JPH07259905A - Unexciting operation type electromagnetic brake/clutch - Google Patents

Unexciting operation type electromagnetic brake/clutch

Info

Publication number
JPH07259905A
JPH07259905A JP6070195A JP7019594A JPH07259905A JP H07259905 A JPH07259905 A JP H07259905A JP 6070195 A JP6070195 A JP 6070195A JP 7019594 A JP7019594 A JP 7019594A JP H07259905 A JPH07259905 A JP H07259905A
Authority
JP
Japan
Prior art keywords
assembly
permanent magnet
armature
magnet
magnet assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6070195A
Other languages
Japanese (ja)
Other versions
JP3082565B2 (en
Inventor
Shinko Murase
真弘 村瀬
Takahisa Fujiwara
孝久 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP06070195A priority Critical patent/JP3082565B2/en
Publication of JPH07259905A publication Critical patent/JPH07259905A/en
Application granted granted Critical
Publication of JP3082565B2 publication Critical patent/JP3082565B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/004Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with permanent magnets combined with electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2121/00Type of actuator operation force
    • F16D2121/18Electric or magnetic
    • F16D2121/20Electric or magnetic using electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2129/00Type of operation source for auxiliary mechanisms
    • F16D2129/06Electric or magnetic
    • F16D2129/065Permanent magnets

Abstract

PURPOSE:To effectively fully utilize the surface area of a permanent magnet to generate efficient and strong attraction force regardless of a miniature size by forming the permanent magnet into a flat ring shape having small width in an axial direction, and moreover to be magnetized in a radial direction. CONSTITUTION:A permanent magnet ring 2a magnetized in a radial direction is inserted in the intermediate part in a radial direction on an outer side in the axial direction of an armature assembly 1a, and ringlike bypass gaps Gb having narrow width are provided in a line in the inside in the axial direction. While, the opening ends of the outer and inner poles Po and Pi of a yoke 6b having the U-shape cross section of a magnet assembly 3a are arranged opposite to inner side ends in the axial direction of an armature to be fixed to a static body 8 while housing an exciting coil 11 in an annular gap between the outer and inner poles Po and Pi. Consequently, the structure of the magnet assembly with a built-in coil can be simplified by providing a permanent magnet on an armature side to shorten a dimension in the axial direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は永久磁石型の無励磁作動
型の電磁ブレ−キ又はクラッチ(以下電磁ブレ−キ/ク
ラッチと称する)に関する。近年ACサ−ボモ−タの普
及や安全性が重視されるのに伴い、無励磁作動型のブレ
−キ/クラッチの需要が増えつつあり、その中のマグネ
ット組立体のヨ−クの部分に永久磁石を組み込んだ永久
磁石型のものは、下記に示すような特徴を有することか
ら広く利用されている。 1)ばね式のものに比較して小形で制動トルクが大きく
応答性がよい。 2)コイルの励磁状態での電流(電圧)の大きさを調整
することにより保持トルクを制御できる。 3)ブレ−キ解放時の通電極性と逆の電圧をコイルに印
加すれば、永久磁石の磁束と励磁コイルの磁束とが重合
して定格トルク以上の制動トルクを発生させることがで
きる。 4)放熱特性に優れ、スリップサ−ビスが出来トルク容
量が大きい。 本発明は上記のような特徴を有する永久磁石型の無励磁
作動電磁ブレ−キ/クラッチの改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a permanent magnet type non-excitation actuated electromagnetic brake or clutch (hereinafter referred to as electromagnetic brake / clutch). With the spread of AC servo motors and the emphasis on safety in recent years, there is an increasing demand for non-excitation actuated brakes / clutches, and in the yoke part of the magnet assembly among them. The permanent magnet type in which a permanent magnet is incorporated is widely used because it has the following features. 1) Compared to the spring type, it is smaller and has a larger braking torque and better response. 2) The holding torque can be controlled by adjusting the magnitude of the current (voltage) in the excited state of the coil. 3) By applying to the coil a voltage that is opposite to the current-carrying polarity at the time of releasing the brake, the magnetic flux of the permanent magnet and the magnetic flux of the exciting coil are superposed to generate a braking torque equal to or higher than the rated torque. 4) Excellent heat dissipation characteristics, slip service is possible, and torque capacity is large. The present invention relates to an improvement of a permanent magnet type non-excitation actuated electromagnetic brake / clutch having the above features.

【0002】[0002]

【従来の技術】従来の永久磁石型の無励磁作動型電磁ブ
レ−キの通電されない状態と、通電された状態での横断
面図を、それぞれ図10の(A)と同図の(B)に示
す。なお、無励磁作動型電磁クラッチは、マグネット組
立体が固定される相手となる物体が固定体でなく回転体
である点が相違するだけで、それ以外の構造と作用は電
磁ブレ−キと全く同一なので、以下の説明は電磁ブレ−
キについて述べる。図10の(A)を参照すると、図で
左端近くに配置されている磁性体と永久磁石によるア−
マチュア組立体1は、スプラインハブ5とスプライン5
aを介して回転軸9に対し軸方向に移動可能に装着さ
れ、スプライン5aとこのア−マチュア組立体1との間
には、ア−マチュア組立体1を常時制動から解放される
方向(図で左方)に押圧するばねプレ−ト4が配置され
ている。一方、ア−マチュア組立体1に軸方向に対向し
て図で軸方向の右側に配置されたマグネット組立体3は
磁性体製のアウタポ−ルPoと、インナポ−ルPiと、
アウタポ−ルPoを形成する外側ヨ−ク6と、インナポ
−ルPiを形成する内側ヨ−ク7とを有し、外側および
内側ヨ−ク6、7のそれぞれを連結し半径方向に互いに
平行な垂直部6aと7aの間の空隙には、比較的大形の
永久磁石2が配置されている。この永久磁石2によりマ
グネット組立体3のアウタポ−ルPoと、インナポ−ル
Piとに沿って発生する磁束φmによって、ア−マチュ
ア組立体1は、前記ばねプレ−ト4の力に抗しスプライ
ンハブ5のスプライン5aに沿って図で右方へ動かされ
ヨ−ク6に吸着され、マグネット組立体3に摩擦接触す
る。
2. Description of the Related Art A conventional permanent magnet type non-excitation actuated electromagnetic brake is shown in cross-sectional views in an unenergized state and an energized state, respectively, in FIGS. 10 (A) and 10 (B). Shown in. The non-excitation actuated electromagnetic clutch is different in that the object to which the magnet assembly is fixed is not a fixed body but a rotating body, and other structures and actions are completely different from the electromagnetic brake. Since they are the same, the following explanation
I will describe Ki. Referring to FIG. 10A, the magnet and permanent magnet arranged near the left end in the figure
The mature assembly 1 includes a spline hub 5 and a spline 5
It is mounted movably in the axial direction with respect to the rotary shaft 9 via a, and between the spline 5a and this armature assembly 1 the direction in which the armature assembly 1 is constantly released from braking (Fig. A spring plate 4 is arranged to be pressed to the left). On the other hand, a magnet assembly 3 arranged axially opposite to the armature assembly 1 on the right side in the axial direction in the drawing has an outer pole Po and an inner pole Pi made of a magnetic material.
It has an outer yoke 6 forming an outer pole Po and an inner yoke 7 forming an inner pole Pi. The outer and inner yokes 6, 7 are connected to each other and are parallel to each other in the radial direction. A relatively large permanent magnet 2 is arranged in the space between the vertical portions 6a and 7a. Due to the magnetic flux φm generated by the permanent magnet 2 along the outer pole Po and the inner pole Pi of the magnet assembly 3, the armature assembly 1 resists the force of the spring plate 4 and splines. It is moved to the right in the figure along the spline 5a of the hub 5 and is attracted to the yoke 6 to frictionally contact the magnet assembly 3.

【0003】マグネット組立体3はヨ−ク6の垂直部7
aを介して固定体8に固定されているので、回転軸9の
回転トルクにはスプラインハブ5、ア−マチュア組立体
1、マグネット組立体3などを介してブレ−キ作用が加
えられる。図10の(B)を参照し、マグネット組立体
3のコイル11に通電された状態では、永久磁石2によ
る磁束φmとは反対方向に磁力を生じて磁束φmを打ち
消し、ばねプレ−ト4の力でア−マチュア組立体1は図
で左方へ動かされ、ア−マチュア1とマグネット組立体
3との間にはギャップGaを生じ、回転軸9のトルクに
及ぼしていたブレ−キ作用は解除される。この説明で
は、ばねプレ−ト4として説明したが、ばねに限定され
るものではなく、磁石による反発力を利用して解放する
構造でもよいことは勿論である。尚、無励磁状態および
励磁状態の断面図がそれぞれ後述する第2実施例の図6
の(A)および同図の(B)と同じで、ア−マチュア組
立体の正面図が図11に示される無励磁作動型電磁ブレ
−キが本出願人の先願として出願(特願平5−3494
63号)されているが、後述する本発明第1実施例のよ
うなバイパス回路を形成するためのバイパスギャップが
ないためア−マチュアの解放動作が不安定である。
The magnet assembly 3 includes a vertical portion 7 of the yoke 6.
Since it is fixed to the fixed body 8 via a, the brake torque is applied to the rotational torque of the rotary shaft 9 via the spline hub 5, the armature assembly 1, the magnet assembly 3 and the like. With reference to FIG. 10B, when the coil 11 of the magnet assembly 3 is energized, a magnetic force is generated in a direction opposite to the magnetic flux φm generated by the permanent magnet 2 to cancel the magnetic flux φm, and the spring plate 4 is The armature assembly 1 is moved to the left in the figure by a force, a gap Ga is created between the armature 1 and the magnet assembly 3, and the braking action exerted on the torque of the rotary shaft 9 is It will be canceled. In this description, the spring plate 4 has been described, but the structure is not limited to the spring, and it goes without saying that a structure for releasing by utilizing the repulsive force of the magnet may be used. Incidentally, the cross-sectional views of the non-excited state and the excited state are respectively shown in FIG.
11A and FIG. 11B, the non-excitation actuated electromagnetic brake whose front view of the armature assembly is shown in FIG. 11 was filed as a prior application of the present applicant (Japanese Patent Application No. 5-3494
No. 63), but the armature release operation is unstable because there is no bypass gap for forming a bypass circuit as in the first embodiment of the present invention described later.

【0004】[0004]

【発明が解決しようとする課題】上記の構造のような無
励磁作動型電磁クラッチ/ブレ−キには、つぎに示すよ
うな欠点があり解決が望まれていた。 1)永久磁石がマグネット組立体側にあり、しかも従来
の永久磁石はマグネット組立体の構成上から軸方向に着
磁されるため軸方向寸法(L)が過大になる。 2)十分な磁力を発生させるためには永久磁石の表面積
を大きくする必要があり、小形化が極めて困難である。 3)マグネット組立体はアウタポ−ル、インナポ−ル、
コイルおよび永久磁石で構成されるため構造が複雑にな
り製造コストが高くなる。 これらの欠点を改良する手段として、ア−マチュア組立
体の正面図が図11に示されるように、ア−マチュア組
立体1c内に環状の強力で薄型の永久磁石2cを配置し
た無励磁作動型電磁ブレ−キが、本出願人の先願として
平成5年12月28日に出願(実願平5−74415
号)されている。また、図示はしないが強力で薄型の永
久磁石をマグネット組立体内に配置した無励磁作動型電
磁ブレ−キが、本出願人の先願として平成5年12月2
8日に出願(特願平5−349463号)されている。
前記の特開平5−349463号では、ア−マチュア組
立体1c内に環状または円周方向に複数に分割された強
力で薄型の永久磁石2cを配置した実施例も開示されて
いるが、後述する本発明の実施例のようなバイパスギャ
ップを形成するための磁気空隙や磁気抵抗体がないため
ア−マチュアの解放動作が本発明に比較するとやや不安
定である。
The non-excitation actuated electromagnetic clutch / brake having the above structure has the following drawbacks and has been desired to be solved. 1) Since the permanent magnet is on the side of the magnet assembly, and the conventional permanent magnet is magnetized in the axial direction due to the structure of the magnet assembly, the axial dimension (L) becomes excessive. 2) In order to generate a sufficient magnetic force, it is necessary to increase the surface area of the permanent magnet, and it is extremely difficult to downsize it. 3) The magnet assembly consists of an outer pole, an inner pole,
Since it is composed of a coil and a permanent magnet, the structure becomes complicated and the manufacturing cost becomes high. As a means for improving these drawbacks, as shown in FIG. 11 which is a front view of the armature assembly, a non-excitation actuation type in which an annular strong and thin permanent magnet 2c is arranged in the armature assembly 1c. An electromagnetic brake was filed on December 28, 1993 as a prior application of the present applicant (Practical application No. 5-74415).
No.). Also, although not shown, a non-excitation actuated electromagnetic brake in which a strong and thin permanent magnet is arranged in the magnet assembly is a prior application of the applicant of the present application.
It was filed on the 8th (Japanese Patent Application No. 5-349463).
The above-mentioned Japanese Patent Laid-Open No. 5-349463 also discloses an embodiment in which a strong and thin permanent magnet 2c divided into a plurality of rings in the annular or circumferential direction is arranged in the armature assembly 1c, which will be described later. Since there is no magnetic gap or magnetic resistor for forming the bypass gap as in the embodiment of the present invention, the armature releasing operation is somewhat unstable as compared with the present invention.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
め、本発明では次の手段を採用した。 1)軸線方向の長さがア−マチュア組立体より短く肉厚
が薄い偏平なリングを、所定の間隔を保って円周方向に
複数に分割した円弧状の永久磁石を、その側壁を軸線に
平行に且つ同心に、つまり肉厚方向を軸線に直角にア−
マチュアの外側または内側に配置するとともに、このア
−マチュア組立体の軸線方向の長さから永久磁石の長さ
を差し引いた寸法に相当する永久磁石と同心のリング状
または円弧状の磁気空隙、または銅、ステンレス鋼など
の非磁性体をブレ−ジングなどにより形成した磁気抵抗
体、すなわち、バイパスギャップを設けてコイルの励磁
によるバイパス磁気回路を構成し、 2)軸線方向の長さが短い偏平なリングを、円周方向に
所定の間隔を保って少なくとも2個に分割した複数の円
弧状の永久磁石と、これらの永久磁石の間を同一円周上
で連結する位置に円弧状の磁気空隙を設けるか、または
銅、ステンレス鋼などの非磁性体をブレ−ジングなどに
より形成した磁気抵抗体、すなわち、バイパスギャップ
を介在させコイルの励磁によるバイパス磁気回路を構成
することにより、上記の1)項とは異なった別構造の無
励磁作動型電磁ブレ−キ/クラッチの軸線方向長さを一
層短縮することにより上記の課題を解決した。
In order to solve the above problems, the present invention adopts the following means. 1) An arc-shaped permanent magnet obtained by dividing a flat ring whose axial length is shorter and thinner than the armature assembly into a plurality of pieces in the circumferential direction at predetermined intervals, and whose side wall is the axis line. Parallel and concentric, that is, with the thickness direction perpendicular to the axis
A ring-shaped or arc-shaped magnetic air gap, which is located outside or inside the armature and is concentric with the permanent magnet and has a size corresponding to the axial length of the armature assembly minus the length of the permanent magnet, or A magnetic resistor formed by brazing a non-magnetic material such as copper or stainless steel, that is, a bypass magnetic circuit is formed by exciting a coil by providing a bypass gap. 2) A flat length with a short axial direction A plurality of arc-shaped permanent magnets, which are obtained by dividing the ring into at least two pieces at predetermined intervals in the circumferential direction, and arc-shaped magnetic gaps at positions connecting these permanent magnets on the same circumference. A magnetic resistor that is provided or is formed by brazing a non-magnetic material such as copper or stainless steel, that is, a bypass resistor that is excited by a coil with a bypass gap interposed. The above problem is solved by further reducing the axial length of the non-excitation actuated electromagnetic brake / clutch having a different structure from the above item 1) by configuring the magnetic circuit.

【0006】[0006]

【作用】解決手段の前記1)および2)項の構成の場合
に、コイルに通電しない状態では、永久磁石の磁束φm
によりア−マチュア組立体を吸着して一定の制動トルク
を発生する。コイルに永久磁石による磁束φmを打ち消
す方向に所定値の電流を流すと、ヨ−クにおいては励磁
電流による電磁現象によって永久磁石による磁束φmに
対する磁気抵抗が増大するので、ア−マチュア組立体と
ヨ−クとを相互に吸着していた磁束φmが減少されまた
は零になって、ばねプレ−トなどの解放手段の力でア−
マチュア組立体はヨ−クとの吸着から解放されるので、
ブレ−キトルクは零となる。またφm>φcの範囲で調
整して通電することにより、従来の無励磁作動型電磁ブ
レ−キと同様に、トルクを制御することができる。コイ
ルに流す電流をさらに増加すると永久磁石による磁束φ
mがヨ−クに入らなくなり、ヨ−クには励磁電流によっ
て磁束φcが形成されるが、永久磁石による磁気抵抗が
大きいため、励磁電流によって形成される方向の磁束φ
cはア−マチュア組立体内に侵入できない。
In the case of the constitutions of 1) and 2) of the solving means, when the coil is not energized, the magnetic flux φm of the permanent magnet is
Thereby attracting the armature assembly to generate a constant braking torque. When a current of a predetermined value is applied to the coil in a direction to cancel the magnetic flux φm generated by the permanent magnet, the electromagnetic resistance of the yoke increases the magnetic resistance to the magnetic flux φm generated by the permanent magnet. -The magnetic flux φm that has been attracted to each other is reduced or becomes zero, and the force is released by the release means such as the spring plate.
Since the mature assembly is released from adsorption with the yoke,
The brake torque becomes zero. Further, by adjusting and energizing in the range of φm> φc, the torque can be controlled as in the conventional non-excitation actuated electromagnetic brake. When the current flowing through the coil is further increased, the magnetic flux φ generated by the permanent magnet
Since m does not enter the yoke, a magnetic flux φc is formed in the yoke by the exciting current, but since the magnetic resistance due to the permanent magnet is large, the magnetic flux φ in the direction formed by the exciting current.
c cannot penetrate into the armature assembly.

【0007】即ち、永久磁石による磁束φmと励磁電流
による磁束φcとがア−マチュア組立体とマグネット組
立体(ヨ−ク)との対向部において相互に反発しあい、
ア−マチュア組立体の端部の磁極の極性と同一極性の磁
極がマグネット組立体(ヨ−ク)の端部に形成されて図
5に示すように両組立体間に反発力が生じる。その結
果、ばねプレ−トなどによる解放力を助けてア−マチュ
ア組立体を解放する。コイルに流す電流をさらに増加す
ると、マグネット組立体に形成される磁力によってア−
マチュア組立体は図5に示すように再び吸引される。従
って、励磁電流により形成される磁界の強さと永久磁石
により形成される磁界の強さとをばねプレ−トなどによ
る解放手段の力に対応させ適切な方向と値に調整して通
電することにより、従来の無励磁作動型電磁ブレ−キと
同様に、トルクを制御することができる。
That is, the magnetic flux φm generated by the permanent magnet and the magnetic flux φc generated by the exciting current repel each other at the facing portions of the armature assembly and the magnet assembly (yoke),
A magnetic pole having the same polarity as that of the magnetic pole at the end of the armature assembly is formed at the end of the magnet assembly (yoke) to generate a repulsive force between the two assemblies as shown in FIG. As a result, a release force such as a spring plate is assisted to release the armature assembly. When the current flowing through the coil is further increased, the magnetic force generated in the magnet assembly causes an arc.
The mature assembly is aspirated again as shown in FIG. Therefore, by adjusting the strength of the magnetic field formed by the exciting current and the strength of the magnetic field formed by the permanent magnet to an appropriate direction and value corresponding to the force of the releasing means such as the spring plate, and energizing, The torque can be controlled as in the conventional non-excitation actuated electromagnetic brake.

【0008】[0008]

【実施例】本発明による前記解決手段の1)項による第
1実施例の、無励磁状態と励磁状態の横半体断面図を、
それぞれ図1の(A)および同図の(B)に示す。なお
図1を含め以下に示す本発明の各実施例において、ア−
マチュア組立体(以下ア−マチュアと称す)内での永久
磁石の配置は、円周方向に所定の間隔で円弧状に分割し
た複数のもの、あるいは連続した環状の1組のいずれか
一方を示したが、本発明の効果は記載されたものに制限
されるものではない。図1の(A)および同図の(B)
において、従来技術として示した図10の(A)と同図
の(B)とに示した部材と同じ部材には同じ符号を付
し、重複を避け異なる点のみを述べる。軸方向の長さに
おいてア−マチュアよりも短い偏平円筒状の永久磁石リ
ング2aの拡大断面半体側面図を図2の(A)に、図2
の(A)のA矢視縮小全体平面図を図2の(B)に示
す。図2の(B)に示されるように、矢印で示すラジア
ル方向に着磁された永久磁石リング2aが図1の(A)
と同図の(B)に示すように、ア−マチュア組立体(以
下ア−マチュアと称す)1の軸方向の外側の半径方向で
中間部に挿入され、その軸方向内方に整列して幅の狭い
リング状のバイパスギャップGbが明けられている。一
方、マグネット組立体3aのコの字形断面を有するヨ−
ク6bのアウタポ−ルPoとインナポ−ルPiの開口端
は、ア−マチュアの軸方向内方端に対面して配置され、
アウタポ−ルとインナポ−ル間の環状空隙内に励磁コイ
ル11を収容して静止体8に固定される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Cross-sectional views of a horizontal half body in a non-excited state and an excited state of a first embodiment according to the first aspect of the solving means according to the present invention,
These are shown in FIG. 1A and FIG. 1B, respectively. In each of the embodiments of the present invention shown below including FIG.
Arrangement of permanent magnets in a mature assembly (hereinafter referred to as an armature) is either a plurality of permanent magnets divided into arcs at predetermined intervals in the circumferential direction or a continuous annular set. However, the effects of the present invention are not limited to those described. 1A and 1B.
In FIG. 10, the same members as those shown in FIGS. 10A and 10B shown as the prior art are denoted by the same reference numerals, and only different points will be described to avoid duplication. 2A is an enlarged sectional half body side view of the flat cylindrical permanent magnet ring 2a having a shorter axial length than the armature.
FIG. 2B shows a plan view of the entire A reduction view of FIG. As shown in FIG. 2B, the permanent magnet ring 2a magnetized in the radial direction shown by the arrow is shown in FIG.
As shown in (B) of the same figure, the armature assembly (hereinafter referred to as armature) 1 is inserted into the intermediate portion in the radial direction on the outer side in the axial direction and aligned inward in the axial direction. A narrow ring-shaped bypass gap Gb is opened. On the other hand, a magnet assembly 3a having a U-shaped cross section
The open ends of the outer pole Po and the inner pole Pi of the gear 6b are arranged so as to face the axially inner end of the armature,
The exciting coil 11 is housed in an annular space between the outer pole and the inner pole and is fixed to the stationary body 8.

【0009】バイパスギャップGbは、図3に示すよう
に永久磁石リング2aの軸方向外側に設けてもよい。図
1の(A)および同図の(B)に示した永久磁石の形状
について、上記では連続したリングとして説明したが、
所定の間隔を保って円周方向に分割した円弧状としても
よいことは勿論である。上記の構造を有する電磁クラッ
チ/ブレ−キの作動について説明する。無励磁状態では
図1の(A)に点線で示すように、永久磁石2aにより
形成される磁界によって、ア−マチュア1aとヨ−ク6
とを還流する磁束φmが形成されるので、ア−マチュア
1aはばねプレ−ト4の力に抗しヨ−ク6bに吸着され
る。励磁状態になると、図1の(B)に実線で示すよう
に、コイル11に流れる電流によって、永久磁石2aが
無い場合は前述した永久磁石により形成されて磁束φm
に対して、逆方向にア−マチュア1aとヨ−ク6とを還
流する磁束φcを形成する方向に磁界が形成される(図
1の(B)には説明の便宜上永久磁石による磁束φmが
存在しないものとして記載している)。従って、ヨ−ク
6bにおいては永久磁石2aによる磁束φmに対する磁
気抵抗が増大して磁束φmは減少する。従って、ア−マ
チュア1aは、ばねプレ−ト4の力により図で左方へ移
動しヨ−ク6bとの吸着から解放される。
The bypass gap Gb may be provided axially outside the permanent magnet ring 2a as shown in FIG. The shape of the permanent magnet shown in FIGS. 1A and 1B has been described above as a continuous ring.
Needless to say, the shape may be an arc shape that is divided in the circumferential direction at a predetermined interval. The operation of the electromagnetic clutch / break having the above structure will be described. In the non-excited state, the armature 1a and the yoke 6 are driven by the magnetic field formed by the permanent magnet 2a as shown by the dotted line in FIG.
Since a magnetic flux φm that recirculates is generated, the armature 1a resists the force of the spring plate 4 and is attracted to the yoke 6b. When in the excited state, as shown by the solid line in FIG. 1B, the magnetic flux φm is generated by the current flowing through the coil 11 when the permanent magnet 2a is not present and is formed by the permanent magnet described above.
On the other hand, a magnetic field is formed in the opposite direction to form a magnetic flux φc that circulates the armature 1a and the yoke 6 (in FIG. 1B, the magnetic flux φm generated by the permanent magnet is shown for convenience of description. It is described as not existing). Therefore, in the yoke 6b, the magnetic resistance of the permanent magnet 2a against the magnetic flux φm increases and the magnetic flux φm decreases. Therefore, the armature 1a is moved leftward in the figure by the force of the spring plate 4 and released from the attraction with the yoke 6b.

【0010】図4は吸引力(+P)と反発力(−P)と
電流との関係を示すグラフで、本図において図10の
(A)と同図の(B)に示す従来の電磁ブレ−キの特性
を点線で示し、図1の(A)と同図の(B)に示す本発
明の電磁ブレ−キの特性を実線で示している。また、図
5は図1の(B)に示したよりも大きな電流でコイルを
励磁した状態を示す横半体断面図である。即ち、図4に
示すようにコイル電流を増加していくと、ア−マチュア
1aとヨ−ク6bとを還流する磁束φmが減少するので
吸引力が減少する。コイルに流す電流が増加して永久磁
石2aによる磁束φmがヨ−ク6bに入らなくなると、
ヨ−ク6bには励磁電流によって磁束φcが形成される
が、永久磁石2aによる磁気抵抗が大きいため、励磁電
流によって形成される方向の磁束φcは、ア−マチュア
組立体1a内には侵入できない。即ち、永久磁石2aに
よる磁束φmと励磁電流による磁束φcとがア−マチュ
ア1aとヨ−ク6bとの対向部において相互に反発しあ
い、ア−マチュア1aの端部の磁極の極性と同一極性の
磁極がヨ−ク6bの端部に形成されてア−マチュア1a
とヨ−ク6bとの間に反発力が生じる。さらにコイル電
流を増加すると、永久磁石2aによる磁束φmに打ち勝
って図5に示すようにア−マチュア1aとヨ−ク6bと
を環流する磁束φcが形成され、さらにコイル電流を増
加するとこの磁束φcによる吸引力が増大する。
FIG. 4 is a graph showing the relationship between the attractive force (+ P), the repulsive force (-P) and the current. In this figure, the conventional electromagnetic shake shown in FIGS. 10A and 10B is shown. The characteristic of the key is shown by a dotted line, and the characteristic of the electromagnetic brake of the present invention shown in FIGS. 1A and 1B is shown by a solid line. Further, FIG. 5 is a transverse half body sectional view showing a state in which the coil is excited by a larger current than that shown in FIG. 1 (B). That is, as shown in FIG. 4, when the coil current is increased, the magnetic flux φm that circulates between the armature 1a and the yoke 6b is reduced, so that the attractive force is reduced. When the current flowing through the coil increases and the magnetic flux φm generated by the permanent magnet 2a does not enter the yoke 6b,
A magnetic flux φc is formed in the yoke 6b by the exciting current, but the magnetic flux φc in the direction formed by the exciting current cannot penetrate into the armature assembly 1a because of the large magnetic resistance of the permanent magnet 2a. . That is, the magnetic flux .phi.m generated by the permanent magnet 2a and the magnetic flux .phi.c generated by the exciting current repel each other at the facing portions of the armature 1a and the yoke 6b, and have the same polarity as that of the magnetic pole at the end of the armature 1a. A magnetic pole is formed at the end of the yoke 6b and the armature 1a is formed.
A repulsive force is generated between the yoke and the yoke 6b. When the coil current is further increased, the magnetic flux φc generated by the permanent magnet 2a is overcome to form a magnetic flux φc which circulates between the armature 1a and the yoke 6b as shown in FIG. 5, and when the coil current is further increased, the magnetic flux φc is increased. The suction force due to increases.

【0011】図6の(A)と同図の(B)は、前記解決
手段2)による本発明の第2実施例としての電磁クラッ
チ/ブレ−キの吸引状態における横半体断面図である。
図6の(A)は図1の(A)に対応する吸引状態におけ
る永久磁石による磁束φm、図6の(B)は図1の
(B)に対応するコイル電流による磁束φcの状況を示
している。図7はア−マチュア1bの正面図であり、図
7のX−X断面図を図8に示す。軸方向の長さ(高さ)
がア−マチュア1bと同じで、偏平な円弧状の2個の永
久磁石2b、2bをア−マチュア1bの外周から僅かに
内方の半径方向中間部に、円周方向に所定の間隔を保っ
て対称的に配置し、両永久磁石2b間の2つの間隔部は
バイパスギャップGcで、図7に示すように弧状の空隙
として残し磁気空隙とするか、または銅、ステンレス鋼
などの非磁性材料を空隙内にブレ−ジングなどにより充
填し磁気抵抗とする。図7中の符号5bは回転軸に対し
円周方向には一体に回転し軸方向には相対移動を可能に
するスプラインである。作動は第1実施例と殆ど同じな
ので説明を省略するが、マグネット組立体のコイル11
から発生する磁束φcは、斜視図としての図9に矢印の
経路で示すように、インナポ−ルPiから円弧状の磁気
空隙Gcの半径方向外側に至り、つぎに永久磁石2bか
ら離れるように、さらにア−マチュア1b内の永久磁石
2bの半径方向外方を円周方向に通った後、軸方向に方
向変換してマグネット組立体3aのアウタ−ポ−ルPo
に戻る磁路を形成する。
FIG. 6A and FIG. 6B are horizontal half body sectional views in the suction state of the electromagnetic clutch / break as the second embodiment of the present invention by the solving means 2). .
6A shows the situation of the magnetic flux φm due to the permanent magnet in the attracted state corresponding to FIG. 1A, and FIG. 6B shows the situation of the magnetic flux φc due to the coil current corresponding to FIG. 1B. ing. FIG. 7 is a front view of the armature 1b, and FIG. 8 is a sectional view taken along line XX of FIG. Axial length (height)
Is the same as the armature 1b, and two flat arc-shaped permanent magnets 2b, 2b are provided at a predetermined distance in the circumferential direction in a radially intermediate portion slightly inward from the outer circumference of the armature 1b. And symmetrically arranged, and the two gaps between the two permanent magnets 2b are bypass gaps Gc, which are left as arc-shaped gaps as shown in FIG. 7 to form magnetic gaps, or nonmagnetic materials such as copper and stainless steel. Are filled in the voids by blazing or the like to obtain magnetic resistance. Reference numeral 5b in FIG. 7 is a spline that integrally rotates in the circumferential direction with respect to the rotation axis and is capable of relative movement in the axial direction. Since the operation is almost the same as that of the first embodiment, the description thereof will be omitted, but the coil 11 of the magnet assembly will not be described.
The magnetic flux φc generated from the magnetic flux φc reaches the outer side in the radial direction of the arc-shaped magnetic gap Gc from the inner pole Pi and then separates from the permanent magnet 2b, as shown by the path of the arrow in FIG. 9 as a perspective view. Further, after passing through the outer side in the radial direction of the permanent magnet 2b in the armature 1b in the circumferential direction, the direction is changed to the axial direction and the outer pole Po of the magnet assembly 3a.
To form a magnetic path back to.

【0012】[0012]

【発明の効果】【The invention's effect】

(1)2次側としてのア−マチュア側に挿入された永久
磁石は軸方向の幅が小さい偏平なリング状であり、しか
もラジアル方向に着磁されているため、永久磁石の表面
積を有効に活用できて、小形ではあるが効率的で強い吸
引力が発生され、ア−マチュアの形状を単純にし小形化
できる。 (2)永久磁石をア−マチュア側に設けたので、コイル
を内蔵するマグネット組立体の構造が簡単で軸線方向の
寸法が短くなり、小形で単純な構造とすることによりコ
ストを低減できる。 (3)図5に示すように、適切な吸引力と反発力を得る
ために必要な励磁電流の調節精度が従来よりも低減で
き、安定なア−マチュアの解放動作が得られる。 (4)第2実施例では、第1実施例よりも軸線方向の寸
法を短縮し小形化できる。 (5)第1実施例においては、ア−マチュアの幅を永久
磁石の幅よりも広くしてギャップを設けたので、上述の
効果が確実に得られた。 (6)第2実施例においては、ア−マチュアの幅と永久
磁石の幅とを等しくし永久磁石と並べてギャップを設け
たので、ア−マチュアの幅を第1実施例よりも狭くする
ことが出来る。
(1) Since the permanent magnet inserted on the armature side as the secondary side is a flat ring shape with a small axial width and is magnetized in the radial direction, the surface area of the permanent magnet is effectively made. It can be utilized and it is small but efficient, and strong suction force is generated, so that the shape of the armature can be simplified and miniaturized. (2) Since the permanent magnet is provided on the armature side, the structure of the magnet assembly incorporating the coil is simple, the axial dimension is short, and the cost is reduced by using a small and simple structure. (3) As shown in FIG. 5, the adjustment accuracy of the exciting current required to obtain an appropriate attractive force and repulsive force can be reduced as compared with the conventional one, and a stable armature release operation can be obtained. (4) In the second embodiment, the dimension in the axial direction can be shortened and miniaturized as compared with the first embodiment. (5) In the first embodiment, the width of the armature is made wider than the width of the permanent magnet to provide the gap, so that the above-described effect is surely obtained. (6) In the second embodiment, the width of the armature and the width of the permanent magnet are made equal to each other and the gap is provided side by side with the permanent magnet, so that the width of the armature can be made narrower than that of the first embodiment. I can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による無励磁作動型電磁ブレ−キの第1
実施例で、本図の(A)は永久磁石による磁束状態を示
す横半体断面図で、本図の(B)はコイル電流による磁
束状態を示す横半体断面図である。
FIG. 1 is a first non-excitation actuated electromagnetic brake according to the present invention.
In the embodiment, (A) of the figure is a horizontal half body sectional view showing a magnetic flux state by a permanent magnet, and (B) of this figure is a horizontal half body sectional view showing a magnetic flux state by a coil current.

【図2】本図の(A)は図1に示す永久磁石の拡大半体
側断面図であり、本図の(B)は本図の(A)の着磁方
向を示すA矢視縮小平面図である。
FIG. 2A is an enlarged half sectional view of the permanent magnet shown in FIG. 1, and FIG. 2B is a reduction plane as viewed in the direction of arrow A showing the magnetization direction in FIG. 2A. It is a figure.

【図3】永久磁石の軸方向外側に空隙または非磁性部分
を設けた部分側面図である。
FIG. 3 is a partial side view in which a void or a non-magnetic portion is provided on the outer side in the axial direction of a permanent magnet.

【図4】コイルを励磁した状態での電流(電圧)値と吸
引力(+P)と反発力(−P)との関係を示すグラフで
ある。
FIG. 4 is a graph showing a relationship among a current (voltage) value, an attractive force (+ P), and a repulsive force (−P) when a coil is excited.

【図5】図1の(B)に示したよりもコイル電流による
磁界が大になった状態での磁束状態を示す横半体断面図
である。
5 is a transverse half body cross-sectional view showing a magnetic flux state in a state where the magnetic field due to the coil current is larger than that shown in FIG. 1B.

【図6】本図の(A)は無励磁作動型電磁ブレ−キの第
2実施例の永久磁石による磁束状態を示す横半体断面図
で、本図の(B)はコイル電流による磁束状態を示す横
半体断面図である。
FIG. 6A is a horizontal half sectional view showing a magnetic flux state by a permanent magnet of a second embodiment of a non-excitation actuated electromagnetic brake, and FIG. 6B is a magnetic flux by a coil current. It is a transverse half sectional view showing a state.

【図7】図6に示した第2実施例のア−マチュア組立体
の平面図である。
FIG. 7 is a plan view of the armature assembly of the second embodiment shown in FIG.

【図8】図7のX−X断面の展開側面図である。FIG. 8 is a developed side view of the XX section of FIG.

【図9】図6、図7および図8に示した第2実施例とし
ての図6の(B)に示した励磁状態での磁路を示す斜視
図である。
9 is a perspective view showing a magnetic path in the excited state shown in FIG. 6B as a second embodiment shown in FIGS. 6, 7 and 8. FIG.

【図10】従来の無励磁作動型電磁ブレ−キを示すもの
であり、本図の(A)は無励磁状態の横半体断面図で、
本図の(B)は励磁状態の横半体断面図である。
FIG. 10 is a view showing a conventional non-excitation actuated electromagnetic brake, and FIG. 10A is a cross-sectional view of a horizontal half body in a non-excitation state.
(B) of this figure is a transverse half body sectional view in the excited state.

【図11】先願の無励磁作動型電磁ブレ−キのア−マチ
ュア組立体の正面図である。
FIG. 11 is a front view of an armature assembly of a non-excitation actuated electromagnetic brake of the prior application.

【符号の説明】[Explanation of symbols]

1a、1b ア−マチュア組立体 2a、2b 永久磁石 3a マグネット組立体 4 ばねプレ−ト 5 ハブ 6b ヨ−ク 8 静止体または回転体 9 回転軸 11 励磁コイル Ga ア−マチュアギャップ Gb、Gc ア−マチュアに形成したギャップ L マグネット組立体の軸方向長さ Po アウタポ−ル Pi インナポ−ル φc コイルによる磁束 φm 永久磁石による磁束 1a, 1b Armature assembly 2a, 2b Permanent magnet 3a Magnet assembly 4 Spring plate 5 Hub 6b Yoke 8 Stationary or rotating body 9 Rotating shaft 11 Excitation coil Ga Armature gap Gb, Gc-a Gap formed in mature L Axial length of magnet assembly Po Outer pole Pi Inner pole φc Magnetic flux from coil φm Magnetic flux from permanent magnet

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 回転軸と、この回転軸に対し相対回転可
能に配置され、静止体または回転体に対し固定され、そ
の外周と内周がそれぞれアウタポ−ルとインナポ−ルと
され、これらの中間に画定される環状空隙を有する二重
中空円筒体状のヨ−クと、このヨ−クの前記環状空隙内
に収容される励磁コイルとを有するマグネット組立体
と、 前記マグネット組立体の前記環状空隙の開口端側に対向
して回転軸と一体に回転可能にされ、軸方向への相対移
動が可能に装着されたア−マチュア組立体と、 このア−マチュア組立体を常時前記マグネット組立体か
ら引き離す方向に押圧するばねなどの解放手段と、 前記ア−マチュア組立体内に配置され前記マグネット組
立体が励磁されない状態では、前記ア−マチュア組立体
を前記解放手段の押圧に抗して前記マグネット組立体に
吸着させて制動するか、または前記マグネット組立体と
一体に回転させる永久磁石と、 を有して、前記マグネット組立体が励磁されると前記永
久磁石の磁束を打ち消す磁力が発生し、前記解放手段に
よりア−マチュア組立体が吸着から解放されて制動が解
除され、または前記ア−マチュア組立体が前記回転軸と
の連結から解除される無励磁作動型電磁ブレ−キ/クラ
ッチにおいて、 前記永久磁石は、強力で軸方向に短く肉厚が薄く偏平な
リング状か、または、半径方向の肉厚が薄く円周方向に
所定数の間隔により、これらの間隔と同数に分割された
複数の円弧状体として、ラジアル方向に着磁され、前記
永久磁石に対する所定位置において軸方向に整列する円
弧状の前記永久磁石の厚みよりも狭い所定幅の空隙、ま
たは銅、ステンレス鋼などの非磁性体部によるバイパス
ギャップが配置されていることを特徴とする無励磁作動
型電磁ブレ−キ/クラッチ。
1. A rotating shaft, which is arranged so as to be rotatable relative to the rotating shaft, is fixed to a stationary body or a rotating body, and its outer circumference and inner circumference are an outer pole and an inner pole, respectively. A magnet assembly having a double hollow cylindrical yoke having an annular space defined in the middle, and an exciting coil housed in the annular space of the yoke, and the magnet assembly described above. An armature assembly facing the opening end side of the annular space and integrally rotatable with the rotating shaft so as to be capable of relative movement in the axial direction, and this armature assembly is always provided with the magnet assembly. A releasing means such as a spring for pushing the armature assembly away from the solid body; and a state in which the magnet assembly is placed in the armature assembly and the magnet assembly is not excited, the armature assembly resists the pushing force of the releasing means. And a permanent magnet that is attracted to the magnet assembly to brake or rotate integrally with the magnet assembly, and a magnetic force that cancels the magnetic flux of the permanent magnet when the magnet assembly is excited. The non-excitation actuated electromagnetic brake, which is generated, releases the braking by releasing the armature assembly from the attraction by the releasing means, or releases the armature assembly from the connection with the rotating shaft. In the clutch, the permanent magnet is a strong ring that is short in the axial direction and has a thin wall thickness and a flat shape, or has a thin wall thickness in the radial direction and is divided into a number equal to these intervals by a predetermined number of intervals in the circumferential direction. A plurality of arc-shaped bodies, which are magnetized in the radial direction and have a predetermined width narrower than the thickness of the arc-shaped permanent magnets axially aligned at predetermined positions with respect to the permanent magnets, Other copper, non-excitation type electromagnetic vibration, characterized in that the bypass gap is located by a non-magnetic portion, such as stainless steel - key / clutch.
【請求項2】 請求項1記載の無励磁作動型電磁ブレ−
キ/クラッチにおいて、前記永久磁石は前記ア−マチュ
ア組立体の軸方向の外側に配置されていることを特徴と
する無励磁作動型電磁ブレ−キ/クラッチ。
2. The non-excitation actuated electromagnetic brake according to claim 1.
In the key / clutch, the non-excitation actuated electromagnetic brake / clutch, wherein the permanent magnet is arranged on the outer side in the axial direction of the armature assembly.
【請求項3】 回転軸と、この回転軸に対し相対回転可
能に配置され、静止体または回転体に対し固定され、そ
の外周と内周がそれぞれアウタポ−ルとインナポ−ルと
され、これらの中間に画定される環状空隙を有する二重
中空円筒体状のヨ−クと、このヨ−クの前記環状空隙内
に収容される励磁コイルとを有し1次側の電磁石として
作動するマグネット組立体と、 前記マグネット組立体の前記アウタポ−ルとインナポ−
ルの開口端側に対向して回転軸と一体に回転可能にさ
れ、軸方向への相対移動が可能に装着された2次側回転
体としてのア−マチュア組立体と、 このア−マチュア組立体を常時前記マグネット組立体か
ら引き離す方向に押圧するばねなどの解放手段と、 前記ア−マチュア組立体内に配置され前記マグネット組
立体が励磁されない状態では、前記ア−マチュア組立体
を前記解放手段の押圧に抗して前記マグネット組立体に
吸着させて制動するか、または前記マグネット組立体と
一体に回転させる永久磁石と、 を有して、前記マグネット組立体が励磁されると前記永
久磁石の磁束を打ち消す磁力が発生し、前記解放手段に
よりア−マチュア組立体が吸着から解放されて制動が解
除され、または前記ア−マチュア組立体が前記回転軸と
の連結から解除される無励磁作動型電磁ブレ−キ/クラ
ッチにおいて、 前記永久磁石は、強力で軸方向に短く偏平で半径方向の
肉厚が薄く円周方向に所定の間隔で分割された複数の円
弧状の磁石としてラジアル方向に着磁され、前記ア−マ
チュア組立体の半径方向の所定の位置に配置され、互い
に隣接する前記複数の円弧状の永久磁石の間には、前記
永久磁石の軸方向幅以内の幅を有して同一円周方向に連
続する円弧状の空隙、または銅、ステンレス鋼などの非
磁性体部によるバイパスギャップが配置されていること
を特徴とする無励磁作動型電磁ブレ−キ/クラッチ。
3. A rotating shaft, which is arranged so as to be rotatable relative to the rotating shaft, is fixed to a stationary body or a rotating body, and its outer circumference and inner circumference are an outer pole and an inner pole, respectively. A magnet assembly having a double hollow cylindrical yoke having an annular gap defined in the middle and an exciting coil housed in the annular gap of the yoke and operating as a primary-side electromagnet. A solid body, the outer pole and the inner pole of the magnet assembly,
Armature assembly as a secondary side rotating body, which is mounted so as to be rotatable integrally with the rotary shaft so as to face the open end side of the rotary shaft and to be relatively movable in the axial direction, and this armature assembly. A releasing means such as a spring for constantly pressing the solid body in a direction of pulling it away from the magnet assembly; A permanent magnet for adsorbing to the magnet assembly against the pressure to brake the magnet assembly or rotating integrally with the magnet assembly, and when the magnet assembly is excited, the magnetic flux of the permanent magnet A magnetic force that cancels the magnetic field is generated to release the braking by releasing the armature assembly from the adsorption by the releasing means, or the armature assembly is released from the connection with the rotating shaft. In the non-excitation actuated electromagnetic brake / clutch to be removed, the permanent magnet has a plurality of arcuate shapes which are strong, short in the axial direction, thin in the radial direction, and thin in the circumferential direction. Is magnetized in the radial direction and is arranged at a predetermined position in the radial direction of the armature assembly, and the axial width of the permanent magnet is provided between the plurality of arc-shaped permanent magnets adjacent to each other. A non-excitation actuated electromagnetic brake, characterized in that an arc-shaped void having a width within the range of and continuous in the same circumferential direction, or a bypass gap made of a non-magnetic material such as copper or stainless steel is arranged. Ki / clutch.
JP06070195A 1994-03-16 1994-03-16 Non-excitation actuated electromagnetic brake / clutch Expired - Fee Related JP3082565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06070195A JP3082565B2 (en) 1994-03-16 1994-03-16 Non-excitation actuated electromagnetic brake / clutch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06070195A JP3082565B2 (en) 1994-03-16 1994-03-16 Non-excitation actuated electromagnetic brake / clutch

Publications (2)

Publication Number Publication Date
JPH07259905A true JPH07259905A (en) 1995-10-13
JP3082565B2 JP3082565B2 (en) 2000-08-28

Family

ID=13424501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06070195A Expired - Fee Related JP3082565B2 (en) 1994-03-16 1994-03-16 Non-excitation actuated electromagnetic brake / clutch

Country Status (1)

Country Link
JP (1) JP3082565B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008544168A (en) * 2005-06-10 2008-12-04 ワーナー エレクトリック テクノロジー リミテッド ライアビリティ カンパニー Rotary electromagnetic coupling device
JP2010019321A (en) * 2008-07-09 2010-01-28 Toyota Motor Corp Twin-clutch device
US8151950B2 (en) * 2006-04-17 2012-04-10 Otis Elevator Company Permanent magnet elevator disk brake
JP2012097875A (en) * 2010-11-05 2012-05-24 Ogura Clutch Co Ltd Electromagnetic clutch
JP2015021519A (en) * 2013-07-16 2015-02-02 オリエンタルモーター株式会社 Non-excitation operation type electromagnetic brake
JP2015165163A (en) * 2015-04-02 2015-09-17 オリエンタルモーター株式会社 Non-excitation operation type electromagnetic brake
JP2016522373A (en) * 2013-06-14 2016-07-28 ピアーブルグ パンプ テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングPierburg Pump Technology GmbH Refrigerant pump with resin-bonded magnet
WO2017215701A1 (en) * 2016-06-15 2017-12-21 Schaeffler Technologies AG & Co. KG Belt pulley clutch system with electromagnetic clutch for an auxiliary assembly, such as a refrigerant compressor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04115758U (en) * 1991-03-25 1992-10-14 富士通株式会社 Circuit board grounding structure
JP6492671B2 (en) * 2015-01-13 2019-04-03 シンフォニアテクノロジー株式会社 Power transmission device
CN110219914B (en) * 2019-06-10 2021-01-26 贵州航天林泉电机有限公司 Impact-resistant permanent magnet brake

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008544168A (en) * 2005-06-10 2008-12-04 ワーナー エレクトリック テクノロジー リミテッド ライアビリティ カンパニー Rotary electromagnetic coupling device
US8151950B2 (en) * 2006-04-17 2012-04-10 Otis Elevator Company Permanent magnet elevator disk brake
JP2010019321A (en) * 2008-07-09 2010-01-28 Toyota Motor Corp Twin-clutch device
JP4596051B2 (en) * 2008-07-09 2010-12-08 トヨタ自動車株式会社 Twin clutch device
US8678153B2 (en) 2008-07-09 2014-03-25 Toyota Jidosha Kabushiki Kaisha Twin-clutch device
JP2012097875A (en) * 2010-11-05 2012-05-24 Ogura Clutch Co Ltd Electromagnetic clutch
JP2016522373A (en) * 2013-06-14 2016-07-28 ピアーブルグ パンプ テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングPierburg Pump Technology GmbH Refrigerant pump with resin-bonded magnet
US9850905B2 (en) 2013-06-14 2017-12-26 Pierburg Pump Technology Gmbh Coolant pump with plastic bonded magnet
JP2015021519A (en) * 2013-07-16 2015-02-02 オリエンタルモーター株式会社 Non-excitation operation type electromagnetic brake
JP2015165163A (en) * 2015-04-02 2015-09-17 オリエンタルモーター株式会社 Non-excitation operation type electromagnetic brake
WO2017215701A1 (en) * 2016-06-15 2017-12-21 Schaeffler Technologies AG & Co. KG Belt pulley clutch system with electromagnetic clutch for an auxiliary assembly, such as a refrigerant compressor

Also Published As

Publication number Publication date
JP3082565B2 (en) 2000-08-28

Similar Documents

Publication Publication Date Title
JPH07259905A (en) Unexciting operation type electromagnetic brake/clutch
JP5046851B2 (en) Non-excitation electromagnetic brake
JPS5929406A (en) Solenoid unit
JP3218833B2 (en) Non-excitation actuated electromagnetic brake
JP6129732B2 (en) Brake motor and hoisting machine
JPH1042518A (en) Motor driver
JP3384247B2 (en) Non-excitation actuated electromagnetic clutch / brake
JP2540200Y2 (en) Non-excitation type electromagnetic brake
JP2002025819A (en) Magnetic force type attraction device using hybrid magnet
JPS5913385Y2 (en) Permanent magnet actuated electromagnetic brake
JPH11294504A (en) Non-exciting actuation type electromagnetic brake
JPH086769B2 (en) Electromagnetic brake or clutch mainly for non-excitation operation
JP2003068524A (en) Electromagnetic device
JPH0979294A (en) Deenergisation operating electromagnetic brake
JPH04235A (en) Clutch motor
JP2522125Y2 (en) Electromagnetic coupling device
JPS5813149Y2 (en) Non-excitation type electromagnetic brake
JP2001251838A (en) Rotating machine with basic factor
JP2004353684A (en) Braking device
JPH1019064A (en) Deenergization actuating type electromagnetic clutch/ brake
JP2771780B2 (en) electromagnet
JP3882397B2 (en) Eddy current reducer
JP4259648B2 (en) Electromagnetic coupling device
JPH02294245A (en) Motor with brake
JP2004060809A (en) Rotation breaking device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees