JPH0242366A - Current detecting method and current detector - Google Patents

Current detecting method and current detector

Info

Publication number
JPH0242366A
JPH0242366A JP15850889A JP15850889A JPH0242366A JP H0242366 A JPH0242366 A JP H0242366A JP 15850889 A JP15850889 A JP 15850889A JP 15850889 A JP15850889 A JP 15850889A JP H0242366 A JPH0242366 A JP H0242366A
Authority
JP
Japan
Prior art keywords
current
rogowski coil
magnetic
cylinder
cylindrical body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15850889A
Other languages
Japanese (ja)
Inventor
Taro Someya
染谷 太郎
Naotoshi Takaoka
高岡 直敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Energy Support Corp
Original Assignee
Energy Support Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Energy Support Corp filed Critical Energy Support Corp
Priority to JP15850889A priority Critical patent/JPH0242366A/en
Publication of JPH0242366A publication Critical patent/JPH0242366A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/202Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using Hall-effect devices

Abstract

PURPOSE:To accurately detect a low level current and to easily equip to a distribution line by detecting a current to be detected which is penetrates into an inside of its tube by a Rogowski coil. CONSTITUTION:A logousky coil 1 of a current detector K1 is constituted of a winding frame 2 formed of a flexible non-magnetic material like polyethylene, etc., bending like a circular ring, and an annular solenoid 3 which is winded in ring form so that the solenoid has a constant number of winding (n) per unit length corresponding to the winding frame 2 and the average section area S is constant in the axial direction of the winding frame 2. Further, by allowing the average section area S to be as small as possible and enlarging the number of winding (n) per unit length, thus permitting increment of an output voltage of the solenoid 3. Moreover, the cylindrical body 8 arranged flexibly interposing like a concentric circle against the Rogowski coil 1 is formed cylindrically of a magnetic material of a soft iron etc., and its thickness is set so that the magnetized current generated in the cylindrical body 8 is distributed actually only on the surface thereof corresponding to a permeability of the magnetic material in the tube 8.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は電流検出方法および電流検出器に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a current detection method and a current detector.

[従来の技術] 従来から電流検出器としてはCTが提案され、その応用
例としては例えば零相電流検出器(以下、ZCTという
)がある、この零相電流を検出するZCTには、従来か
ら残留電圧という問題点がある。残留電圧とはZCTに
鎖交する三相負荷電流が零相分を含まない場合にも、あ
たかもこれが含まれるかのように変流器二次巻線に生ず
る出力である。
[Prior Art] CT has been proposed as a current detector, and an example of its application is a zero-sequence current detector (hereinafter referred to as ZCT). There is a problem with residual voltage. The residual voltage is an output generated in the current transformer secondary winding even if the three-phase load current interlinking with the ZCT does not include a zero-phase component, as if it were included.

我が国の高抵抗接地配電系統においては地絡事故が生じ
ても地絡電流は小さく、その零相分も低レベルに留まる
。このため、ZCTにより零相電流を検出しようとする
場合、上記残留電圧がノイズとなり、S/N比が著しく
劣化して、検出が事実上不可能となる0例えば400[
A]の負荷電流に対して200[mA]程度の地絡電流
レベルを検出することは一般的なZCTでは不可能であ
る。
In Japan's high-resistance grounded power distribution system, even if a ground fault occurs, the ground fault current is small, and its zero-sequence current remains at a low level. Therefore, when trying to detect a zero-sequence current using ZCT, the residual voltage becomes noise, significantly deteriorating the S/N ratio, and making detection virtually impossible.
It is impossible with a general ZCT to detect a ground fault current level of about 200 [mA] with respect to a load current of [A].

この問題を解決するために、従来のZCTは、二次巻線
の上から銅などの良導体あるいは高透磁率の磁性体のテ
ープを巻き、又、鉄心磁路の形状を楕円形にするなどに
より、又、鉄心磁路の長手方向に沿って二次巻線の巻数
を変化させることにより、上記残留電圧の低減を図って
いた。これによって、実際に残留電圧が減少し、鉄心Z
CTが配電系統の零相電流検出に現実に利用されている
In order to solve this problem, conventional ZCTs wind a tape made of a good conductor such as copper or a magnetic material with high magnetic permeability over the secondary winding, or make the core magnetic path elliptical. Furthermore, the residual voltage is reduced by changing the number of turns of the secondary winding along the longitudinal direction of the core magnetic path. This actually reduces the residual voltage and the iron core Z
CT is actually used for zero-sequence current detection in power distribution systems.

しかしながら、残留電圧を減少させるテープの適正な巻
方及び磁路の望ましい形状、必要な二次巻線の分布など
は試行錯誤を重ね、充分な経験が積まれた後にしか得ら
れないという問題があった。
However, the problem is that the proper way to wind the tape to reduce residual voltage, the desirable shape of the magnetic path, the necessary distribution of the secondary winding, etc. can only be obtained through trial and error and after gaining sufficient experience. there were.

これは残留電圧発生の原因が、物理的あるいは理論的に
必ずしも明らかになっていないことによるものと考えら
れる。従って、例えば配@機器メーカーが一般的な磁気
回路の理論に基づいてZCTを設計、製作することは囲
器であり、専門のメーカーにこれを依頼せねばならない
という不便があった。
This is considered to be because the cause of residual voltage generation is not necessarily clear physically or theoretically. Therefore, for example, it would be inconvenient for an equipment manufacturer to design and manufacture a ZCT based on general magnetic circuit theory, and that they would have to outsource this work to a specialized manufacturer.

又、−旦、完成された鉄心ZCTの磁路を開くことは不
可能であるため、ZCTを配電線に組付ける作業が面倒
になり、ZCTを組付ける箇所も限定されるという実用
上の問題点もあった。前記のような問題はCTにおいて
も同様な問題がある。
Furthermore, since it is impossible to open the magnetic path of the completed iron core ZCT, the work of assembling the ZCT to the distribution line becomes troublesome, and there are practical problems in that the locations where the ZCT can be assembled are limited. There were also points. Similar problems as described above occur in CT.

[発明が解決しようとする課!!] この発明は上記のような従来の問題点を解決するために
なされたものであり、零相電流の検出の場合には負荷電
流の1/2000程度までの低レベルの電流も正確に検
出することができ、その設計製作も特殊なノウハウに頼
ることなく、−船釣な理論に基づいてなされ、かつ配電
線への装着を容易とすることができ、単相電流のような
負荷電流の場合には鉄心の好ましくない特性に影響され
ずに微少値の負荷電流をも検出でき、さらには装着箇所
にも融通性のある電流検出方法および電流検出器を提供
することにある。
[The problem that the invention tries to solve! ! ] This invention was made to solve the above-mentioned conventional problems, and in the case of zero-sequence current detection, it is possible to accurately detect low-level currents up to about 1/2000 of the load current. It can be designed and manufactured based on practical theory without relying on special know-how, and it can be easily installed on distribution lines, and in the case of load currents such as single-phase current. Another object of the present invention is to provide a current detection method and a current detector that can detect even minute load currents without being affected by unfavorable characteristics of the iron core, and that are flexible in terms of mounting locations.

[課題を解決するための手段] 上記の目的を達成するため、第1の発明は、被検出電流
より生ずる磁化電流が事実上表面だけに分布し得る厚さ
を有する磁性材により形成された筒体の外側に対し、ソ
レノイドをその軸心曲線に沿って平均断面積及び単位長
当りの巻数とが一定になるように環状に巻回したロゴス
キーコイルにてその筒体の内側に貫通される被検出電流
を検出することをその要旨とするものである。
[Means for Solving the Problems] In order to achieve the above object, a first invention provides a cylinder formed of a magnetic material having a thickness such that a magnetizing current generated from a current to be detected is distributed virtually only on the surface. On the outside of the body, a Rogowski coil is wound around the solenoid in an annular manner along its axial curve so that the average cross-sectional area and number of turns per unit length are constant, and the solenoid is penetrated into the inside of the cylindrical body. The gist of this is to detect the current to be detected.

第2の発明は、芯材にコイルを巻回して形成されるロゴ
スキーコイルを周回状にし、その内側に被測定電流が通
電される導体を貫通させる電流検出器において、前記ロ
ゴスキーコイルの外周を磁性体ケースにて覆ったことを
その要旨とする。
A second invention is a current detector in which a Rogowski coil formed by winding a coil around a core material is made into a circular shape, and a conductor through which a current to be measured passes through the inside of the Rogowski coil is passed through, the outer periphery of the Rogowski coil being circular. The gist is that it is covered with a magnetic case.

第3の発明は、前記ロゴスキーコイルを磁性体ケースの
中心に配置したことをその要旨とする。
The gist of the third invention is that the Rogowski coil is arranged at the center of the magnetic case.

[作用] 本願発明者の研究によれば、上記残留電圧の主要な原因
は健全的負荷電流によってZCT鉄心中に生ずる磁束密
度がその磁路に沿って不均一であることにあると考えら
れる。鉄心は元来、このような不均一性を除去し、鉄心
磁路内に均一な磁束密度、したがって一定の磁束を形成
する目的で使用される。しかしながち、鉄心材料の;l
上線形性、局所的磁気飽和、負荷電流に対する鉄心上の
イメージ電流による磁束密度などのために、磁路の側面
から磁束が流入、流出する。このため、ZCT二次巻線
の磁束鎖交数は、ZCTに鎖交する電流の代数和に正比
例しなくなる。これが4雷電圧発生の原因と考えられる
[Function] According to the research conducted by the present inventors, it is believed that the main cause of the residual voltage is that the magnetic flux density generated in the ZCT iron core due to a healthy load current is non-uniform along its magnetic path. Iron cores are originally used for the purpose of eliminating such non-uniformity and creating a uniform magnetic flux density, and thus a constant magnetic flux, within the core magnetic path. However, the iron core material;
Magnetic flux flows in and out from the sides of the magnetic path due to linearity, local magnetic saturation, and magnetic flux density due to the image current on the iron core relative to the load current. Therefore, the magnetic flux linkage of the ZCT secondary winding is no longer directly proportional to the algebraic sum of the currents interlinked to the ZCT. This is thought to be the cause of the 4 lightning voltage occurrence.

そこで、本発明においては、アンペアの周回積分定理の
基づくロゴスキーコイルを用いて電流を検出する。
Therefore, in the present invention, the current is detected using a Rogowski coil based on Ampere's circuit integral theorem.

周知のように、この定理はHを磁界、Cを任意の閉曲線
、翠1 t +をCに鎖交する自由電流(磁性体に生ず
る磁化電流を除いた外部回路から供給する電流)の代数
和とすると、 のように書かれる。この式は磁性媒質の有無、その種類
に拘らず成立する。(1)式の線積分に比例する量とし
て、コイル軸方向に均一に巻かれた環状ソレノイド、す
なわちロゴスキーコイルの誘導電圧を利用する。コイル
断面積をS、真空の透磁率をμ0、面積Sへの法線ベク
トルを口(//dA)とすると、S内の磁束がμ。・5
rt−(Hと見做される程度にSが小さい場合には、ロ
ゴスキーコイルの誘導電圧は となる。ただし、nはコイル軸心方向単位長当りの巻数
、μ。は真空の透磁率である。(1)、(2)式からコ
イルに鎖交する電流の代数和はにより与えられる。誘導
電圧Vを時間について積分することにより、原理的には
電流の代数和を知ることができる。電流が正弦波交流で
ある場合には、■及びその時間積分も正弦波となり、電
流値はVに比例する。このような場合には電流の相対値
のみが必要であったり、別に電流の絶対値の較正が可能
であったりすれば、■の時間積分を省略することができ
る。
As is well known, this theorem is based on H as a magnetic field, C as an arbitrary closed curve, and 1 t + as an algebraic sum of free currents (currents supplied from an external circuit excluding magnetizing currents generated in magnetic materials) interlinking with C. Then, it is written as . This equation holds true regardless of the presence or absence of a magnetic medium and its type. As a quantity proportional to the line integral in equation (1), the induced voltage of a ring solenoid, that is, a Rogowski coil, evenly wound in the axial direction of the coil is used. If the cross-sectional area of the coil is S, the vacuum permeability is μ0, and the normal vector to the area S is (//dA), then the magnetic flux inside S is μ.・5
When S is small enough to be regarded as rt-(H, the induced voltage in the Rogowski coil is . However, n is the number of turns per unit length in the axial direction of the coil, and μ is the vacuum permeability. From equations (1) and (2), the algebraic sum of the currents interlinking with the coil is given by: By integrating the induced voltage V over time, the algebraic sum of the currents can be found in principle. When the current is a sinusoidal alternating current, ■ and its time integral are also sinusoidal, and the current value is proportional to V. In such cases, only the relative value of the current is required, or the absolute value of the current is required. If it is possible to calibrate the values, the time integration in (2) can be omitted.

しかしながら上記のようなロゴスキーコイルを露出した
ままこれを例えば三相負荷電流に装着すると、銅テープ
あるいは磁性体テープを巻かない鉄心ZCTにおけるよ
うに、残留電圧が大きく、低レベルの零相電流検出は不
可能である。
However, if the Rogowski coil described above is attached to a three-phase load current with it exposed, the residual voltage will be large and the detection of low-level zero-phase current will be difficult, as is the case with iron-core ZCTs that are not wrapped with copper tape or magnetic tape. is impossible.

そこで、本願発明では、さらに被検出電流とロゴスキー
コイルとの間にこの電流を取り囲むように磁性材からな
る筒体を介在させる。又、この筒体は二重の筒体要素と
それらの両端を磁性材で閉じてなる環状の磁性体ケース
を含み、その中にロゴスキーコイルを収納し、ケースの
中空部に被検出電流を貫通させてもよい。
Therefore, in the present invention, a cylinder made of a magnetic material is further interposed between the current to be detected and the Rogowski coil so as to surround this current. Furthermore, this cylinder includes a ring-shaped magnetic case made up of double cylinder elements and both ends of which are closed with a magnetic material, and a Rogowski coil is housed in the ring-shaped magnetic case, and the current to be detected is applied to the hollow part of the case. It may be passed through.

このような磁性体の透磁率がある程度大きければ、零相
電流がない場合磁化電流は事実上磁性体の表面にだけに
生ずる。この磁化電流は自由電流によって磁性体内に生
ずる磁束密度を打ち消し、その部分の磁束密度を零ある
いは著しく小さな値とするように生ずる(磁性材内部に
は自由電流による磁界Hは生ずる)、その結果、筒体あ
るいは筒体の形状が環状磁性体ケース形状をした筒体が
軸対称形あるいは激しい凹凸等がなく、軸対称形から著
しくは外れない形状を有する場合には、磁性材に関して
被検出電流とは反対の側の空間の磁束密度は著しく均一
化される。
If the magnetic permeability of such a magnetic material is high to a certain extent, magnetizing current will actually occur only on the surface of the magnetic material in the absence of zero-sequence current. This magnetizing current cancels the magnetic flux density generated inside the magnetic body due to the free current, and is generated so that the magnetic flux density in that part becomes zero or a significantly small value (a magnetic field H is generated due to the free current inside the magnetic material).As a result, If the cylinder or cylinder has an annular magnetic material case shape and has an axially symmetrical shape or a shape that does not significantly deviate from the axially symmetrical shape without severe unevenness, the current to be detected with respect to the magnetic material The magnetic flux density in the space on the opposite side becomes significantly uniform.

例えば筒体が軸対称形の円筒である場合には代数和が零
である被検出電流と円筒内面の磁化電流とにより生じる
磁束密度とが打消し合い、円筒外面にはその内側に磁束
密度を生じないようにまた生じてもその値をきわめて小
さくするように、被検出電流に応じて磁化電流が分布す
る。このように電流の代数和が零である場合例えば被検
出電流が三相負荷電流であって、零相電流がないときに
は円筒外面の磁化電流は零となり、ロゴスキーコイルの
存在する空間には何らの磁束密度も生じないか生じても
その値はきわめて小さくかつロゴスキーコイルの長手方
向にあまり変化しないものとなる。
For example, when the cylinder is an axisymmetric cylinder, the detected current whose algebraic sum is zero and the magnetic flux density generated by the magnetizing current on the inner surface of the cylinder cancel each other out, and the outer surface of the cylinder has a magnetic flux density on the inside. The magnetizing current is distributed according to the current to be detected so that the magnetizing current does not occur, and even if it does occur, the value is extremely small. In this way, when the algebraic sum of the currents is zero, for example, when the current to be detected is a three-phase load current and there is no zero-phase current, the magnetizing current on the outer surface of the cylinder becomes zero, and there is nothing in the space where the Rogowski coil exists. The magnetic flux density does not occur, or even if it does, its value is extremely small and does not change much in the longitudinal direction of the Rogowski coil.

空間の透磁率は磁性材のそれより十分に小さいこともあ
ってロゴスキーコイルのある空間に残存する磁束密度は
筒体磁性材内部のものよりも充分に小さい、磁性材内部
に残存する磁束密度は、従来の技術の項で述べたような
理由により、磁性材の円周方向に相当に不均一であもと
考えられる。
Since the magnetic permeability of the space is sufficiently smaller than that of the magnetic material, the magnetic flux density remaining in the space where the Rogowski coil is located is sufficiently smaller than that inside the cylindrical magnetic material.The magnetic flux density remaining inside the magnetic material It is considered that the magnetic material is considerably non-uniform in the circumferential direction due to the reasons mentioned in the prior art section.

電流に零相成分がある場合には、円筒の内外面にわたり
、電流の零相分に相当する磁化電流が閉路の形で分布す
る。この磁化電流は磁性材内には磁束密度を生ずるがそ
の外側の空間には磁束密度を生じない、従って、ロゴス
キーコイルの存在する空間には、事実上被検出電流の零
相電流に比例した磁束密度が生ずる。筒体あるい環状磁
性体ケースの軸対称性が多少筋れる場合には、被検出電
流の非零相成分に関連する磁化電流も筒体外面に一部分
布する可能性がある。しかし、この磁化電流が筒体外側
に生ずる磁束密度及びその不均一度は、筒体のない場合
に同電流成分が同じ位置に生ずる磁束密度及び不均一度
に比較して著しく小さく、ロゴスキーコイルに生ずる残
留電圧も小さい。
When the current has a zero-sequence component, the magnetizing current corresponding to the zero-sequence component of the current is distributed in the form of a closed circuit over the inner and outer surfaces of the cylinder. This magnetizing current produces a magnetic flux density within the magnetic material, but does not produce a magnetic flux density in the space outside it.Therefore, in the space where the Rogowski coil exists, there is virtually a magnetic flux density proportional to the zero-sequence current of the current to be detected. A magnetic flux density is generated. If the axial symmetry of the cylindrical body or the annular magnetic body case is somewhat distorted, there is a possibility that the magnetizing current related to the non-zero phase component of the current to be detected may also be partially distributed on the outer surface of the cylindrical body. However, the magnetic flux density and non-uniformity caused by this magnetizing current on the outside of the cylinder are significantly smaller than the magnetic flux density and non-uniformity generated at the same position by the same current component when there is no cylinder, and the Rogowski coil The residual voltage generated is also small.

上記のような磁性材とロゴスキーコイルとの組合わせに
より、三相負荷電流の数十分の一程度の低レベルの零相
電流が検出される。
By combining the magnetic material and the Rogowski coil as described above, a low-level zero-sequence current of about a few tenths of the three-phase load current is detected.

そして、被検出電流が三相負荷電流ではなく、例えば単
相の負荷電流の場合には、磁性材の好ましくない性質に
影響されることなく微少な負荷電流をも検出できること
になる。
If the current to be detected is not a three-phase load current but, for example, a single-phase load current, even a minute load current can be detected without being affected by the unfavorable properties of the magnetic material.

また、磁性体ケースにてロゴスキーコイルの外周を覆う
ことにより、ロゴスキーコイルは磁性体ケースにシール
ドされて外部の外乱の影響が少ない。
Furthermore, by covering the outer periphery of the Rogowski coil with the magnetic case, the Rogowski coil is shielded by the magnetic case and is less affected by external disturbances.

さらに、磁性体ケースの中心にロゴスキーコイルを配置
すると、外部の外乱の影響が一番少ない。
Furthermore, placing the Rogowski coil in the center of the magnetic case minimizes the influence of external disturbances.

[第一実施例] 以下この発明を具体化した第一実施例を図面に従って説
明する。
[First Embodiment] A first embodiment embodying the present invention will be described below with reference to the drawings.

第1及び第2図に示すように、電流検出器に1のロゴス
キーコイル1はポリスチレン等の可撓性を有する非磁性
材を円環状に湾曲形成した巻枠2と、同巻枠2に対して
ソレノイドが単位長当りの巻数nが一定でかつ、平均断
面積Sが巻枠2の軸方向に沿って一定となるように環状
に巻回された環状ソレノイド3とにより構成されている
。なお、平均断面積Sは可能な限り小さくし、単位長当
りの巻数nを大きくすることにより、ソレノイド3の出
力電圧の増大を図るのが望ましい。
As shown in FIGS. 1 and 2, a Rogowski coil 1 in a current detector is connected to a winding frame 2 made of a flexible non-magnetic material such as polystyrene curved into an annular shape. On the other hand, the solenoid is constituted by an annular solenoid 3 wound in an annular manner so that the number of turns n per unit length is constant and the average cross-sectional area S is constant along the axial direction of the winding frame 2. Note that it is desirable to increase the output voltage of the solenoid 3 by making the average cross-sectional area S as small as possible and increasing the number of turns n per unit length.

前記環状ソレノイド3のリード線4aは計測用の同軸ケ
ーブル5の心線に、リード線4bはその外被導体にそれ
ぞれ接続されている。前記環状ソレノイド3の外面には
静電シールド7が被覆されており、同静電シールド7は
前記同軸ケーブル5の外被導体に接続されている。
The lead wire 4a of the annular solenoid 3 is connected to the core wire of a coaxial cable 5 for measurement, and the lead wire 4b is connected to its outer conductor. The outer surface of the annular solenoid 3 is covered with an electrostatic shield 7, and the electrostatic shield 7 is connected to the outer conductor of the coaxial cable 5.

なお、前記環状ソレノイド3をトロイダル方向の一方の
向き、例えば第2図A矢印の向きのみに巻き進めると、
環状ソレノイド3の軸心曲線に鎖交する磁束による誘起
電圧も環状ソレノイド3の出力に加わるので誤差の原因
となる。これを除くために、環状ソレノイド3を偶数層
に巻き、半数層は前記A矢印の向きに、残りの半数層は
反A矢印の向きに巻く必要がある。単層あるいは奇数層
の場合には第3図に示すように巻き戻し[6を設けて、
軸心曲線に鎖交する磁束を打ち消すように構成する。
Note that if the annular solenoid 3 is wound only in one direction of the toroidal direction, for example, in the direction of the arrow A in FIG.
The induced voltage due to the magnetic flux interlinking with the axial center curve of the annular solenoid 3 is also added to the output of the annular solenoid 3, causing an error. In order to eliminate this, it is necessary to wind the annular solenoid 3 in an even number of layers, half of the layers in the direction of the arrow A, and the remaining half of the layers in the direction of the anti-A arrow. In the case of a single layer or an odd number of layers, as shown in Figure 3, unwinding [6 is provided,
It is configured to cancel the magnetic flux interlinking with the axial center curve.

前記ロゴスキーコイル1に対して同心円状に遊挿配置さ
れる筒体8は軟鉄等の磁性材にて円筒状に形成され、そ
の厚さは磁性材の透磁率に応じて筒体8に生じる磁化電
流が事実上筒体8の表面のみに分布するように設定され
ている。この実施例の場合にはその厚さは3mm程度と
している。
The cylindrical body 8, which is loosely inserted concentrically with respect to the Rogowski coil 1, is formed into a cylindrical shape from a magnetic material such as soft iron, and the thickness of the cylindrical body 8 depends on the magnetic permeability of the magnetic material. It is set so that the magnetizing current is distributed virtually only on the surface of the cylindrical body 8. In this embodiment, the thickness is approximately 3 mm.

筒体8の軸長はロゴスキーコイル1の断面直径の少なく
とも数倍程度に定めるのが好ましい、又、筒体8の外径
はロゴスキーコイル1が形成する中空部9の直径よりも
やや小径にし、筒体8の軸長が上記のような値の場合ロ
ゴスキーコイル1が筒体8の外周面からそれほど離間し
ないように配置される。そして、被測定電線は前記筒体
8の軸心に設けられた挿通孔10に挿通され、被測定電
線に流れる負荷電流が検出される。
It is preferable that the axial length of the cylinder 8 is at least several times the cross-sectional diameter of the Rogowski coil 1, and the outer diameter of the cylinder 8 is slightly smaller than the diameter of the hollow part 9 formed by the Rogowski coil 1. When the axial length of the cylinder 8 is as described above, the Rogowski coil 1 is arranged not to be far away from the outer peripheral surface of the cylinder 8. Then, the wire to be measured is inserted through the insertion hole 10 provided at the axis of the cylindrical body 8, and the load current flowing through the wire to be measured is detected.

なお、ロゴスキーコイル1の巻枠2は靭体材で形成して
もよい。
Incidentally, the winding frame 2 of the Rogowski coil 1 may be formed of a tough material.

この第一実施例の電流検出器に1の第一変形例としては
第4図に示すように、一対の半円形の巻枠2に対してソ
レノイドを巻回したロゴスキーコイル片1a、lbを形
成し、両口ゴスキーコイル片1a、lbの巻線を直列に
接続しかつ両口ゴスキーコイル片1a、lbの巻枠2を
円環状に接合してロゴスキーコイル1としてもよい。
As a first modification of the current detector of the first embodiment, as shown in FIG. The Rogowski coil 1 may be formed by connecting the windings of the double-ended Goski coil pieces 1a and lb in series and joining the winding frame 2 of the double-ended Goski coil pieces 1a and lb in an annular shape.

なお、以下に説明する変形例又は実施例においては説明
の便宜上前記第−実施例又は池の実施例で説明される部
材と同−又は相当する構成については同一符号を付し、
その説明を省略する。
In addition, in the modified examples or examples described below, for convenience of explanation, the same reference numerals are given to the same or equivalent components as those explained in the above-mentioned first example or pond example,
The explanation will be omitted.

又、電流検出器に1の第二変形例としては第5図に示す
ように一対のロゴスキーコイル1の巻線を直列に接続し
、筒体8に対して閉成するようにしてもよい、このよう
にすれば出力の増加を図ることができる。
Further, as a second modification of the current detector 1, the windings of a pair of Rogowski coils 1 may be connected in series and closed to the cylinder body 8, as shown in FIG. In this way, it is possible to increase the output.

[第二実施例] 次に第二実施例を第6図に従って説明する。[Second example] Next, a second embodiment will be described with reference to FIG.

電流検出器に2の筒体8はその断面形状が楕円に形成さ
れ、この筒体8に対応してロゴスキーコイル1も筒体8
と拡大相似形に形成され、ロゴスキーコイル1を筒#8
の外周面からそれほど離間しないように配置している。
The cylindrical body 8 of the current detector 2 has an elliptical cross-sectional shape, and the Rogowski coil 1 also has a cylindrical body 8 corresponding to this cylindrical body 8.
Rogowski coil 1 is formed into an enlarged similar shape to cylinder #8.
It is located not far from the outer circumferential surface of the

第7図は第二実施例の電流検出器に2の変形例を示し、
筒体8及びロゴスキーコイル1をレーストラック状に形
成したものである。なお、この第二実施例においては筒
体8の断面形状は軸対称である円形から著しく外れない
ように形成し、かつその表面は急激な凹凸がないように
形成するものである。
FIG. 7 shows a second modification of the current detector of the second embodiment,
The cylinder body 8 and the Rogowski coil 1 are formed into a racetrack shape. In this second embodiment, the cross-sectional shape of the cylinder 8 is formed so that it does not deviate significantly from an axially symmetrical circular shape, and its surface is formed so that there are no sharp irregularities.

[第三実施例] 次に第三実施例を第8図及び第9図に従って説明する。[Third Example] Next, a third embodiment will be described with reference to FIGS. 8 and 9.

この実施例においては電流検出器に3の筒体8は軟鉄等
の磁性材にて円環状筒体ケースに形成されている。すな
わち、筒体8は筒体8の内周壁を有する縦断面り字状の
第1の筒体構成部材8aと、筒体8の外周壁を有する逆
り字状の第2の筒体構成部材8bとから構成され、収納
空間11を形成するように両筒棒構成部材8a、8bと
は互いに着脱自在に連結されている0両筒体構成部材8
a。
In this embodiment, the cylindrical body 8 of the current detector 3 is formed of a magnetic material such as soft iron into an annular cylindrical case. That is, the cylindrical body 8 includes a first cylindrical member 8a having an inner circumferential wall of the cylindrical body 8 and an inverted-shaped vertical section, and a second cylindrical member 8a having an inverted curvature shape and an outer circumferential wall of the cylindrical body 8. 8b, and the two cylinder rod members 8a and 8b are removably connected to each other so as to form the storage space 11.
a.

8bの厚みはこの実施例においては3mm程度に設定さ
れている。前記収納空間11には直列に電気的に接続さ
れた一対のロゴスキーコイル1が並設して収納されてい
る。このロゴスキーコイル1は第8図に示すように、筒
体8により形成された収納空間11の中央部に配置され
ている。
The thickness of 8b is set to about 3 mm in this embodiment. A pair of Rogowski coils 1 electrically connected in series are housed in the storage space 11 in parallel. As shown in FIG. 8, this Rogowski coil 1 is arranged at the center of a storage space 11 formed by a cylinder 8.

そして、前記筒体8の挿通孔10には被検出電線(図示
しない)が挿通される。
A detected electric wire (not shown) is inserted into the insertion hole 10 of the cylindrical body 8.

第10図は第三実施例の電流検出器に3の第一変形例を
示し、筒体8はその平面形状をレーストラック状にした
環状筒体ケースに形成されている。
FIG. 10 shows a first modification of the current detector of the third embodiment, in which the cylinder 8 is formed into an annular cylinder case whose planar shape is racetrack-shaped.

すなわち、筒体8は平面形状がレーストラック状で両端
面が磁性材で着脱自在に連結されている第1の筒体構成
部材8aと第2の筒体構成部材8bとからなる点が、又
、ロゴスキーコイル1はその平面形状が同じく筒体8内
に収納されるように筒体8と相似形をなすレーストラッ
ク状に形成されている点のみが前記実施例と異なってい
る。なお、この平面形状は前記第二実施例の変形例と同
様に筒体8の断面形状は軸対称である円形から著しく外
れないように形成し、かつその表面は急激な凹凸がない
ように形成するものである。
That is, the cylindrical body 8 has a racetrack-like planar shape and consists of a first cylindrical member 8a and a second cylindrical member 8b, both end surfaces of which are removably connected with magnetic material. The Rogowski coil 1 differs from the previous embodiment only in that its planar shape is formed in a racetrack shape similar to the cylinder 8 so that it is housed within the cylinder 8. Note that this planar shape is formed so that the cross-sectional shape of the cylinder 8 does not significantly deviate from the axially symmetrical circular shape, and the surface thereof is formed so that there are no sharp irregularities, as in the modification of the second embodiment. It is something to do.

又、図示はしないが、筒体8及びロゴスキーコイル1の
平面形状を第二実施例のように楕円形としてもよい。
Although not shown, the planar shape of the cylinder 8 and the Rogowski coil 1 may be oval as in the second embodiment.

第11図は第三実施例の電流検出器に3の第二変形例を
示す。
FIG. 11 shows a third modification of the current detector of the third embodiment.

この変形例では筒体8は断面を円形にした円環状磁性体
ケースに形成されている。すなわち、筒体8は断面が円
形でかつ平面形状が半円環状の第1及び第2の筒体構成
部材8a、8bとにより構成され、両筒棒構成部材8a
、8bの両端に設けたフランジ12を互いに接合してフ
ランジ12に挿通した連結ボルト13にナツト14を締
付けることにより、円環状に一体に連結されている。そ
して、筒体8の収納空間11にはロゴスキーコイル1か
収納されている。この場合においても第11図に示すよ
うに、前記ロゴスキーコイル1は筒体8により形成され
た収納空間11の中央に配置されている。
In this modification, the cylinder 8 is formed into an annular magnetic case with a circular cross section. That is, the cylindrical body 8 is constituted by first and second cylindrical body members 8a and 8b each having a circular cross section and a semicircular planar shape, and both cylindrical rod members 8a and 8b.
, 8b are integrally connected in an annular shape by joining flanges 12 provided at both ends of the flange 12 and tightening a nut 14 to a connecting bolt 13 inserted through the flange 12. The Rogowski coil 1 is stored in the storage space 11 of the cylinder 8. In this case as well, the Rogowski coil 1 is placed in the center of the storage space 11 formed by the cylinder 8, as shown in FIG.

さて、上記実施例のうち第一実施例の第二変形例及び第
3実施例の電流検出器K1.に3を選んで作用を説明す
る。
Now, among the above embodiments, the current detector K1 of the second modification of the first embodiment and the third embodiment. Select option 3 and explain its effect.

第12図は模擬三相配電線りを示し、模擬配電線りの一
端は三相スライダックSDを通して、三相電源Eに接続
されている。模擬三相配電線りはその他端には平衡Y形
の負荷抵抗Rが接続され、又、負荷側中性点Nから可変
接地抵抗VRを介して接地されている。
FIG. 12 shows a simulated three-phase distribution line, and one end of the simulated distribution line is connected to a three-phase power supply E through a three-phase slider SD. The other end of the simulated three-phase distribution line is connected to a balanced Y-type load resistor R, and is also grounded from the load side neutral point N via a variable grounding resistor VR.

一方、スライダックSDの二次側で一相はスイッチSW
を介して地絡線Fにより地絡できるようになっている。
On the other hand, one phase on the secondary side of Sliduc SD is the switch SW.
A ground fault can be caused by the ground fault wire F via the ground fault wire F.

なお、回路の電流容量の関係で、模擬三相配電線りの各
相は3ターンの回路で構成し、使用最大電流値を高めて
いる。
In addition, due to the current capacity of the circuit, each phase of the simulated three-phase distribution line is configured with a three-turn circuit to increase the maximum current value used.

この模擬配電線りに対して電流検出器Kl。A current detector Kl is applied to this simulated distribution line.

K3を装着する0両電流検出器Kl、に3においては筒
体8の挿通孔10に被検出電流の導体としての模擬三相
配電線りを貫通させ、電流検出器に1の筒体8の外側及
び電流検出器に3の収納空間11内には一対のロゴスキ
ーコイル1が直列に接続された状態で配置されている。
In 3, a simulated three-phase distribution line serving as a conductor of the current to be detected is passed through the insertion hole 10 of the cylindrical body 8, and the current detector is connected to the outside of the cylindrical body 8 of 1. A pair of Rogowski coils 1 are connected in series and arranged in the storage space 11 of the current detector 3.

そして、前記各′S電流検出器l、に3のロゴスキーコ
イル1の出力は増幅器APを介してシンクロスコープS
Yに接続されている。
The output of the three Rogowski coils 1 to each of the current detectors 1 and 3 is sent to the synchroscope S through an amplifier AP.
Connected to Y.

この模擬三相配電線において、今スイッチSWを開き、
地絡線Fに流れる地絡電流Irを零とする。この状態で
スライダックSDを操作して抵抗Rを流れる負荷電流■
を変化させる。このとき、各電流検出器Kl、に3のロ
ゴスキーコイルlに生ずる出力は前述の残留電圧である
。増幅器APで増幅されたこの出力をシンクロスコープ
SYで読取った値が第13図で示す通りとなる。
In this simulated three-phase distribution line, now open the switch SW,
The ground fault current Ir flowing through the ground fault wire F is set to zero. In this state, operate the Slider SD and the load current flowing through the resistor R■
change. At this time, the output generated in each current detector Kl and the three Rogowski coils I is the aforementioned residual voltage. The output amplified by the amplifier AP is read by the synchroscope SY, and the value is as shown in FIG.

第13図に示すように電流検出器に3の場合(・印)に
は残留電圧はきわめて小さく、しかも負荷電流lに依存
しない、このような残留電圧■rは静電的なノイズによ
るものと考えられる。
As shown in Fig. 13, when the current detector is 3 (marked with *), the residual voltage is extremely small and does not depend on the load current l.This residual voltage r is due to electrostatic noise. Conceivable.

電流検出器に1の場合(Δ印)にも残留電圧Vrは同様
に小さいが、やや負荷電流Iと共に増加する傾向が見ら
れる。電流検出器に1において筒体8の厚さを2.5 
[mmlとした場合(0印)、2 [mmlとした場合
(×印)は、厚さの減少につれて負荷電流に比例する残
留電圧が大きくなる。
When the current detector is 1 (Δ mark), the residual voltage Vr is similarly small, but it tends to increase somewhat with the load current I. The thickness of the cylinder 8 is 2.5 at 1 for the current detector.
In the case of [mml (0 mark)] and the case of 2 [mml (x mark)], the residual voltage proportional to the load current increases as the thickness decreases.

これは筒体8の厚さの減少につれて零相成分を含まない
負荷電流が生ずる磁束密度に対する筒体8の磁気シール
ド効果が弱まることを示している。
This indicates that as the thickness of the cylinder 8 decreases, the magnetic shielding effect of the cylinder 8 on the magnetic flux density that generates a load current that does not include a zero-phase component weakens.

この磁気シールド効果が十分な場合には、筒体8の厚さ
に対して、事実上表面と考えられる部分にのみ磁化電流
が分布する0本願明細書及び請求の範囲において「磁化
電流が事実表面だけに分布する。jという記載は上記の
ような磁化電流分布を意味する。磁化電流が事実上表面
に分布すると考えてよいような磁性材の厚さは、物理的
には磁性材の透磁率により定まり、実用上は負荷電流と
検出すべき零相電流の最小値との比に依存する。従って
、筒体8の厚さは本願実施例における3[mil程度に
は限られない。
When this magnetic shielding effect is sufficient, the magnetizing current is distributed only in a portion that is considered to be virtually the surface with respect to the thickness of the cylindrical body 8. The description "j" means the magnetizing current distribution as described above.The thickness of the magnetic material at which it can be considered that the magnetizing current is virtually distributed over the surface is physically determined by the magnetic permeability of the magnetic material. In practice, it depends on the ratio between the load current and the minimum value of the zero-sequence current to be detected.Therefore, the thickness of the cylinder 8 is not limited to about 3 mil in the embodiment of the present application.

これに対してロゴスキーコイル1だけの場合を比較例と
して同一条件で行なってみると、残留電圧Vrはきわめ
て大きく、かつ負荷電流Iに正比例する。
On the other hand, when the Rogowski coil 1 is used as a comparative example under the same conditions, the residual voltage Vr is extremely large and directly proportional to the load current I.

次に、スイッチSWを投入し、抵抗VRを変化させると
、各電流検出器Kl、に3のロゴスキーコイル1aの出
力電圧■は第14図に示すようになる。すなわち、電流
検出器に1の場合及び電流検出器に3の場合には、悪く
とも、地絡電流I。
Next, when the switch SW is turned on and the resistance VR is changed, the output voltages of the Rogowski coils 1a of the current detectors Kl and 3 become as shown in FIG. That is, in the case of 1 in the current detector and in the case of 3 in the current detector, at worst, the ground fault current I.

が10[mA]程度の小さな値から、ロゴスキーコイル
1の出力電圧Vは地絡電流Itに実質的に比例しており
、負荷電流Iの1/2000以下の地絡電流I、が精度
良く検出される。グラフには示さないが、電流検出器に
1の筒体8の厚さを2.5 [mml、2 [mmlと
減少した場合には、実用的に検出可能な地絡電流の最小
値は大きくなる。
From a small value of about 10 [mA], the output voltage V of Rogowski coil 1 is substantially proportional to the ground fault current It, and the ground fault current I, which is less than 1/2000 of the load current I, is accurately calculated. Detected. Although not shown in the graph, if the thickness of the cylinder 8 of 1 in the current detector is reduced to 2.5 [mmml, 2 [mmml], the minimum value of the ground fault current that can be practically detected becomes large. Become.

これに対して、筒体8を備えないロゴスキーコイル1の
みの場合には大きな残留電圧のためにロゴスキーコイル
1の出力Vは地絡電流l1、すなわち零相電流に比例し
ない全く無意味な値を示し、零相電流の検出ができない
On the other hand, in the case of only the Rogowski coil 1 without the cylindrical body 8, the output V of the Rogowski coil 1 is a completely meaningless ground fault current l1, which is not proportional to the zero-sequence current due to the large residual voltage. value, and zero-sequence current cannot be detected.

電流検出器Kl、に3は筒体8を備えているため、零相
電流がない場合には筒体8(電流検出器に3においては
第1の筒体構成部材8a、以下同じ)の被検出負荷電流
側である内面には負荷電流Iがこの内面より外側に生ず
る磁束密度を打消すように磁化電流が生ずる。この磁化
電流の内面にわたる和は筒体8を貫通する負荷電流Iの
代数和に等しい。
Since the current detector Kl, 3 is equipped with the cylindrical body 8, when there is no zero-sequence current, the cylindrical body 8 (the first cylindrical body component 8a in the current detector 3, the same applies hereinafter) is covered. A magnetizing current is generated on the inner surface, which is the detection load current side, so that the load current I cancels the magnetic flux density generated on the outer side of the inner surface. The sum of this magnetizing current over the inner surface is equal to the algebraic sum of the load current I passing through the cylinder 8.

負荷電流に零相成分がある場合には、磁化電流は内面、
外面に閉回路の形で分布する。この磁化電流は筒体8の
磁性材内に磁束密度を生じるが、磁性体外部には磁束密
度を生じない、a体8の外側に生ずる磁束密度は、負荷
電流の零相分によるものだけとなり、ロゴスキーコイル
1の出力はこれに比例する。負荷電流Iに零相成分がな
い場合には、筒体8の内面の磁化電流は筒体8の両端面
部で閉じるように分布し、筒体8の外側には磁化電流が
生じない、この結果、零相分がない場合にはロゴスキー
コイル1には出力が生じない、負荷電流を一定の24 
[A]に保ち、筒体8の外周に沿って磁束密度の円周方
向成分を測定すると、第15図のようになる。なお、V
pは磁気10−ブMPの増幅された出力である。筒体8
がない場合にはVpは大きく、かつ円周方向に激しく変
化しているが、筒体8がある場合にはθの全域にわたワ
Vpはきわめて小さい、これは筒体8の存在が残留電圧
の除去に有効であることを示している。
If the load current has a zero-sequence component, the magnetizing current
Distributed in the form of a closed circuit on the outer surface. This magnetizing current generates a magnetic flux density within the magnetic material of the cylinder 8, but does not generate a magnetic flux density outside the magnetic body.The magnetic flux density generated outside the a-body 8 is only due to the zero-sequence component of the load current. , the output of Rogowski coil 1 is proportional to this. When the load current I has no zero-phase component, the magnetizing current on the inner surface of the cylinder 8 is distributed so as to close at both end surfaces of the cylinder 8, and no magnetizing current is generated outside the cylinder 8. As a result, , if there is no zero-phase component, no output is generated in Rogowski coil 1.
If the circumferential direction component of the magnetic flux density is measured along the outer periphery of the cylinder 8 while maintaining the position [A], the result will be as shown in FIG. 15. In addition, V
p is the amplified output of the magnetic 10-band MP. Cylindrical body 8
When there is no cylinder 8, Vp is large and changes drastically in the circumferential direction, but when cylinder 8 is present, Vp is extremely small over the entire range of θ.This is because the existence of cylinder 8 is due to residual voltage. has been shown to be effective in removing

なお、上記の筒体8は一体に形成されているが、これを
軸方向の二つ割りに形成して、被検出電流の導体に組付
ける際に一体の筒体に形成することもできる。
Although the cylindrical body 8 described above is formed in one piece, it can also be formed into two halves in the axial direction and formed into a single cylindrical body when assembled to the conductor of the current to be detected.

又、筒体8が多少非対称形で形成された実施例において
は、被検出電流の非零相成分に関係する磁束密度がロゴ
スキーコイル1内に生じる可能性もあるが仮に生じても
大きさ及び不均一度は小さく、しかもロゴスキーコイル
1の原理からいって、このような磁束密度に関係する出
力はロゴスキーコイル1に現われず、またロゴスキーコ
イル1の断面の拡がりのために現われてもその値は小さ
く零相電流のみを正しく検出できるという利点がある。
Furthermore, in an embodiment in which the cylinder body 8 is formed in a somewhat asymmetrical shape, there is a possibility that a magnetic flux density related to a non-zero phase component of the current to be detected may occur in the Rogowski coil 1, but even if it occurs, the magnitude will be and non-uniformity are small, and furthermore, according to the principle of the Rogowski coil 1, an output related to such magnetic flux density does not appear in the Rogowski coil 1, and it appears due to the expansion of the cross section of the Rogowski coil 1. This has the advantage that its value is small and only the zero-sequence current can be detected correctly.

なお、前記各実施例は零相電流を検出することを目的と
していたが、零相電流のみではなく、短絡等の故障電流
を検出する電流検出器としても有効であることは理解で
きる。
Although each of the embodiments described above was intended to detect zero-sequence current, it can be understood that the present invention is also effective as a current detector for detecting not only zero-sequence current but also fault currents such as short circuits.

また、軟鉄等により構成された編組線などを磁性体ケー
スとして使用することも可能である。
It is also possible to use a braided wire made of soft iron or the like as the magnetic case.

なお、この発明は前記実施例に限定されるものではなく
、この発明の趣旨から逸脱しない範囲で任意に変更する
ことも可能である。
Note that the present invention is not limited to the above-mentioned embodiments, and can be arbitrarily modified without departing from the spirit of the present invention.

[発明の効果] 以上詳述したように、この発明は被検出電流より生ずる
磁化電流が事実上表面だけに分布し得る厚さを有する磁
性材により形成された筒体の外側に対し、ソレノイドを
その軸心曲線に沿って平均断面積及び単位長当りの巻数
とが一定になるように環状に巻回したロゴスキーコイル
にてその筒体の内側に貫通される被検出電流を検出する
ことにより、磁性材に関して被検出電流とは反対側の空
間には、事実上被検出電流の零相分のみに比例する磁束
密度が生じるため、例えば零相電流を検出する場合には
ロゴスキーコイルの出力として負荷電流の1/2000
以下の零相電流まで検出できるという画期的な利点があ
り、通常の負荷電流を検出する場合には従来のように鉄
心の非線形性等に煩わされることなく微少な負荷電流を
検出することができる。しかも、上記の被検出電流の検
出は、周知のアンペアの周回積分定理と、物理的に明確
な磁性体における磁化電流に基づくものであるため、特
別のノウハウを必要とすることがなく、当該分野の技術
者が電流検出器を容易に設計、製作し得るという効果が
ある。
[Effects of the Invention] As described in detail above, the present invention provides a method in which a solenoid is connected to the outside of a cylindrical body formed of a magnetic material having a thickness such that the magnetizing current generated by the current to be detected is distributed virtually only on the surface. By detecting the detected current that passes through the inside of the cylinder with a Rogowski coil that is wound in a ring along the axial center curve so that the average cross-sectional area and the number of turns per unit length are constant. , in the space on the opposite side of the magnetic material from the current to be detected, a magnetic flux density that is proportional only to the zero-sequence component of the current to be detected occurs, so for example, when detecting a zero-sequence current, the output of the Rogowski coil as 1/2000 of the load current
It has the revolutionary advantage of being able to detect up to the following zero-sequence currents, and when detecting normal load currents, it is possible to detect minute load currents without worrying about the nonlinearity of the iron core, etc. can. Moreover, since the detection of the current to be detected is based on the well-known Ampere's circuit integral theorem and the magnetizing current in a physically clear magnetic material, it does not require any special know-how and is well-known in the field. This has the advantage that engineers can easily design and manufacture current detectors.

さらにまた、この発明の電流検出方法によれば鉄心と二
次巻線とが一体不可分の完成品ZCTとは異なり、筒体
に対して完成品の段階でもロゴスキーコイルを分離でき
、またこれらの部材にはいずれも被検出電流の導体の方
向に沿って二つ割りにも構成できる。従って、電流検出
器の配電線への装着作業が容易になり、また、装着箇所
として、配電線以外のもの、すなわち気中開閉器、ガス
開閉器の内外などおいても測定可能である。
Furthermore, according to the current detection method of the present invention, the Rogowski coil can be separated from the cylindrical body even in the finished product stage, unlike the finished product ZCT in which the iron core and the secondary winding are inseparable. Each member can be divided into two parts along the direction of the conductor of the current to be detected. Therefore, it becomes easy to attach the current detector to the power distribution line, and it is also possible to measure the current detector at locations other than the distribution line, such as inside and outside of an air switch or a gas switch.

さらに、ロゴスキーコイルは磁性体ケースにてシールド
されるため、外部の外乱の影響が少なくなり検出電流の
精度を向上させることができる。
Furthermore, since the Rogowski coil is shielded by a magnetic case, the influence of external disturbances is reduced and the accuracy of the detected current can be improved.

また、磁性間ケースの中央にロゴスキーコイルを配置す
るため、外部からの外乱の影響が一番少なく、検出電流
の精度を向上させることができる。
Furthermore, since the Rogowski coil is placed in the center of the magnetic case, the influence of external disturbances is minimized, and the accuracy of the detected current can be improved.

【図面の簡単な説明】 第1図〜第3図は第一実施例を示し、第1図はは本願発
明を具体化した第一実施例の零相電流検出器を一部破断
した正面図、第2図は同じく側面図、第3図はロゴスキ
ーコイルの平面図、第4図及び第5図は第一実施例のそ
れぞれ変形例を示し、第4図はロゴスキーコイル片の正
面図、第5図は電流検出器の側面図、第6図は第二実施
例の′X電流検出器平面図、第7図は第二実施例の変形
例の電流検出器の正面図、第8図及び第9図は第三実施
例を示し、第8図は電流検出器の一部破断した正面図、
第9図はケース状に構成した筒体の分解した一部破断正
面図、第10図は第三実施例の変形例を示し、電流検出
器の一部破断正面図、第11図は第三実施例のその他の
変形例を示す′@電流検出器縦断面図、第12図は零相
電流検出を行うための模擬三相配電線に電流検出器を装
着した状態を示す説明図、第13図は負荷電流と残留電
圧との関係を示すグラフ、第14図は地絡電流とロゴス
キーコイルの出力との関係を示すグラフ、第15図(a
>は第一実施例の筒体の外側における磁束密度の測定を
する場合の説明図、第15図(b)は第一実施例の筒体
の外側における磁束密度の分布を表わすグラフ。 1・・・ロゴスキーコイル、2・・・巻枠、3・・・環
状ソレノイド、8・・・筒体。 特許出願人     エナジーサポート株式会社代 理
 人     弁理士  恩1)博宣(ほか1名) 第18図 第14図 第15図(b) 第15面(Q)
[Brief Description of the Drawings] Figures 1 to 3 show a first embodiment, and Figure 1 is a partially cutaway front view of a zero-sequence current detector of the first embodiment embodying the present invention. , FIG. 2 is a side view, FIG. 3 is a plan view of the Rogowski coil, FIGS. 4 and 5 are modifications of the first embodiment, and FIG. 4 is a front view of the Rogowski coil piece. , FIG. 5 is a side view of the current detector, FIG. 6 is a plan view of the 'X current detector of the second embodiment, FIG. 7 is a front view of the current detector of a modification of the second embodiment, and FIG. 9 and 9 show the third embodiment, and FIG. 8 is a partially cutaway front view of the current detector.
FIG. 9 is an exploded partially cut-away front view of the case-shaped cylinder body, FIG. 10 is a modified example of the third embodiment, a partially cut-away front view of the current detector, and FIG. 11 is a partially cut-away front view of the third embodiment. 12 is an explanatory diagram showing a state in which a current detector is attached to a simulated three-phase distribution line for detecting zero-phase current; FIG. is a graph showing the relationship between load current and residual voltage, FIG. 14 is a graph showing the relationship between ground fault current and Rogowski coil output, and FIG.
15(b) is a graph showing the distribution of magnetic flux density outside the cylinder of the first example. DESCRIPTION OF SYMBOLS 1... Rogowski coil, 2... Winding frame, 3... Annular solenoid, 8... Cylindrical body. Patent applicant Energy Support Co., Ltd. Agent Patent attorney On 1) Hironobu (and 1 other person) Figure 18 Figure 14 Figure 15 (b) Page 15 (Q)

Claims (1)

【特許請求の範囲】 1、被検出電流より生ずる磁化電流が事実上表面だけに
分布し得る厚さを有する磁性材により形成された筒体の
外側に対し、ソレノイドをその軸心曲線に沿つて平均断
面積及び単位長当りの巻数とが一定になるように環状に
巻回したロゴスキーコイルにてその筒体の内側に貫通さ
れる被検出電流を検出することを特徴とする電流検出方
法。 2、芯材にコイルを巻回して形成されるロゴスキーコイ
ルを周回状にし、その内側に被測定電流が通電される導
体を貫通させる電流検出器において、 前記ロゴスキーコイルの外周を磁性体ケースにて覆つた
ことを特徴とする電流検出器。 3、前記ロゴスキーコイルを磁性体ケースの中心に配置
したことを特徴とする請求項2記載の電流検出器。
[Claims] 1. A solenoid is placed on the outside of a cylindrical body made of a magnetic material having a thickness such that the magnetizing current generated by the current to be detected is distributed only on the surface thereof, along the axial center curve of the cylindrical body. A current detection method characterized by detecting a detected current passing through the inside of a cylinder of a Rogowski coil which is wound in an annular manner so that the average cross-sectional area and the number of turns per unit length are constant. 2. In a current detector in which a Rogowski coil formed by winding a coil around a core material is made into a circular shape and a conductor through which the current to be measured passes through the inside of the Rogowski coil is passed through, the outer periphery of the Rogowski coil is surrounded by a magnetic material case. A current detector characterized by being covered with. 3. The current detector according to claim 2, wherein the Rogowski coil is arranged at the center of a magnetic case.
JP15850889A 1989-06-21 1989-06-21 Current detecting method and current detector Pending JPH0242366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15850889A JPH0242366A (en) 1989-06-21 1989-06-21 Current detecting method and current detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15850889A JPH0242366A (en) 1989-06-21 1989-06-21 Current detecting method and current detector

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP63111262 Division 1988-05-07 1988-05-07

Publications (1)

Publication Number Publication Date
JPH0242366A true JPH0242366A (en) 1990-02-13

Family

ID=15673267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15850889A Pending JPH0242366A (en) 1989-06-21 1989-06-21 Current detecting method and current detector

Country Status (1)

Country Link
JP (1) JPH0242366A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990034A (en) * 1996-12-06 1999-11-23 Asahi Kasei Kogyo Kabushiki Kaisha Olefin polymerization catalyst
JP2004228176A (en) * 2003-01-21 2004-08-12 Fuji Electric Holdings Co Ltd Zero-phase current transformer
FR2923019A1 (en) * 2007-10-26 2009-05-01 Schneider Electric Ind Sas Current e.g. short-circuit current, measuring device e.g. flexible and adjustable circular rogowski current sensor, for on-site functioning test application, has bypass unit bypassing wire extending between points and end point of wire
CN104749462A (en) * 2015-03-20 2015-07-01 广东小天才科技有限公司 Method and device for testing appliance performance index

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6088364A (en) * 1983-10-20 1985-05-18 Mitsubishi Electric Corp Ac current measuring apparatus
JPS60256067A (en) * 1984-05-21 1985-12-17 メルラン、ジエラン Current sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6088364A (en) * 1983-10-20 1985-05-18 Mitsubishi Electric Corp Ac current measuring apparatus
JPS60256067A (en) * 1984-05-21 1985-12-17 メルラン、ジエラン Current sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990034A (en) * 1996-12-06 1999-11-23 Asahi Kasei Kogyo Kabushiki Kaisha Olefin polymerization catalyst
US6214950B1 (en) 1996-12-06 2001-04-10 Asahi Chemical Ind Process for preparation of polyolefin using an olefin polymerization catalyst
JP2004228176A (en) * 2003-01-21 2004-08-12 Fuji Electric Holdings Co Ltd Zero-phase current transformer
FR2923019A1 (en) * 2007-10-26 2009-05-01 Schneider Electric Ind Sas Current e.g. short-circuit current, measuring device e.g. flexible and adjustable circular rogowski current sensor, for on-site functioning test application, has bypass unit bypassing wire extending between points and end point of wire
CN104749462A (en) * 2015-03-20 2015-07-01 广东小天才科技有限公司 Method and device for testing appliance performance index

Similar Documents

Publication Publication Date Title
CA1312654C (en) Mutual inductance current transducer, method of making, and electric energy meter incorporating same
US3449703A (en) Current transformer having an accuracy unimpaired by stray flux from adjacent conductors
JP2007163228A (en) Rogowski coil, rogowski coil production method, and current measuring device
JP2713459B2 (en) Zero-phase current detector
JPH0242366A (en) Current detecting method and current detector
JP2745452B2 (en) Split-type zero-phase current transformer for DC
JPH03185362A (en) Current transformer
Ramboz A highly accurate, hand-held clamp-on current transformer
US4305785A (en) Sensor for detecting changes in magnetic fields
JPH09210610A (en) High-frequency excitation differential transformer for preventing influence of external magnetism and metal, etc.
GB2295459A (en) Alternating current sensor
JP2004228176A (en) Zero-phase current transformer
JPH05114522A (en) Zero phase current transformer
JPH0810659B2 (en) Multiplex transformer
JPS61201404A (en) Gapped input transformer for static protective relay
JP3940947B2 (en) Zero phase current transformer
JPH0290065A (en) Current detecting apparatus and insulator-leaking-current detecting apparatus using divided ct cores
JP3159541B2 (en) Bus current meter
JP4158542B2 (en) Zero phase current transformer
EP3842812B1 (en) Measuring apparatus for measuring a dc component of an electric current and associated measuring method
JP4648954B2 (en) Zero phase current transformer
JPH08111332A (en) Current transformer
JPH0739218Y2 (en) Zero-phase current transformer shield structure
JPH1068744A (en) Direct current sensor
JPH0528747Y2 (en)