JPH0242389A - Pressurized water reactor - Google Patents

Pressurized water reactor

Info

Publication number
JPH0242389A
JPH0242389A JP63193271A JP19327188A JPH0242389A JP H0242389 A JPH0242389 A JP H0242389A JP 63193271 A JP63193271 A JP 63193271A JP 19327188 A JP19327188 A JP 19327188A JP H0242389 A JPH0242389 A JP H0242389A
Authority
JP
Japan
Prior art keywords
control
control rod
neutron absorption
rod assembly
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63193271A
Other languages
Japanese (ja)
Inventor
Yoichiro Shimazu
洋一郎 島津
Toshiaki Horimoto
俊明 堀元
Akio Tamura
明男 田村
Hiroyuki Dan
壇 博之
Yoshinobu Takahashi
義信 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido Electric Power Co Inc
Kansai Electric Power Co Inc
Kyushu Electric Power Co Inc
Japan Atomic Power Co Ltd
Shikoku Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Hokkaido Electric Power Co Inc
Kansai Electric Power Co Inc
Kyushu Electric Power Co Inc
Japan Atomic Power Co Ltd
Shikoku Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido Electric Power Co Inc, Kansai Electric Power Co Inc, Kyushu Electric Power Co Inc, Japan Atomic Power Co Ltd, Shikoku Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Hokkaido Electric Power Co Inc
Priority to JP63193271A priority Critical patent/JPH0242389A/en
Publication of JPH0242389A publication Critical patent/JPH0242389A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To enable output control without causing the distortion of an output distribution by dividing a control rod assembly for output control into plural groups and inserting and extracting the assembly into and from a reactor core so that some of them overlap one another. CONSTITUTION:A control rod assembly 2 whose neutron absorbing ability is axially uniform and the control rod assembly 3 for output control whose neutron absorbing ability is small at the lower part and large at the upper part are arranged in the reactor core 1, the assembly 2 is divided into control group banks A, B, C, and D and stop group banks SA, SB, and SC, and the assembly 3 is divided into control rod assembly groups G1 and G2 for output control. Then the assembly group G1 and G2 are inserted into and extracted from the reactor core 1 so that some of them overlap one another; and the neutron absorb ing ability of overlap parts is larger than that of nonoverlapping lower parts and smaller than that of nonoverlapping upper parts. Consequently, the output control and output distribution control are excellently performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、出力分布の歪を誘発することなく速い出力変
化に対応できるようにした加圧水型原子炉(以下PWR
という)に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a pressurized water reactor (hereinafter referred to as PWR) capable of responding to rapid power changes without inducing distortion in the power distribution.
).

〔従来の技術〕[Conventional technology]

PWRの出力制御に使用される制御棒は、Ag−In−
Cd等の中性子吸収材をステンレス鋼等からなる被覆管
内に充填し、中性子吸収能力を軸方向均等に設定して構
成されており、16本〜24本の制御棒が制御棒集合体
(制御棒クラスタともいう)として制御棒駆動装置によ
り炉心内へ上方から挿入されるようになっている。この
ような制御棒を炉心内に挿入すると、炉心の軸方向出力
分布が変化し、所定の制限範囲内から逸脱することにな
る。このため、従来では一次冷却材中のホウ酸濃度を調
整するとともに制御棒クラスタの挿入位置を調整して出
力分布の歪を修正しているが、ホウ酸濃度の調整は時間
がかかるため、速い出力変化には対応できないという問
題があった。
The control rods used for PWR output control are Ag-In-
A neutron absorbing material such as Cd is filled in a cladding tube made of stainless steel, etc., and the neutron absorption capacity is set evenly in the axial direction. The control rod drive device inserts the control rods into the reactor core from above as a cluster. When such a control rod is inserted into the core, the axial power distribution of the core changes and deviates from within a predetermined limit range. For this reason, conventionally, the distortion in the power distribution has been corrected by adjusting the boric acid concentration in the primary coolant and the insertion position of the control rod cluster, but since adjusting the boric acid concentration takes time, it is not possible to There was a problem that it could not respond to changes in output.

そこで、この問題を解決する手段として、中性子吸収能
力を軸方向均等に設定した制御棒集合体群と、中性子吸
収能力を下方が小さく上方が太きく設定した出力制御用
制御棒集合体群とを用いて出力制御及び出力分布制御を
行う方法が提案されている(特開昭59−196497
号)。この方法によれば、たとえば第7図に示す如く中
性子吸収能力を下方が小さく上方が大きく設定した出力
制御用制御棒集合体群Gl、G2を炉心内に全挿入して
出力つまり炉心の反応度を制御するため、速い出力変化
に対応できるが、出力制御用制御棒集合体群Gl、G2
の挿入に伴い下式で表されるアキシャルφオフセット(
A、0.)が第8図の曲線aで示すように変化し、マイ
ナス側に2つの極大値を持つことになる。
Therefore, as a means to solve this problem, we have created a group of control rod assemblies whose neutron absorption capacity is set evenly in the axial direction, and a group of control rod assemblies for output control whose neutron absorption capacity is set to be small at the bottom and thick at the top. A method has been proposed to perform output control and output distribution control using
issue). According to this method, for example, as shown in FIG. 7, power control control rod assemblies Gl and G2, whose neutron absorption capacities are set to be small at the bottom and large at the top, are fully inserted into the reactor core to increase the output power, that is, the reactivity of the reactor core. control rod assembly groups Gl and G2 for output control.
With the insertion of , the axial φ offset (
A, 0. ) changes as shown by curve a in FIG. 8, and has two maximum values on the negative side.

PT:炉心上半分の出力、PB:炉心下半分の出力。PT: power of the upper half of the core, PB: power of the lower half of the core.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、原子炉出力が定格出力以下になると、曲線す
で示すようにA、0.が出力低下に伴ってプラス側に増
大する。これは原子炉の減速材温度係数が負であるため
、出力低下に伴い炉心上部に正の反応度が添加されるた
めである。従って、出力制御用制御棒集合体群Gl、G
2を炉心内へ挿入すると、A、O,は実際には曲線Cで
示すように変化し、直線dで示すA、0.の制御目標値
より一時的に負側となる。このため、この部分ではホウ
酸の希釈でなく濃縮の信号が発信され、次にホウ酸の濃
縮によって与えられた反応度を補償するために、制御棒
の中性子吸収能力を上下軸方向均等に設定した制御棒集
合体群が炉心内から引抜かれることになる。このように
制御棒の中性子吸収能力を上下軸方向均等に設定した制
御棒集合体群が炉心内から引抜かれると、それ以降の軸
方向出力分布の制御および反応度の微調整が困難となる
可能性があった。
By the way, when the reactor output falls below the rated output, the curve A, 0. increases to the positive side as the output decreases. This is because the moderator temperature coefficient of the nuclear reactor is negative, so positive reactivity is added to the upper part of the reactor core as the power decreases. Therefore, the control rod assembly groups Gl, G for output control
2 into the core, A, O, actually change as shown by curve C, and A, 0.2 shown by straight line d. temporarily becomes negative than the control target value. Therefore, a signal for concentrating boric acid instead of diluting it is transmitted in this part, and then, to compensate for the reactivity given by concentrating boric acid, the neutron absorption capacity of the control rod is set equally in the upper and lower directions. The control rod assemblies that have been removed will be pulled out from within the reactor core. If a group of control rods in which the neutron absorption capacity of the control rods is set equally in the upper and lower axial directions is pulled out of the reactor core, it may become difficult to control the axial power distribution and fine-tune the reactivity after that. There was sex.

本発明の目的はこのような問題点を解決し、出力分布の
歪を誘発することなく出力制御を行うことができるPW
Rを提供しようとするものである。
The purpose of the present invention is to solve such problems and to provide a PW that can perform output control without inducing distortion of output distribution.
It is intended to provide R.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために本発明は、中性子吸収能力を
軸方向均等に設定した複数の制御棒集合体と、前記中性
子吸収能力を下方が小さく上方が大きく設定した複数の
出力制御用制御棒集合体とを備えた加圧水型原子炉にお
いて、前記出力制御用1i!r御棒集合体を複数群に分
割し、各出力制御用制御棒集合体群をその一部をオーバ
ーラツプさせて炉心内へ挿入引抜するようにし、かつオ
ーバーラツプ部分の中性子吸収能力がオーバーラツプし
ない下方部分の中性子吸収能力より大きくオーバーラツ
プしない上方部分の中性子吸収能力より小さくなるよう
に各出力制御用制御棒集合体群の中性子吸収能力を設定
したことを特徴とするものである。
In order to solve the above problems, the present invention provides a plurality of control rod assemblies in which the neutron absorption capacity is set equally in the axial direction, and a plurality of control rod assemblies for output control in which the neutron absorption capacity is set to be small in the lower part and large in the upper part. In the pressurized water reactor equipped with the power control 1i! r The control rod assembly is divided into a plurality of groups, and each output control control rod assembly group is inserted into and withdrawn from the reactor core with a portion of the control rod assembly group overlapping, and the neutron absorption capacity of the overlapped portions is a lower portion that does not overlap. The neutron absorption capacity of each output control control rod assembly group is set so as to be larger than the neutron absorption capacity and smaller than the neutron absorption capacity of the upper portion that does not overlap.

〔作 用〕[For production]

本発明においては、中性子吸収能力を下方が小さく上方
が大きく設定した複数の出力制御用制御棒集合体を複数
群に分割し、各出力制御用制御棒集合体群をその一部を
オーバーラツプさせて炉心内へ挿入引抜するようにし、
かつオーバーラツプ部分の中性子吸収能力がオーバーラ
ツプしない下方部分の中性子吸収能力より大きくオーバ
ーラツプしない上方部分の中性子吸収能力より小さくな
るように各出力制御用制御棒集合体群の中性子吸収能力
を設定することにより、出力分布の歪を誘発することな
く出力制御を行うことができる。
In the present invention, a plurality of output control control rod assemblies whose neutron absorption capacity is set to be small in the lower part and large in the upper part are divided into a plurality of groups, and each output control control rod assembly group is made to partially overlap. Insert it into the reactor core and pull it out.
And by setting the neutron absorption capacity of each power control control rod assembly group so that the neutron absorption capacity of the overlapping part is greater than the neutron absorption capacity of the lower part that does not overlap and is smaller than the neutron absorption capacity of the upper part that does not overlap, Output control can be performed without inducing distortion of output distribution.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示し、この実施例では19
3体の燃料集合体によって炉心1が構成されている。上
記炉心1には中性子吸収能力を軸方向均等に設定した4
5体の制御棒集合体2・・・と、中性子吸収能力を下方
が小さく上方が大きく設定した8体の出力制御用制御棒
集合体3・・・がそれぞれ所定位置に配置され、45体
の制御棒集合体2・・・は使用目的に応じて制御グルー
プバンクA、B。
FIG. 1 shows an embodiment of the present invention, in which 19
A reactor core 1 is composed of three fuel assemblies. The above core 1 has neutron absorption capacity set equally in the axial direction.
Five control rod assemblies 2... and eight output control control rod assemblies 3... whose neutron absorption capacity is set to be small at the bottom and large at the top are placed at predetermined positions, and the 45 control rod assemblies 3... Control rod assembly 2... is divided into control group banks A and B depending on the purpose of use.

C,Dおよび停止グループバンクSA、SB。C, D and stop group banks SA, SB.

SCに分割されている。また、前記8体の出力制御用制
御棒集合体3・・・は第1の出力制御用制御棒集合体群
G1と第2の出力制御用制御棒集合体群G2とに分割さ
れている。これらの第1及び第2の出力制御用制御棒集
合体群Gl、G2は第2図に示すように互い50%オー
バーラツプして炉心1内へ挿入・引抜されるようになっ
ており、ジかもオーバーラツプ部分Aの中性子吸収能力
がオーバーラツプしない下方部分Bの中性子吸収能力よ
り大きくかつオーバーラツプしない上方部分Cの中性子
吸収能力より小さくなるようになっている。
It is divided into SC. Further, the eight control rod assemblies 3 for output control are divided into a first control rod assembly group for output control G1 and a second control rod assembly group for output control G2. As shown in Fig. 2, these first and second power control control rod assembly groups Gl and G2 are inserted into and withdrawn from the core 1 with 50% overlap. The neutron absorption capacity of the overlapping part A is greater than the neutron absorption capacity of the non-overlapping lower part B and smaller than the neutron absorption capacity of the non-overlapping upper part C.

すなわち、第1の出力制御用制御棒集合体群G1に属す
る4体の出力制御用制御棒集合体3・・・は、第2図に
示す如くたとえば上半分が中性子吸収棒4本、ステンレ
ス棒20本で構成され、下半分が中性子吸収棒0本、ス
テンレス棒24本で構成されている。また、第2の出力
制御用制御棒集合体群G2に属する4体の出力制御用制
御棒集合体3・・・は、上半分が中性子吸収棒24本、
ステンレス棒0本で構成され、下半分が中性子吸収棒4
本、ステンレス棒20本で構成されている。
That is, the four output control control rod assemblies 3 belonging to the first output control control rod assembly group G1 have, for example, four neutron absorption rods and a stainless steel rod in the upper half, as shown in FIG. The lower half consists of 0 neutron absorption rods and 24 stainless steel rods. In addition, the four output control rod assemblies 3 belonging to the second output control control rod assembly group G2 have 24 neutron absorption rods in the upper half,
Consists of 0 stainless steel rods, and the lower half has 4 neutron absorption rods.
It consists of a book and 20 stainless steel rods.

このようにオーバーラツプ部分Aの中性子吸収能力がオ
ーバーラツプしない下方部分Bの中性子吸収能力より大
きくかつオーバーラツプしない上方部分Cの中性子吸収
能力より小さくなるように制御棒の中性子吸収能力を設
定した第1の出力制御用制御棒集合体群G1及び第2の
出力制御用制御棒集合体群G2を炉心1内へ互いに50
%オーバーラツプさせて挿入すると、第3図に示す曲線
aのようにA、O,が前記第1及び第2の出力制御用制
御棒集合体群Gl、G2の挿入に伴い負の方向へ単調に
増加するので、制御棒の中性子吸収能力を軸方向均等に
設定した出力分布制御用の制御棒集合体群(制御グルー
プD)が炉心内から全引抜きされることがな(、出力制
御と出力分布制御を良好に行うことができる。なお、前
記第1及び第2の出力制御用制御棒集合体群Gl、G2
を炉心1内へ50%オーバーラツプさせて挿入したとき
の各種パラメータの変化を第4図に示す。
In this way, the neutron absorption capacity of the control rod is set so that the neutron absorption capacity of the overlapping part A is greater than the neutron absorption capacity of the non-overlapping lower part B and smaller than the neutron absorption capacity of the non-overlapping upper part C. The control rod assembly group G1 for control and the second control rod assembly group G2 for power control are inserted into the reactor core 1 by 50° to each other.
When inserted with % overlap, A and O become monotonous in the negative direction as the first and second output control control rod assemblies Gl and G2 are inserted, as shown in curve a shown in Fig. 3. As a result, the control rod assembly group (control group D) for power distribution control, in which the neutron absorption capacity of the control rods is set equally in the axial direction, is not completely withdrawn from the reactor core (power control and power distribution Control can be performed satisfactorily.It should be noted that the first and second output control control rod assembly groups Gl, G2
FIG. 4 shows changes in various parameters when the two were inserted into the reactor core 1 with 50% overlap.

また、本発明は上記実施例に限定されるものでは゛ない
。たとえば、第5図に示すように第1の出力制御用制御
棒集合体?ffG1に属する制御棒集合体を、下方部分
をステンレス棒24本、中間部分をステンレス棒20本
、中性子吸収棒4本、上方部分をステンレス棒16本、
中性子吸収棒8本て構成し、第2の出力制御用制御棒集
合体群G2に属する制御棒集合体を、下方部分をステン
レス棒24本、中性子吸収棒4本、中間部分をステンレ
ス棒16本、中性子吸収棒8本、上方部分をステンレス
棒0本、中性子吸収棒24本で構成してもよい。さらに
、第6図に示すように複数の出力制御用制御棒集合体を
3つの出力制御用制御棒集合体群Gl、G2.G3に分
割し、オーバーラツプ部分の中性子吸収能力がオーバー
ラツプしない下方部分の中性子吸収能力より大きくかつ
オーバーラツプしない上方部分の中性子吸収能力より小
さくなるように構成してもよい。
Further, the present invention is not limited to the above embodiments. For example, the first output control control rod assembly as shown in FIG. The control rod assembly belonging to ffG1 has 24 stainless steel rods in the lower part, 20 stainless steel rods in the middle part, 4 neutron absorption rods in the upper part, and 16 stainless steel rods in the upper part.
The control rod assembly, which is composed of 8 neutron absorption rods and belongs to the second control rod assembly group G2 for output control, has 24 stainless steel rods and 4 neutron absorption rods in the lower part, and 16 stainless steel rods in the middle part. , the upper part may be composed of 8 neutron absorption rods, 0 stainless steel rods, and 24 neutron absorption rods. Furthermore, as shown in FIG. 6, a plurality of control rod assemblies for output control are arranged into three control rod assemblies for output control Gl, G2. The neutron absorbing capacity of the overlapping part may be larger than the neutron absorbing capacity of the lower part that does not overlap and smaller than the neutron absorbing capacity of the upper part that does not overlap.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、中性子吸収能力を軸方向
均等に設定した複数の制御棒集合体と、前記中性子吸収
能力を下方が小さく上方が大きく設定した複数の出力制
御用制御棒集合体とを備えた加圧水型原子炉において、
前記出力制御用制御棒集合体を複数群に分割し、各出力
制御用制御棒集合体群をその一部をオーバーラツプさせ
て炉心内へ挿入引抜するようにし、かつオーバーラツプ
部分の中性子吸収能力がオーバーラツプしない下方部分
の中性子吸収能力より大きくオーバーラツプしない上方
部分の中性子吸収能力より小さくなるように各出力制御
用制御棒集合体群の中性子吸収能力を設定したので、出
力分布の歪を誘発することなく出力制御を行うことがで
きる。
As explained above, the present invention includes a plurality of control rod assemblies in which the neutron absorption capacity is set equally in the axial direction, and a plurality of control rod assemblies for output control in which the neutron absorption capacity is set to be small in the lower part and large in the upper part. In a pressurized water reactor equipped with
The power control control rod assembly is divided into a plurality of groups, and each power control control rod assembly group is inserted into and withdrawn from the reactor core with a portion of the group overlapping, and the neutron absorption capacities of the overlapping portions are overlapped. The neutron absorption capacity of each power control control rod assembly group was set so that it was larger than the neutron absorption capacity of the lower part that did not overlap and was smaller than the neutron absorption capacity of the upper part that did not overlap. can be controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は本発明の一実施例を示し、第1図
は制御棒集合体群および出力制御用制御棒集合体群の配
置図、第2図は出力制御用制御棒集合体群の構成を示す
図、第3図は出力制御用制御棒集合体群を炉心内に挿入
したときの出力分布変化を示す線図、第4図は出力制御
用制御棒集合体群を炉心内に挿入したときの各種パラメ
ータの変化を示す線図、第5図及び第6図は出力制御用
制御棒集合体群の他の実施例を示す図、第7図は従来の
出力制御用制御棒集合体群を示す図、第8図は従来の出
力制御用制御棒集合体群を炉心内に挿入したときの出力
分布変化を示す線図である。 ・・・炉心、 2・・・制御棒集合体、 3・・・出力制御用 制御棒集合体、 G2゜ ・・・出力制御用 制御棒集合体群。
1 to 4 show an embodiment of the present invention, FIG. 1 is a layout diagram of a control rod assembly group and a control rod assembly group for output control, and FIG. 2 is a layout diagram of a control rod assembly group for output control. Figure 3 is a diagram showing the power distribution change when the control rod assembly group for power control is inserted into the reactor core, and Figure 4 is a diagram showing the configuration of the control rod assembly group for power control in the reactor core. Figures 5 and 6 are diagrams showing other embodiments of the control rod assembly group for output control, and Figure 7 is a diagram showing the changes in various parameters when inserted into the control rod. FIG. 8 is a diagram showing a change in power distribution when a conventional power control control rod assembly group is inserted into a reactor core. ...Reactor core, 2...Control rod assembly, 3...Control rod assembly for output control, G2゜...Control rod assembly group for output control.

Claims (1)

【特許請求の範囲】[Claims] 中性子吸収能力を軸方向均等に設定した複数の制御棒集
合体と、前記中性子吸収能力を下方が小さく上方が大き
く設定した複数の出力制御用制御棒集合体とを備えた加
圧水型原子炉において、前記出力制御用制御棒集合体を
複数群に分割し、各出力制御用制御棒集合体群をその一
部をオーバーラップさせて炉心内へ挿入引抜するように
し、かつオーバーラップ部分の中性子吸収能力がオーバ
ーラップしない下方部分の中性子吸収能力より大きくオ
ーバーラップしない上方部分の中性子吸収能力より小さ
くなるように各出力制御用制御棒集合体群の中性子吸収
能力を設定したことを特徴とする加圧水型原子炉。
In a pressurized water reactor equipped with a plurality of control rod assemblies whose neutron absorption capacities are set equally in the axial direction, and a plurality of power control control rod assemblies whose neutron absorption capacities are set to be small at the bottom and large at the top, The control rod assembly for power control is divided into a plurality of groups, each group of control rods for power control is inserted into and withdrawn from the reactor core with a portion of the group overlapping, and the neutron absorption capacity of the overlapped portion is A pressurized water type atom characterized in that the neutron absorption capacity of each power control control rod assembly group is set so that the neutron absorption capacity of the lower part that does not overlap is greater than the neutron absorption capacity of the upper part that does not overlap. Furnace.
JP63193271A 1988-08-02 1988-08-02 Pressurized water reactor Pending JPH0242389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63193271A JPH0242389A (en) 1988-08-02 1988-08-02 Pressurized water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63193271A JPH0242389A (en) 1988-08-02 1988-08-02 Pressurized water reactor

Publications (1)

Publication Number Publication Date
JPH0242389A true JPH0242389A (en) 1990-02-13

Family

ID=16305162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63193271A Pending JPH0242389A (en) 1988-08-02 1988-08-02 Pressurized water reactor

Country Status (1)

Country Link
JP (1) JPH0242389A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2710778A1 (en) * 1993-09-29 1995-04-07 Framatome Sa Control rod cluster for nuclear reactor and reactor making application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2710778A1 (en) * 1993-09-29 1995-04-07 Framatome Sa Control rod cluster for nuclear reactor and reactor making application thereof
US5754608A (en) * 1993-09-29 1998-05-19 Compagnie Generale Des Matieres Nucleaires Control cluster for a nuclear reactor

Similar Documents

Publication Publication Date Title
JP2915200B2 (en) Fuel loading method and reactor core
SE8004485L (en) KERNREAKTOR
US4326919A (en) Nuclear core arrangement
GB915190A (en) Improvements in nuclear reactors
US3640844A (en) Power-flattened seed-blanket reactor core
US4894200A (en) Method of operating a nuclear reactor
JPH0242389A (en) Pressurized water reactor
JPS61102586A (en) Blanket fuel aggregate
JPS5858036B2 (en) Light water reactor and its operation method
JPS6228437B2 (en)
JPS61128185A (en) Core for nuclear reactor
JPS5928691A (en) Fuel assembly
JPS6013283A (en) Boiling water reactor
JPS60171494A (en) Method of charging fuel
JPH11109073A (en) Fuel assembly for boiling water reactor
JPS6166988A (en) Method of charging fuel
JPS5915888A (en) Bwr type reactor core
JPH04249794A (en) Operation method of reactor initial charge core
Paustian et al. An in-core large scale demonstration of barrier fuel at Quad Cities 2
JPH01193693A (en) Controlling of nuclear reactor
JPS6263887A (en) Fast breeder reactor
JPS6158789B2 (en)
JPS6280585A (en) Initial loading core for nuclear reactor
JPS6153590A (en) Fast brreder reactor
JPH0650351B2 (en) Reactor core