JPH024258Y2 - - Google Patents

Info

Publication number
JPH024258Y2
JPH024258Y2 JP1983005184U JP518483U JPH024258Y2 JP H024258 Y2 JPH024258 Y2 JP H024258Y2 JP 1983005184 U JP1983005184 U JP 1983005184U JP 518483 U JP518483 U JP 518483U JP H024258 Y2 JPH024258 Y2 JP H024258Y2
Authority
JP
Japan
Prior art keywords
magnetic
excitation
magnetic flux
electromagnetic brake
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983005184U
Other languages
Japanese (ja)
Other versions
JPS59110434U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP518483U priority Critical patent/JPS59110434U/en
Publication of JPS59110434U publication Critical patent/JPS59110434U/en
Application granted granted Critical
Publication of JPH024258Y2 publication Critical patent/JPH024258Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Braking Arrangements (AREA)

Description

【考案の詳細な説明】 本案はエレベータ或はクレーンの巻上機等の停
電時の非常対策としての安全ブレーキとして多用
され、永久磁石の吸引力によつて被制動体に制動
を掛け、制動解除を電磁コイルによる励磁によつ
て行なう。所謂無励磁作動形電磁ブレーキに関す
るものでブレーキ解放のための励磁電流の設定が
容易でかつブレーキ解放特性の安定したこの種ブ
レーキを提供するものである。
[Detailed explanation of the invention] This invention is often used as a safety brake as an emergency measure in the event of a power outage for elevators, crane hoisting machines, etc., and uses the attractive force of a permanent magnet to apply braking to the braked object and release the brake. is performed by excitation using an electromagnetic coil. This invention relates to a so-called non-excitation actuated electromagnetic brake, and is intended to provide this type of brake that allows easy setting of excitation current for brake release and has stable brake release characteristics.

先づ従来のこの種電磁ブレーキを第1図および
第2図について説明する。第1図において1およ
び2は略断面L字状の環状ヨークで両者の円盤状
部を軸方向に対向させて同心的に配置され、これ
等両者の内外周間の空間部に励磁コイル3が収納
され、また両者の円盤状部間に永久磁石4が挾着
される。永久磁石4は、その上記ヨークの円盤状
部に接着する部分が磁極となつている。
First, a conventional electromagnetic brake of this type will be explained with reference to FIGS. 1 and 2. In FIG. 1, 1 and 2 are annular yokes with a substantially L-shaped cross section, and are arranged concentrically with their disc-shaped parts facing each other in the axial direction. The permanent magnet 4 is inserted between the two disc-shaped parts. The part of the permanent magnet 4 that is adhered to the disc-shaped portion of the yoke serves as a magnetic pole.

なお内方ヨークの円盤状部分は、励磁コイル3
によつて発生させた磁束の主磁路となると同時に
永久磁石4による磁束のバイパス磁路5となつて
おり、かつこの部分の外方周縁は外方ヨーク1の
内周面との間に空隙を隔てゝいる。6は両ヨーク
1,2の磁極部である開放端における対向面間に
亘つて設けられた摩擦板、7は両ヨーク1,2の
磁極面と摩擦板6の外側面に亘つて対向するアー
マチユアでハブ8にスプラインによつて噛合さ
れ、このハブ上を軸方向に摺動できるようになつ
ている。9はアーマチユア7の解放用板バネで一
端はアーマチユア7に固着され、他方端はハブ8
の外周に設けられた凹所内に止め環10を用いて
固定される。11はハブ8に連結された被制動
軸、12はヨーク1の一端に取り付けられた連結
腕でヨーク1,2、コイル3、および永久磁石4
等から成る磁石部を回転しないよう当該電磁ブレ
ーキの使用機械(図示せず)等の適所に固定する
ために用いられる。
Note that the disc-shaped part of the inner yoke is the excitation coil 3.
At the same time, it serves as a main magnetic path for the magnetic flux generated by the permanent magnet 4, and a bypass magnetic path 5 for the magnetic flux generated by the permanent magnet 4, and the outer periphery of this portion has a gap between it and the inner peripheral surface of the outer yoke 1. They are separated from each other. Reference numeral 6 denotes a friction plate provided between the opposing surfaces at the open ends, which are the magnetic pole parts of both yokes 1 and 2, and 7 an armature that opposes the magnetic pole surfaces of both yokes 1 and 2 and the outer surface of the friction plate 6. It is meshed with the hub 8 by a spline so that it can slide on the hub in the axial direction. 9 is a leaf spring for releasing the armature 7, one end of which is fixed to the armature 7, and the other end of which is fixed to the hub 8.
It is fixed in a recess provided on the outer periphery using a retaining ring 10. 11 is a braked shaft connected to the hub 8; 12 is a connecting arm attached to one end of the yoke 1; the yokes 1, 2, the coil 3, and the permanent magnet 4;
It is used to fix the magnet part consisting of the electromagnetic brake in a proper place on the machine (not shown) etc. in which the electromagnetic brake is used so that it does not rotate.

以上の構成において励磁コイル3に電流が供給
されていないときには永久磁石4による磁束Ф1
が点線で示す経路で流れ、この磁束に基づく電磁
吸引力F0(第2図において)によつてアーマチユ
アがヨーク1,2の端面に生じる磁極に向つて吸
引され、摩擦板6に圧接せられ、ハブ8を介して
被制動軸11にブレーキがかけられる。
In the above configuration, when no current is supplied to the excitation coil 3, the magnetic flux Ф 1 due to the permanent magnet 4
flows in the path shown by the dotted line, and the armature is attracted toward the magnetic poles generated on the end faces of the yokes 1 and 2 by the electromagnetic attractive force F 0 (in FIG. 2) based on this magnetic flux, and is pressed against the friction plate 6. , a brake is applied to the braked shaft 11 via the hub 8.

また励磁コイル3に電流を供給し、この電流に
よつて生じる磁束Ф2が第1図に実線で示すよう
に永久磁石4による磁束Ф1を打ち消す方向であ
るように、その電流方向を定め、そしてこの電流
の大きさを漸次増大させて行くとアーマチユア7
に対する電磁吸引力は第2図における曲線aで示
されるように減少し、そしてこの吸引力がバネ9
の反力fkより小さくなると、このバネの力によつ
てアーマチユアは磁極から釈放され、被制動軸1
1に対する制動は解放される。
Further, a current is supplied to the excitation coil 3, and the direction of the current is determined so that the magnetic flux Τ 2 generated by this current is in the direction that cancels the magnetic flux Τ 1 due to the permanent magnet 4, as shown by the solid line in FIG. By gradually increasing the magnitude of this current, armature 7
The electromagnetic attractive force on the spring 9 decreases as shown by curve a in FIG.
When the reaction force f k becomes smaller, the armature is released from the magnetic pole by the force of this spring, and the braked shaft 1
The brake for 1 is released.

なお更に励磁コイル3の電流を増加して行く
と、この電流による磁束Ф2が増大し、アーマチ
ユア7に対する吸引力は同第2図に曲線bで示す
ように増大し、この過程でこの励磁コイル3によ
る磁束Ф2に基づく吸引力がバネ9の反力fkより
大きくなるとアーマチユア7は再び吸引され、被
制動軸11にブレーキがかけられる。
Furthermore, as the current in the excitation coil 3 is further increased, the magnetic flux Ф 2 due to this current increases, and the attractive force to the armature 7 increases as shown by curve b in FIG. 2, and in this process, the excitation coil When the attractive force based on the magnetic flux Τ 2 caused by 3 becomes larger than the reaction force f k of the spring 9, the armature 7 is attracted again and the brake is applied to the braked shaft 11.

このような作用が行われるのであるが、上記に
おいて励磁コイル3による励磁電流の増加過程に
おいてはアーマチユア7が解放されてから再び吸
引される間の範囲を解放範囲と称せられ、この解
放範囲の中間点に相当する励磁電流値Isが解放設
定電流となり、通常この種電磁ブレーキは、その
解放設定電流値Isを励磁コイルに供給するか或は
この電流を遮断するかの操作によつてブレーキが
解放され、或はブレーキがかけられる。
Such an action takes place, and in the above process of increasing the excitation current by the excitation coil 3, the range between when the armature 7 is released and when it is attracted again is called the release range, and the middle of this release range is called the release range. The excitation current value I s corresponding to the point becomes the release setting current, and this type of electromagnetic brake normally brakes by supplying the release setting current value I s to the excitation coil or cutting off this current. is released or the brake is applied.

しかしこの解放設定電流Isは永久磁石の特性バ
ラツキ、周囲温度、コイルの温度上昇、季節の温
度変化、電源電圧の変動等により変化するので、
常に安定したブレーキ特性を期待するためには上
記解放範囲を大ならしめる必要があり、またこの
解放範囲のみを拡大させても解放設定電流Isの値
が移動した場合、例えば励磁コイル3に対する印
加電圧一定のもとに使用される電磁ブレーキにお
いては上記諸条件が変化した場合、適確なブレー
キ動作が行われないこととなる。
However, this release setting current I s changes due to variations in permanent magnet characteristics, ambient temperature, coil temperature rise, seasonal temperature changes, power supply voltage fluctuations, etc.
In order to always expect stable braking characteristics, it is necessary to widen the above-mentioned release range, and even if only this release range is expanded, if the value of the release setting current I s changes, for example, the application to the excitation coil 3 will change. In an electromagnetic brake used under a constant voltage, if the above conditions change, appropriate braking operation will not be performed.

従つてこの種電磁ブレーキには解放範囲の拡大
と同時に解放設定電流値が移動しないことが要求
される。
Therefore, this type of electromagnetic brake is required to expand the release range and at the same time not to change the release setting current value.

本案はこの両者を充足させるもので以下第3図
乃至第6図について本案を具体的に説明する。第
3図において13は本案によるスリツトで内方ヨ
ーク2の円盤状部分でもあるバイパス磁路5の中
央部に、この部分を通る励磁コイル3によつて生
じる磁束の方向と平行に全周に亘つて深溝状に設
けられ、このバイパス磁路を、コイル側の磁束の
通路と永久磁石側の磁束の通路とに両者同一磁気
抵抗のもとに2分している。尚かゝるスリツト1
3は磁気的なスリツトであればよく、必らずしも
空隙である必要がなく第4図に他の実施例を示す
ように磁気絶縁物によつてそのバイパス磁路5を
左右に磁気的に分割してもよく、またスリツト1
3の長さは第3図のように励磁コイル3によつて
発生する磁束Ф2の流れる範囲に亘つて設ければ
後述の作用が行われ、本案の目的が達せられるが
第4図に示すように永久磁石4に対するコアー1
4となる部分も含め分割するのがスリツトを形成
する上で製作の容易性の面から有利である。更に
第4図のように絶縁物を介在させることなく、第
5図に示すように単に2部分を接着剤によつて結
合するのみでもよく、この場合はこの接合面の微
視的な空隙が磁気的なスリツトとなり、かゝるバ
イパス磁路は左右に磁気的に分離される。なお第
3図において他の部分の構成については第1図に
示す従来のそれと同一であるのでそれ等と同一部
分に同一の符号を付すに止め、その説明を省略す
る。
The present invention satisfies both of these requirements, and the present invention will be specifically explained below with reference to FIGS. 3 to 6. In FIG. 3, reference numeral 13 denotes a slit according to the present invention, which is placed in the center of the bypass magnetic path 5, which is also a disk-shaped portion of the inner yoke 2, over the entire circumference in parallel with the direction of the magnetic flux generated by the excitation coil 3 passing through this portion. The bypass magnetic path is divided into two paths, one for the magnetic flux on the coil side and the other for the magnetic flux on the permanent magnet side, both with the same magnetic resistance. Naokaru Slit 1
3 may be a magnetic slit, and does not necessarily have to be an air gap. As shown in another embodiment shown in FIG. It may be divided into slits 1 and 1.
If the length of 3 is set over the range in which the magnetic flux Ф 2 generated by the excitation coil 3 flows as shown in Fig. 3, the effect described later will be performed and the purpose of the present invention will be achieved, but as shown in Fig. 4. Core 1 for permanent magnet 4 as
It is advantageous to form the slits by dividing the parts including the 4 parts from the viewpoint of ease of manufacture. Furthermore, as shown in Fig. 5, the two parts may be simply joined together with an adhesive without intervening an insulator as shown in Fig. 4, and in this case, the microscopic voids on the joint surface This becomes a magnetic slit, and the bypass magnetic path is magnetically separated into left and right sides. In FIG. 3, the configuration of other parts is the same as that of the conventional device shown in FIG. 1, so the same parts will be given the same reference numerals and their explanation will be omitted.

本案の実施例は以上で構成され、励磁電流の増
加過程について考察するに、アーマチユア7が釈
放される時点の、永久磁石による磁束に比べ励磁
コイルによる磁束が比較的小さい段階において
は、スリツト13の存在のために、このバイパス
磁路5を流れる励磁コイル3による磁束の流れが
永久磁石4になる磁束によつて妨げられることが
なくなるので、その部分の励磁コイルによる磁束
が流れ易く、その結果スリツトのない場合に比し
小さい励磁電流でアーマチユアが釈放されること
となり、またアーマチユアの釈放後の励磁電流の
増大によつてそのアーマチユアが再度吸引される
時点、即ち永久磁石による磁束に比べ、励磁コイ
ルによる磁束が比較的大きい段階ではスリツト1
3の存在のために励磁コイルによる磁束が永久磁
石側のバイパス磁路の領域を流れ得なく、磁束通
路が狭められたこととなり、スリツトがない場合
に比しより大きい電流を流さないとアーマチユア
が吸引されないこととなる。従つてアーマチユア
の解放範囲は解放設定電流値を中心として両側に
広がつたこととなる。
The embodiment of the present invention is constructed as described above, and considering the process of increasing the excitation current, at the stage when the magnetic flux due to the excitation coil is relatively small compared to the magnetic flux due to the permanent magnet when the armature 7 is released, the slit 13 is Because of this existence, the flow of magnetic flux caused by the excitation coil 3 flowing through this bypass magnetic path 5 is not obstructed by the magnetic flux that becomes the permanent magnet 4, so the magnetic flux caused by the excitation coil in that part flows easily, and as a result, the slit The armature is released with a smaller excitation current compared to the case without the armature, and when the armature is attracted again due to an increase in the excitation current after the armature is released, in other words, compared to the magnetic flux by the permanent magnet, the excitation coil When the magnetic flux is relatively large, slit 1
3, the magnetic flux from the excitation coil cannot flow through the bypass magnetic path area on the permanent magnet side, and the magnetic flux path is narrowed, causing the armature to fail unless a larger current is passed than in the case without the slit. It will not be attracted. Therefore, the release range of the armature has expanded to both sides around the release setting current value.

第6図はスリツト13が無い場合と有る場合の
アーマチユアの吸引・釈放の動作特性を示す実測
例を示すもので実線で示す曲線a,a′はスリツト
が無い場合の特性曲線で、また破線b,b′はスリ
ツトを有する場合でこのスリツト巾を0.5mmとし
たときの特性曲線である。なお同図において縦軸
の吸引力はスリツト13がなく、無励磁状態にお
いてアーマチユアが永久磁石により吸引されてい
る状態の吸引力を1.0とした場合におけるスリツ
トを付加したときの吸引力の変化を示す。
Figure 6 shows an actual measurement example showing the operation characteristics of the armature's suction and release when there is no slit 13 and when there is a slit 13. Curves a and a' shown by solid lines are the characteristic curves when there is no slit, and broken line b , b' are characteristic curves when a slit is provided and the slit width is set to 0.5 mm. In the figure, the attraction force on the vertical axis shows the change in attraction force when a slit is added, assuming that there is no slit 13 and the attraction force when the armature is attracted by a permanent magnet in a non-excited state is 1.0. .

この実験例からも明瞭なように、本案によれば
アーマチユアを釈放するための励磁電流の巾、従
つて解放範囲は広くなるので上記のように周囲温
度の変化等の使用環境における諸条件の変化或は
製作上の誤差に拘らず常に一定励磁電流のもとに
ブレーキ動作を確実に行わせ、動作特性の安定し
たブレーキを提供することができ、しかも所定の
解放設定電流値を中心として上記解放範囲が拡大
されるので励磁コイルに印加される電圧の調整に
よつてアーマチユアの解放電流値を設定し得ない
条件のもとに使用されるブレーキ、即ち一定電源
電圧のもとに使用されるブレーキに適用した場合
においても、上記諸条件の変化に拘らず常に安定
したブレーキ解放特性を期待することができる。
As is clear from this experimental example, according to the present invention, the width of the excitation current for releasing the armature, and therefore the release range, becomes wider, so as mentioned above, changes in various conditions in the usage environment such as changes in ambient temperature etc. Alternatively, it is possible to always perform brake operation reliably under a constant excitation current regardless of manufacturing errors, and to provide a brake with stable operating characteristics. Brakes used under conditions where the release current value of the armature cannot be set by adjusting the voltage applied to the excitation coil because the range is expanded, i.e. brakes used under constant power supply voltage. Even when applied to the above, stable brake release characteristics can always be expected regardless of changes in the above conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電磁ブレーキの上半部の縦断面
図、第2図は従来の電磁ブレーキの一般的な励磁
電流対吸引力特性を示す線図、第3図は本案の実
施例を示す電磁ブレーキの上半部の縦断面図、第
4図,第5図は夫々本案の他の実施例を示す部分
断面図、第6図は従来のものと本案のものとを比
較するための励磁電流対吸引力特性を示す線図で
ある。 3……励磁コイル、14……永久磁石、5……
バイパス磁路、13……磁気的スリツト。
Figure 1 is a longitudinal cross-sectional view of the upper half of a conventional electromagnetic brake, Figure 2 is a diagram showing the general excitation current versus attraction force characteristics of a conventional electromagnetic brake, and Figure 3 is an example of the present invention. A longitudinal sectional view of the upper half of the electromagnetic brake, FIGS. 4 and 5 are partial sectional views showing other embodiments of the present invention, and FIG. 6 is an excitation diagram for comparing the conventional one and the proposed one. FIG. 2 is a diagram showing current versus attractive force characteristics. 3... Excitation coil, 14... Permanent magnet, 5...
Bypass magnetic path, 13...magnetic slit.

Claims (1)

【実用新案登録請求の範囲】 1 励磁コイルで発生する磁束の主磁路となると
同時に永久磁石で発生する磁束の一部を流通さ
せるバイパス磁路を備え、永久磁石の吸引力に
基づく制動を励磁コイルの励磁によつて解放す
る電磁ブレーキであつて上記バイパス磁路に、
この磁路を、両者略同一磁気抵抗のもとに励磁
コイルによる磁束の通路と永久磁石による磁束
の通路とに2分する磁気的スリツトを設けたこ
とを特徴とする無励磁作動形電磁ブレーキ。 2 上記磁気的スリツトは内方ヨークの円盤状部
分である上記バイパス磁路の中央部に全周に亘
つて深溝状に形成したことを特徴とする実用新
案登録請求の範囲第1項記載の無励磁作動形電
磁ブレーキ。 3 上記磁気的スリツトは内方ヨークの円盤状部
分である上記バイパス磁路の中央部で左右に2
分し、この両者を接合して形成したことを特徴
とする実用新案登録請求の範囲第1項記載の記
載の無励磁作動形電磁ブレーキ。
[Claims for Utility Model Registration] 1. Provides a bypass magnetic path that serves as the main magnetic path for the magnetic flux generated by the excitation coil and at the same time allows a portion of the magnetic flux generated by the permanent magnet to flow, and excite braking based on the attractive force of the permanent magnet. An electromagnetic brake that is released by excitation of a coil, and in the bypass magnetic path,
A non-excitation operated electromagnetic brake characterized in that a magnetic slit is provided to divide this magnetic path into two paths, one for the magnetic flux caused by the excitation coil and the other for the magnetic flux caused by the permanent magnet, both with substantially the same magnetic resistance. 2. The invention according to claim 1, wherein the magnetic slit is formed in a deep groove shape over the entire circumference in the center of the bypass magnetic path, which is a disc-shaped portion of the inner yoke. Excitation actuated electromagnetic brake. 3 The magnetic slits are located at the center of the bypass magnetic path, which is a disc-shaped portion of the inner yoke, and are located on the left and right sides.
The non-excitation operated electromagnetic brake as claimed in claim 1, which is characterized in that the electromagnetic brake is formed by separating the two parts and joining them together.
JP518483U 1983-01-17 1983-01-17 Non-excitation operated electromagnetic brake Granted JPS59110434U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP518483U JPS59110434U (en) 1983-01-17 1983-01-17 Non-excitation operated electromagnetic brake

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP518483U JPS59110434U (en) 1983-01-17 1983-01-17 Non-excitation operated electromagnetic brake

Publications (2)

Publication Number Publication Date
JPS59110434U JPS59110434U (en) 1984-07-25
JPH024258Y2 true JPH024258Y2 (en) 1990-01-31

Family

ID=30136780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP518483U Granted JPS59110434U (en) 1983-01-17 1983-01-17 Non-excitation operated electromagnetic brake

Country Status (1)

Country Link
JP (1) JPS59110434U (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236979Y2 (en) * 1980-11-27 1987-09-21

Also Published As

Publication number Publication date
JPS59110434U (en) 1984-07-25

Similar Documents

Publication Publication Date Title
US8205727B2 (en) Electromagnetic permanent magnet brake
US2536491A (en) Motor having an electromagnetic brake
JP5573217B2 (en) Electromagnetic brake
JP5049672B2 (en) Brake device
US6659238B2 (en) Electromagnetic brake
JPS60144915A (en) Coupling device electromagnetically separated
US11149808B2 (en) Excitation operation brake
JPH024258Y2 (en)
CN101804930A (en) Electromagnetic brake
JPH07259905A (en) Unexciting operation type electromagnetic brake/clutch
JP2020133673A (en) Electromagnetic brake device
JP3924836B2 (en) Non-excitation electromagnetic clutch / brake
US2052200A (en) Combined friction and electric brake
JP2000097267A (en) Armature structure of permanent magnet non-excitation operation type electromagnetic brake
US2396950A (en) Electric brake
JPS6236979Y2 (en)
JPH0317075Y2 (en)
JPH0155327B2 (en)
JP2020125761A (en) Excitation operation brake
JP2002025819A (en) Magnetic attracting device using hybrid magnet
JPS5847579B2 (en) Power clutch brake touch
JP5810062B2 (en) Electromagnetic brake
JPS59132750A (en) Rotating electric machine with brake
JP2003014017A (en) Electromagnetic brake mechanism for actuator
JPH0979294A (en) Deenergisation operating electromagnetic brake