 to the processing section such as the electrode 2. In addition, in the specific example in the above-mentioned example,
The volume up to the limit switch LS 3 above the regeneration treatment tank 8 was set to 10, the processing amount per cycle was set to 6, the processing amount per minute was set to 200 c.c./min, and the cycle time per cycle was set to 30 minutes. The recovery rate of the surfactant in this case was 95%. In addition, for example, in electrical discharge machining as described in the invention of the prior application such as the aforementioned Japanese Patent Application No. 56-181567, the machining fluid flow rate changes depending on the machining conditions (electrical conditions) and the degree of difficulty of the machining shape. The relationship between the flow rate f R and the optimum minimum flow rate f(v)min is as follows. f R = f (v) min + F Here, f (v) min changes in relation to machining conditions such as voltage pulse τ po and current pulse Ip, and F is a flow rate that is not involved in machining, that is, machining shape and machining state. In order to supply machining fluid to each part of the machining gap as desired, it is necessary to supply more than the necessary amount of machining fluid, but as a result, the flow rate of the machining fluid that is excessive . The flow rate F that is not involved in this machining is unused machining fluid, so the total supply amount of pure water (machining fluid) F T that needs to be supplied to the machining parts such as the electrode 2 is F T = F + f (v) It becomes min×α. However, α is a coefficient that changes depending on the processing conditions. By controlling this total pure water supply amount F T , it becomes a recycled processing fluid. Such pure water may be supplied not only to the regeneration treatment tank 8 but also to the processing liquid tank 31, or may be supplied via a valve 41 to join the pipe 36. It's okay. In the illustrated embodiment, the processed liquid is treated in the treatment tank 8 to cause the surfactant to adhere to and settle on the iron powder 14, and the supernatant liquid is pumped out to the oil-water separation tank 15 by the pump 16, and then to the pure water tank. If the amount of pure water supplied from 39 to the processing tank 8 by the pump 40 corresponds exactly to the unused flow rate of the processing fluid, the surface of the liquid returned to the liquid tank 31 via the piping 30 will be reduced. The concentration of the activator will match that of the initial unused machining fluid, but the flow rate α×f(v)min consumed during machining will vary considerably depending on the momentary machining conditions of the machining gap. Therefore, the amount of pure water supplied from the pure water tank 39 to the processing tank 8 is larger than the amount of pure water corresponding to the above flow rate.
For example, the processed liquid treated in the processing tank 8, that is, about 60% of the liquid pumped into the oil separation tank 15, should be adjusted to the concentration of the surfactant and other substances in the processing liquid tank 31 or at a stage before it. is desirable.
Of course, if necessary, the flow rate α×f(v)min may be detected by continuous detection of the processing state, and the amount of pure water supplied to the processing tank 8 by the pump 40 may be automatically controlled each time. The surfactant may be a polyethylene glycol type nonionic surfactant, a lauryl alcohol or nonylphenol type surfactant added with ethylene oxide, or a surfactant based on lauryl alcohol or nonylphenol, or a surfactant based on the above-mentioned patent application filed in 1983.
-176128, various silicone oil-based surfactants or alkylphenol-based ones are used, and the mixing amount of these is about 0.1 to 15% by weight, especially about 0.1 to 5%. preferable. In addition, in order to prevent an increase in electrode wear, or to stabilize machining performance such as machining speed, the amount of hydrocarbon oil, such as spindle oil or kerosene oil, should be reduced to about 10% or less, preferably 4 to 4%. It is preferable to add about a few percent of 5% or less, and if necessary, to stabilize the processing conditions and improve the processing speed, about 0.01 to 0.5% of conductive powder such as fine metal powder is mixed. The above-mentioned hydrocarbon oil is uniformly dispersed in the form of minute oil droplets in water, which is the main component, by adding the above-mentioned surfactant.
In addition, the iron powder that is attached to the treatment tank 8 and is added for magnetic field separation for high-speed separation has a size of about 0.1μ to 20μ, and the mixed amount is about 0.1 to 10% by weight. It is desirable that Note that when magnetic field separation is not used, sand, other ceramic powder, non-magnetic metal powder, or the like that does not dissolve in water may be used in place of the iron powder. In addition to separating by applying a magnetic field, it is also possible to use dielectric powder such as synthetic resin powder instead of iron powder to perform electrostatic or dielectric separation by applying a DC or AC electric field, or to perform electrostatic or dielectric separation by applying a DC or AC electric field. In the case of a water-based electrical discharge machining fluid, in which fine powders of graphite, iron, copper, nickel, zinc, etc. are added to the fluid as necessary for electrical discharge machining, machining waste may be used to supplement the iron powder 14. The fine powder may also be used as adsorbent powder in the processing tank 8. In any case, if the adsorbed materials such as iron powder in the treatment tank 8 decrease, the intended treatment in the treatment tank 8 cannot be performed, so the oil separation tank 15 and the separation tank 24 are used to collect and process them. The structure is such that the water is returned to tank 8.
Further, instead of powder, various steel materials may be used as objects to be adsorbed by inserting them in multiple cylindrical shapes around the stirring blades and between the inner circumferential wall of the processing tank 8. In addition, to explain the separation effect due to the above-mentioned magnetic field and electric field using experimental results, discharge was performed using a machining fluid made by adding 1% of a nonionic silicone oil-based surfactant and 1% of spindle oil to water with a specific resistance of 10 5 Ωcm. After processing,
12% ethylene oxide in nonyphenol
Mix the molar addition and add 5μφ iron powder.
After mixing 15% and heating to 65℃ while stirring,
The activator adheres to the iron powder and processing waste, separates it from the water spindle oil and other water-dissolved substances, and allows it to settle by natural settling for about 3 hours.The supernatant liquid is pumped out and the precipitate is cooled. When pure water was added and dissolved, approximately 96% of the surfactant was recovered. Furthermore, when a magnetic field of 1100 G (Gauss) was applied at 50 Hz after the above-mentioned stirring, 99.5% of processing waste and surfactant were recovered by precipitation separation and then water dissolution in 35 minutes. When a DC magnetic field was applied, 98% recovery was achieved. Further, in the above embodiment, the supernatant liquid in the regeneration treatment tank 8 was discharged after solids such as iron powder and oil and water were separated, but it is also possible to pass the supernatant liquid through an ion exchange resin and reuse it. You may also do so. Reusing the supernatant fluid saves water and eliminates pollution problems caused by discharge of electrical discharge machining fluid. Table 1 shows the experimental results of electrical discharge machining using an electrical discharge machining fluid using polyether-modified silicone oil as a surface active agent. In the experiment, approximately 30 mm was used as a processing electrode.
Using a φ copper electrode, S55C iron material is the workpiece,
Voltage pulse duration (τ po ) approximately 60 μS, pause time (τ pff ) approximately 20 μS, and discharge current amplitude (Ip) approximately 45 A.
When processing was carried out using various processing fluids, the results shown in Table 1 below were obtained.

【表】 上記表に於て、Aは比抵抗約0.5×104Ωcmの純
水を加工液として用いた場合、Bは、ポリエチレ
ングリコール80%残部上記Aの水からなる溶液を
加工液として用いた場合、Cはガソリンスタンド
等で放電加工液として購入できる加工液で、添加
物により発火点を上昇させてあるが所謂実質上ケ
ロシンから成る炭化水素油を加工液として用いた
場合、D,E,F,Gは本発明の実験結果で、信
越化学工業株式会社が品名KF−352として販売し
ている粘度約1600CS(25℃)、比重約1.03(25℃)、
屈折率約1.446(25℃)のポリエーテル変性シリコ
ーンオイルを上記Aの水に、Dは約0.2%、Eは
約0.5%、Fは約1.0%、Gは約2.0%夫々溶解させ
て加工液とした場合で、括弧がない数値は、A,
B,C加工液の場合と同様従来通常の加工態様で
放電加工した場合の結果であるのに対し、括弧を
付した数値は、前述した先願発明に記載の新規な
放電加工方法に適用した場合である。 以上は、本発明を電気加工の所謂放電加工用加
工液及びその加工液を使用する放電加工方法につ
いて説明を加わえてきたが、上記発明に於て使用
される加工液に、さらにNaCl,NaNO3
NaNO2,KNO3,KNO2,Na2CO3,NaOH等の
電解質の1種又は2種以上加わえて電解放電加工
又は放電電解加工の加工液として使用することが
できる。 以上述べたように、本発明においては、放電加
工液として、曇点を持つた表面活性剤を含んだ水
を主成分とするものを用いたので、例えば数値制
御方式の終夜無人運転の放電加工が可能になるこ
とは言うに及ばず、さらに主成分の水に添加され
た高価な表面活性剤を廃棄等浪費することなく、
該表面活性剤が放電加工作用によつて分解等浪費
尽される迄回収して使用できるので、従来のケロ
シンを用いる場合に比べて経済的に放電加工を行
うことができるという利益を生じる。 また、本発明においては、再生処理槽内の加工
済液の加熱、上澄液の排出、純水の加入の一連の
作業で加工液の再生を行う構成を有するので、表
面活性剤を分離するためにフイルタ等を要するこ
となく、経済的に装置を実現することができる。
[Table] In the above table, A is when pure water with a specific resistance of approximately 0.5 x 10 4 Ωcm is used as the machining fluid, and B is when a solution consisting of 80% polyethylene glycol and the balance of water from A above is used as the machining fluid. In this case, C is a machining fluid that can be purchased as an electrical discharge machining fluid at a gas station, etc., and if a hydrocarbon oil consisting essentially of kerosene is used as the machining fluid, although the ignition point has been raised with additives, D, E , F, G are the experimental results of the present invention, and are sold by Shin-Etsu Chemical Co., Ltd. under the product name KF-352, with a viscosity of approximately 1600CS (25℃), a specific gravity of approximately 1.03 (25℃),
Polyether-modified silicone oil with a refractive index of about 1.446 (25°C) is dissolved in the water of A above, D is about 0.2%, E is about 0.5%, F is about 1.0%, and G is about 2.0% to make a processing liquid. In this case, the numbers without parentheses are A,
As in the case of machining fluids B and C, these are the results when electrical discharge machining is performed in the conventional conventional machining mode, whereas the numerical values in parentheses are those obtained when applied to the novel electrical discharge machining method described in the prior invention mentioned above. This is the case. Above, the present invention has been explained about the so-called electric discharge machining fluid for electrical machining and the electric discharge machining method using the machining fluid . ,
One or more kinds of electrolytes such as NaNO 2 , KNO 3 , KNO 2 , Na 2 CO 3 , NaOH, etc. can be added thereto to be used as a machining fluid for electrolytic discharge machining or electrical discharge electrolytic machining. As described above, in the present invention, since the electrical discharge machining fluid mainly consists of water containing a surface active agent and having a cloud point, it is possible, for example, to perform electrical discharge machining in numerically controlled overnight unattended operation. It goes without saying that it becomes possible to do this without wasting the expensive surfactant added to the main ingredient water, such as by discarding it.
Since the surface active agent can be recovered and used until it is decomposed or wasted due to the action of electric discharge machining, there is an advantage that electric discharge machining can be carried out more economically than when conventional kerosene is used. Further, in the present invention, since the processing liquid is regenerated through a series of operations of heating the processed liquid in the regeneration treatment tank, discharging the supernatant liquid, and adding pure water, the surfactant is separated. Therefore, the device can be realized economically without requiring a filter or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示す系統図である。 8……再生処理槽、11……加熱装置、12…
…かく拌装置、15……油分離槽、39……純水
槽。
The drawing is a system diagram showing one embodiment of the present invention. 8... Regeneration treatment tank, 11... Heating device, 12...
... Stirring device, 15... Oil separation tank, 39... Pure water tank.

Claims (1)

【特許請求の範囲】 1 表面活性剤を混入した水溶液を加工液として
用いる電気加工装置において、表面活性剤とし
て、その水溶液の温度の上昇によつて溶解度が大
巾に減少するものを用いると共に、加工済液を加
熱して水から固形分として分離するようにした表
面活性剤回収装置を備え、該表面活性剤回収装置
は、加工済液を溜める再生処理槽と、加熱によつ
て析出する表面活性剤を付着させることにより表
面活性剤の分離を促進させる被付着物と、再生処
理槽内に加工済液をかく拌するかく拌装置と、表
面活性剤が沈積した状態における上澄液を再生処
理槽の外部へ排出する上澄液排出装置と、該上澄
液排出後に再生処理槽内に水を流入させることに
より低温化して表面活性剤を水に再溶解させる水
供給装置とを備えたことを特徴とする電気加工用
加工液処理装置。 2 前記加工液にはさらに炭化水素油を含み、か
つ前記上澄液排出装置は油の回収装置を有するこ
とを特徴とする特許請求の範囲第1項記載の電気
加工用加工液処理装置。
[Scope of Claims] 1. In an electrical processing device that uses an aqueous solution mixed with a surfactant as a machining fluid, the solubility of the surfactant decreases significantly as the temperature of the aqueous solution increases, and The surfactant recovery device is equipped with a surface active agent recovery device that heats the processed liquid to separate it from water as a solid content, and the surface active agent recovery device includes a regeneration treatment tank that stores the processed liquid, and The adhering material promotes the separation of the surfactant by adhering the surfactant, the agitation device stirs the processed liquid in the regeneration treatment tank, and the supernatant liquid in which the surfactant is deposited is regenerated. It is equipped with a supernatant liquid discharge device that discharges the supernatant liquid to the outside of the treatment tank, and a water supply device that causes water to flow into the regeneration treatment tank after the supernatant liquid is discharged, thereby lowering the temperature and redissolving the surfactant in the water. A machining fluid treatment device for electrical machining, which is characterized by: 2. The machining fluid treatment device for electrical machining according to claim 1, wherein the machining fluid further contains hydrocarbon oil, and the supernatant fluid discharge device includes an oil recovery device.
JP11910582A 1982-06-23 1982-07-08 Dielectric fluid processor for electrical machining Granted JPS5914431A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP11910582A JPS5914431A (en) 1982-07-08 1982-07-08 Dielectric fluid processor for electrical machining
US06/506,448 US4551602A (en) 1982-06-23 1983-06-21 Electrical machining using an aqueous solution with a recycled surface active agent
EP83303580A EP0098711B1 (en) 1982-06-23 1983-06-21 Electrical machining system and method of processing a machining liquid therein
DE8383303580T DE3377864D1 (en) 1982-06-23 1983-06-21 Electrical machining system and method of processing a machining liquid therein
DE198383303580T DE98711T1 (en) 1982-06-23 1983-06-21 ELECTRICAL MACHINING SYSTEM AND METHOD FOR TREATING A MACHINING LIQUID IN THE SYSTEM.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11910582A JPS5914431A (en) 1982-07-08 1982-07-08 Dielectric fluid processor for electrical machining

Publications (2)

Publication Number Publication Date
JPS5914431A JPS5914431A (en) 1984-01-25
JPH0242613B2 true JPH0242613B2 (en) 1990-09-25

Family

ID=14753027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11910582A Granted JPS5914431A (en) 1982-06-23 1982-07-08 Dielectric fluid processor for electrical machining

Country Status (1)

Country Link
JP (1) JPS5914431A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6133820A (en) * 1984-07-26 1986-02-17 Inoue Japax Res Inc Machining liquid circulation supply unit for electric discharge machining
JPH0722852B2 (en) * 1985-08-19 1995-03-15 株式会社井上ジャパックス研究所 Processing liquid processing equipment
JP6407922B2 (en) * 2016-07-21 2018-10-17 ファナック株式会社 Wire electric discharge machine

Also Published As

Publication number Publication date
JPS5914431A (en) 1984-01-25

Similar Documents

Publication Publication Date Title
ATE256531T1 (en) DEVICE AND METHOD FOR HIGH-PRESSURE WATER JET CUTTING WITH DISCHARGE OF THE CUTTING AGENT
US4551602A (en) Electrical machining using an aqueous solution with a recycled surface active agent
JP2008119612A (en) Separation treatment tub
US4194972A (en) Method for breaking an oil-in-water emulsion
CA2192889C (en) Method and apparatus for separating oil from water in wastewater containing an emulsified oil
US4508950A (en) EDM Method and apparatus using liquid hydrocarbon decomposition yielded gases and a deionized water liquid
JPH0242613B2 (en)
US4473733A (en) EDM Method and apparatus using hydrocarbon and water liquids
JPS5850560B2 (en) Equipment for electrochemically purifying contaminated liquids
CN208234680U (en) A kind of release agent recycling and reusing system
KR101561244B1 (en) Treatment system of metalworking fluid and cleansing solution
JPS637891B2 (en)
JPS58181900A (en) Discharge machining liquid
RU97276U1 (en) UNIVERSAL MODULAR PLANT FOR CLEANING INDUSTRIAL TECHNOLOGICAL LIQUIDS AND WASTE WATERS
JP4624233B2 (en) EDM machine
CN210367258U (en) Floating oil separating device with ozone sterilization module for waste liquid recovery system
JPS5927300B2 (en) Electric machining fluid control device
CA1102275A (en) Breaking oil-in-water emulsion using porous iron electrode
JPS5810428A (en) Discharge processing method and device
JPH07165Y2 (en) Processing liquid suction processing device
SU337223A1 (en) METHOD OF ELECTRIC PROCESSING
JPH0548311B2 (en)
JPS61241022A (en) Electric discharge machining method
JPS61249217A (en) Electric discharge machine
CN112775837A (en) Chemically-assisted superhard abrasive metal bond grinding wheel dressing device