JPH0242307B2 - - Google Patents
Info
- Publication number
- JPH0242307B2 JPH0242307B2 JP60247914A JP24791485A JPH0242307B2 JP H0242307 B2 JPH0242307 B2 JP H0242307B2 JP 60247914 A JP60247914 A JP 60247914A JP 24791485 A JP24791485 A JP 24791485A JP H0242307 B2 JPH0242307 B2 JP H0242307B2
- Authority
- JP
- Japan
- Prior art keywords
- laser
- workpiece
- vacuum
- transmission window
- beam guide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005540 biological transmission Effects 0.000 claims description 26
- 239000000126 substance Substances 0.000 claims description 15
- 238000007740 vapor deposition Methods 0.000 claims description 10
- 230000002265 prevention Effects 0.000 claims description 9
- 238000003466 welding Methods 0.000 description 26
- 230000035515 penetration Effects 0.000 description 11
- 238000000034 method Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 239000011324 bead Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 3
- 230000003313 weakening effect Effects 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/12—Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/12—Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
- B23K26/127—Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an enclosure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/12—Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
- B23K26/127—Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an enclosure
- B23K26/128—Laser beam path enclosures
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Laser Beam Processing (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、真空雰囲気下でのレーザ加工を可
能ならしめる装置に関するもので真空加工室に設
けられたレーザ透過窓への蒸着物質の蒸着を防止
する装置に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a device that enables laser processing in a vacuum atmosphere, and is capable of depositing a vapor deposition substance onto a laser transmission window provided in a vacuum processing chamber. Relating to a device for preventing.
第6図は従来の大気中におけるレーザ加工装置
の一例を示す断面図である。図において、1はレ
ーザビーム、2はこのレーザビーム1を集光して
被加工物3に照射するためのレンズ、4は上記レ
ーザビーム1と同方向から被加工物3に向つて噴
出しているHe、Arなどのセンタガス、5は被加
工物3などの蒸発物質、6はこの装置のノズル、
15は被加工物3に対するレーザビーム1の進行
方向である。
FIG. 6 is a sectional view showing an example of a conventional laser processing apparatus in the atmosphere. In the figure, 1 is a laser beam, 2 is a lens for condensing the laser beam 1 and irradiating it onto the workpiece 3, and 4 is a lens ejected from the same direction as the laser beam 1 toward the workpiece 3. 5 is the evaporated substance such as the workpiece 3, 6 is the nozzle of this device,
15 is the traveling direction of the laser beam 1 with respect to the workpiece 3.
この様な装置において溶接加工をすすめると、
レーザ照射部近傍にプラズマが形成される。プラ
ズマはレーザ光を吸収ないしは反射するため、被
溶接材に到達するレーザ光が著しく減少し必要と
する溶込み深さが得られなくなる。又被加工物3
の溶融部のビード17の形成は不安定となり、溶
接ビードの横断面(第8図a,b参照)には溶融
金属の凝固不安定さに起因するミクロポロシテイ
(小さな空孔)つまりピンポール16の発生(第
8図a参照)が認められる。 When welding is carried out using such equipment,
Plasma is formed near the laser irradiation area. Since plasma absorbs or reflects laser light, the amount of laser light reaching the workpiece is significantly reduced, making it impossible to obtain the required penetration depth. Also, workpiece 3
The formation of the bead 17 in the molten part becomes unstable, and the cross section of the weld bead (see Figures 8a and b) contains microporosity (small pores) or pinholes 16 due to the instability of solidification of the molten metal. The occurrence of (see Figure 8a) is observed.
第7図は従来の真空加工室8内でのレーザ溶接
方法を示す断面図である。 FIG. 7 is a sectional view showing a conventional laser welding method within the vacuum processing chamber 8. As shown in FIG.
図において、1はレーザビーム、3は被加工
物、5は被加工物3の蒸発物質、7は真空加工室
8の一端にあつてレーザビーム1が通過するレー
ザ透過窓、15は被加工物3に対するレーザビー
ム1の進行方向である。 In the figure, 1 is a laser beam, 3 is a workpiece, 5 is an evaporated material of the workpiece 3, 7 is a laser transmission window at one end of the vacuum processing chamber 8 through which the laser beam 1 passes, and 15 is a workpiece. 3. This is the traveling direction of the laser beam 1 with respect to 3.
このように真空容器(600Torr以下)内におい
てレーザ加工すると、上記第6図に示した装置の
ような問題、例えばミクロポロシテイの発生は防
止できるが、被加工物3からの蒸発物質5がレー
ザ透過窓7に付着して、レーザビーム1の透過を
防げる問題が生じる。この対策として、レーザ透
過窓を使用せず空気カーテン方式(aero
dynamics Window方式)により真空加工室8と
外部とを仕切る方法があるが、この方法が適用で
きるのは真空加工室8の圧力が約50Torr以上の
場合であり、それ以下の低下力においては真空加
工室8の圧力を維持することができない。第5図
bに示したように減圧の効果が顕著に現われるの
は30Torr以下の場合であり、このような低圧の
場合には必然的に透過窓7を使用せざるを得な
い。 When laser processing is performed in a vacuum chamber (600 Torr or less) in this way, problems such as the occurrence of microporosity in the apparatus shown in FIG. A problem arises in that it adheres to the transmission window 7 and prevents the laser beam 1 from passing through. As a countermeasure to this problem, an air curtain method (aero
There is a method of partitioning the vacuum processing chamber 8 from the outside using the dynamics window method, but this method is applicable only when the pressure in the vacuum processing chamber 8 is approximately 50 Torr or more, and when the pressure is lower than that, the vacuum processing chamber 8 is separated from the outside. The pressure in chamber 8 cannot be maintained. As shown in FIG. 5b, the effect of pressure reduction becomes noticeable when the pressure is below 30 Torr, and in the case of such a low pressure, the use of the transmission window 7 is inevitable.
上記のような従来の大気中におけるレーザ加工
装置においては、レンズを保護するためのセンタ
ガスと被加工物からの蒸発物質とレーザビームと
の相互作用によるプラズマの発生によつて被加工
物に到達するレーザビームを弱めたり、ピンホー
ルを形成する問題点があつた。
In the conventional atmospheric laser processing equipment as described above, plasma is generated by the interaction between the center gas for protecting the lens, evaporated matter from the workpiece, and the laser beam, which reaches the workpiece. There were problems with weakening the laser beam and forming pinholes.
又単なる真空容器中におけるレーザ加工装置に
おいては、レーザ加工によつて被加工物から発生
する蒸発物質がレーザ透過窓を汚染してレーザビ
ームを弱めて加工能率を低下したり、この汚染に
よつてレーザ透過窓に熱歪を生じ破損の原因とな
つていた。 In addition, in a laser processing device that is simply installed in a vacuum container, vaporized substances generated from the workpiece during laser processing may contaminate the laser transmission window, weakening the laser beam and reducing processing efficiency. Thermal distortion occurred in the laser transmission window, causing damage.
この発明は上記のような問題点を解決するため
になされたもので、真空加工するに際して透過窓
が被加工物からの蒸着物質によつて汚染されず、
能率的な加工が出来るようにする。 This invention was made in order to solve the above-mentioned problems, and the transmission window is not contaminated by vapor deposited substances from the workpiece during vacuum processing.
To enable efficient processing.
この発明は上記のような問題を解決するために
なされたもので、真空ポンプが接続された容器
と、この容器のレーザビーム透過窓の内側に、内
径に凹凸を有するビームガイドとを設けたもので
ある。
This invention was made to solve the above-mentioned problems, and includes a container connected to a vacuum pump and a beam guide having an uneven inner diameter inside a laser beam transmission window of the container. It is.
この発明においては、レーザビームの透過窓を
有する真空加工室(耐圧容器)内に被加工物を挿
入し、上記の透過窓と被加工物の間に内径に凹凸
を有するビームガイドを設け、レーザビームを照
射することによつて被加工物に加工を加える。必
要に応じてレーザビームと被加工物とを相対的に
移動させれば加工の形状を変えることができる。
又加工によつて発生するプラズマ蒸気は真空室内
に拡散して排除されると共に内径側に凹凸を有す
るビームガイドによつて透過窓に到達することは
制約を受けるからレーザビームは進行を妨げられ
ることなく加工を継続出来る。
In this invention, a workpiece is inserted into a vacuum processing chamber (pressure vessel) having a laser beam transmission window, and a beam guide having an uneven inner diameter is provided between the transmission window and the workpiece, and the laser beam is transmitted through the workpiece. Processing is applied to the workpiece by irradiating the beam. The shape to be processed can be changed by moving the laser beam and the workpiece relative to each other as necessary.
In addition, the plasma vapor generated during processing is diffused into the vacuum chamber and removed, and the laser beam is prevented from advancing because it is restricted from reaching the transmission window by the beam guide, which has irregularities on the inner diameter side. Processing can be continued without any problems.
第1図はこの発明の一実施例を示すレーザ加工
装置の断面図である。図において、1はレーザビ
ーム、8は600〔Torr〕以下の真空加工室、3は
真空加工室8の内部にあつて、この真空加工室8
に設けた透過窓7を通過したレーザビーム1が照
射される被加工物、5は被加工物3から発生した
蒸発物質、9はこの被加工物3と上記透過窓7と
の間にあつて、かつこの透過窓7側に接触して設
けた内面に凹凸を有するビームガイド、13はこ
のビームガイド9の上方斜め方向から内径側に向
けて導入している蒸着防止用ガス(He、Ar、
N2、CO2、空気など)、15は被加工物3に対す
るレーザビーム1の移動方向、真空ポンプは真空
加工室8に接続しているが省略してある。
FIG. 1 is a sectional view of a laser processing apparatus showing an embodiment of the present invention. In the figure, 1 is a laser beam, 8 is a vacuum processing chamber of 600 [Torr] or less, and 3 is inside the vacuum processing chamber 8.
A workpiece is irradiated with the laser beam 1 that has passed through a transmission window 7 provided in the workpiece, 5 is an evaporated substance generated from the workpiece 3, and 9 is between the workpiece 3 and the transmission window 7. , and a beam guide 13 having an uneven inner surface, which is provided in contact with the transmission window 7 side, and 13 is a vapor deposition prevention gas (He, Ar,
(N 2 , CO 2 , air, etc.), 15 is the moving direction of the laser beam 1 with respect to the workpiece 3, and a vacuum pump is connected to the vacuum processing chamber 8, but is omitted.
次にこの装置の動作について説明する。図のよ
うに設置した被加工物3の周囲を空気の大気圧と
してレーザビーム1を照射すると、被加工物3は
溶解し始める。レーザビーム1のパワー密度は
106〜107〔Watt/cm2〕と高いので、被加工物3か
らは蒸発物質5が発生する。今ビームガイド9が
無ければ、この蒸発物質5は透過窓7の内側を汚
染して破損の原因になるが、図のように内径に凹
凸を有するビームガイド9が取付けられている
と、この蒸気はビームガイド9の外面に付着する
が、その内径側には侵入しにくい。しかし大気圧
中では、ついにはその頂部にある透過窓7を汚染
して光線を弱めたり窓の破損の原因となる。又こ
の様な状態では被加工物3のビード17の内部に
はガスを巻き込んでミクロポロシテイ16(小さ
な空孔)を発生する。そこで、蒸着防止用ガス1
3を上方よりビームガイド9の内径側に流せば、
蒸発物質5は上記蒸着防止用ガス13の流れとビ
ームガイド9に設けた凹凸の作用によつて下方に
押し返され透過窓を汚染することは無くなるが、
蒸発物質5の濃度が高いので、散乱又は吸収によ
つて被加工物3に達しようとするレーザビーム1
を弱める。 Next, the operation of this device will be explained. When the laser beam 1 is irradiated around the workpiece 3 installed as shown in the figure with atmospheric pressure of air, the workpiece 3 begins to melt. The power density of laser beam 1 is
Since it is as high as 10 6 to 10 7 [Watt/cm 2 ], evaporated substances 5 are generated from the workpiece 3. If there is no beam guide 9, this evaporated material 5 will contaminate the inside of the transmission window 7 and cause damage, but if the beam guide 9 with the uneven inner diameter is installed as shown in the figure, this vapor Although it adheres to the outer surface of the beam guide 9, it is difficult to penetrate into its inner diameter side. However, under atmospheric pressure, it will eventually contaminate the transmission window 7 at the top, weakening the light beam and causing damage to the window. In addition, in such a state, gas is drawn into the inside of the bead 17 of the workpiece 3 and microporosity 16 (small pores) is generated. Therefore, vapor deposition prevention gas 1
3 flows from above to the inner diameter side of the beam guide 9,
The evaporated substance 5 is pushed back downward by the flow of the vapor deposition prevention gas 13 and the unevenness provided on the beam guide 9, and no longer contaminates the transmission window.
Since the concentration of the evaporated substance 5 is high, the laser beam 1 tries to reach the workpiece 3 by scattering or absorption.
weaken.
そこで真空ポンプ(図示せず)によつて真空加
工室8内を600〔Torr〕以下に吸引すれば、極め
て顕著に被加工物3の溶け込み深さを増す(第5
図a,b参照)ことが出来る。第8図bには上記
真空加工室8内の圧力を1〔Torr〕にした場合に
ついて示してある。この図でも明らかなように溶
け込みの断面にはピンホール16は認められな
い。 Therefore, if the inside of the vacuum processing chamber 8 is sucked to 600 [Torr] or less using a vacuum pump (not shown), the penetration depth of the workpiece 3 will be increased extremely (5th
(see Figures a and b). FIG. 8b shows a case where the pressure inside the vacuum processing chamber 8 is set to 1 [Torr]. As is clear from this figure, no pinhole 16 is observed in the cross section of the penetration.
第2図a,b,c及び第3図a,b,c,d
は、この発明に係るビームガイド9の多様な形状
を示す断面図である。第2図a〜cにおいては角
形の凹部11を1〜3個のもの、若しくは先細ノ
ズル状のもの、又は円弧状の凹凸を付けたものを
示したがいずれも有効である。 Figure 2 a, b, c and Figure 3 a, b, c, d
2A and 2B are cross-sectional views showing various shapes of the beam guide 9 according to the present invention. In FIGS. 2a to 2c, one to three rectangular recesses 11, a tapered nozzle-shaped recess, or an arc-shaped recess 11 are shown, but any of them are effective.
第3図a〜dには、上記のような凹凸部の他に
蒸発物質排出孔14を側壁に貫通して多数設けて
も有効である例を示した。蒸発物質排出孔14は
ビームガイド内部凹部11に設けても、ビームガ
イド内部凸部10,12に設けても良いことを示
す。 3a to 3d show an example in which it is effective to provide a large number of evaporated substance discharge holes 14 penetrating the side wall in addition to the above-mentioned uneven portions. It is shown that the evaporated substance discharge hole 14 may be provided in the beam guide internal concave portion 11 or in the beam guide internal convex portions 10 and 12.
又上記第2〜3図に示したビームガイド9には
いずれも蒸着防止用ガス13の導入路がつけてあ
り、材質にはSUS304ステンレス鋼製の円筒ノズ
ルを用い、この外形は全長220〔mm〕×小内径40
〔mm〕×大内径65〔mm〕であつた。 In addition, the beam guide 9 shown in Figures 2 and 3 above is all equipped with an introduction path for the vapor deposition prevention gas 13, and a cylindrical nozzle made of SUS304 stainless steel is used. 〕×Small inner diameter 40
[mm] x large inner diameter 65 [mm].
又第1図による実施例において、真空加工室8
の排気はロータリポンプ及び拡散ポンプ(図示せ
ず)で行つた。ビームガイド9上方からはHe、
ArまたはN2ガスを吹き込んだ。高真空度領域
(≦10-1Torr)の場合はロータリポンプ及び拡散
ポンプの双方を作動させ、低真空度領域(>
10-1Torr)ではロータリポンプのみを作動させ、
それぞれビームガイドノズル上方からガス吹き込
み量を調整することによつて所定の真空度を得
た。 In the embodiment shown in FIG. 1, the vacuum processing chamber 8
Evacuation was performed using a rotary pump and a diffusion pump (not shown). From above the beam guide 9, He,
Bubbled with Ar or N2 gas. In the high vacuum range (≦10 -1 Torr), both the rotary pump and the diffusion pump are operated, and in the low vacuum range (>
10 -1 Torr), only the rotary pump is operated;
A predetermined degree of vacuum was obtained by adjusting the amount of gas blown from above each beam guide nozzle.
被加工物3には板厚10mmのSUS304鋼を用い、
炭酸ガスレーザパワーを5kW一定とし、真空加
工室8の真空度を1×10-3〜760Torr、溶接速度
を0.25〜5m/minの間で変化させて溶接を行つ
た。溶接中蒸発物質5の発生量は圧力が低い程、
溶接速度が遅い程多くなる。比較のために第4図
に示すストレート形状のビームガイド9(内径40
mm、長さ220mm)を用いて実験を行つたが、例え
ば雰囲気圧力1Torr、溶接速度0.5m/min、レー
ザビーム1のパワー5kWの条件で溶接するとわ
ずか溶接開始10秒後にKClの透過窓7が破損し
た。この場合、透過窓7には多量の蒸発物質5が
蒸着し、透過窓7はほとんど不透明の状態であつ
た。 Workpiece 3 is made of SUS304 steel with a plate thickness of 10 mm.
Welding was carried out by keeping the carbon dioxide laser power constant at 5 kW, varying the degree of vacuum in the vacuum processing chamber 8 from 1×10 −3 to 760 Torr, and varying the welding speed from 0.25 to 5 m/min. The lower the pressure, the more the amount of evaporated substances 5 generated during welding.
The lower the welding speed, the more the amount. For comparison, a straight-shaped beam guide 9 (inner diameter 40 mm) is shown in Figure 4.
For example, when welding under the conditions of an atmospheric pressure of 1 Torr, a welding speed of 0.5 m/min, and a power of laser beam 1 of 5 kW, the KCl transmission window 7 appeared just 10 seconds after welding started. Damaged. In this case, a large amount of evaporated substance 5 was deposited on the transmission window 7, and the transmission window 7 was almost opaque.
一方、本発明のビームガイド9を用いた場合に
は、最も蒸発物質5の発生が激しくなる雰囲気圧
力1×10-3Torr、溶接速度0.25m/min、パワー
5kWの条件下においてレーザ溶接を15分間連続
して行つても、レーザの透過窓への金属蒸気の蒸
着は全く認められず本発明の効果が絶大なること
が確認された。 On the other hand, when the beam guide 9 of the present invention is used, the atmospheric pressure is 1×10 -3 Torr, the welding speed is 0.25 m/min, and the power is
Even when laser welding was performed continuously for 15 minutes under the condition of 5 kW, no metal vapor was deposited on the laser transmission window, confirming that the present invention is highly effective.
以上の如く、内径に凹凸状に不連続的に変化す
るビームガイド9を用いることによつて、レーザ
の透過窓7への蒸発物質5の蒸着を防止できるこ
とが明らかになつた。 As described above, it has been revealed that by using the beam guide 9 whose inner diameter changes discontinuously in an uneven manner, it is possible to prevent the vaporized substance 5 from being deposited on the laser transmission window 7.
なおビームガイド9には円筒形のものを用いた
が、矩形、6角形等何れの形状においても不連続
的にガイド内側の径または大きさを変化させるこ
とにより、同様な蒸着防止効果を期待できること
は言うまでもない。 Although a cylindrical beam guide 9 was used, the same vapor deposition prevention effect can be expected by discontinuously changing the diameter or size of the inside of the guide in any shape such as rectangular or hexagonal. Needless to say.
また実施例ではレーザ溶接を取り上げたがクラ
ツデイング、熱処理など表層処理加工においても
同様に蒸着防止効果のあることを確認してあり、
真空雰囲気中で行うレーザ加工全てに本発明を有
効に活用できる。特に、圧力600〔Torr〕以下の
真空雰囲気下で行う加工において本発明の効果は
顕著である。 In addition, although laser welding was taken up in the example, it has been confirmed that surface treatment processes such as cladding and heat treatment have the same vapor deposition prevention effect.
The present invention can be effectively utilized for all laser processing performed in a vacuum atmosphere. In particular, the effects of the present invention are remarkable in processing performed in a vacuum atmosphere at a pressure of 600 Torr or less.
更にこの発明に係る装置の透過窓7の材質には
ZnSe、KCl又はGeの板を用いたことを記してお
く。 Furthermore, the material of the transmission window 7 of the device according to the present invention includes
It should be noted that ZnSe, KCl or Ge plates were used.
次に第5図a,bの線図の解説を追記する。第
5図bに溶込み深さに及ぼす溶接雰囲気の圧力の
影響を示す。大気圧下の溶接においては低溶接速
度域で溶込み深さの飽和現象が認められるが、溶
接雰囲気の圧力が350Torr以下では溶込みは飽和
せず溶接速度が低下するにつれて増大する。参考
までに電子ビーム溶接の溶込み深さも併せて示す
が、真空雰囲気下でのレーザ溶接の溶込み深さは
電子ビーム溶接のそれに極めて近くなる。大気圧
下の溶接で低溶接速度域で溶込みが飽和するのは
多量のプラズマ生成によるものである。 Next, we will add an explanation of the diagrams in Figures 5a and 5b. FIG. 5b shows the influence of the pressure of the welding atmosphere on the penetration depth. In welding under atmospheric pressure, saturation of penetration depth is observed in the low welding speed range, but when the pressure of the welding atmosphere is below 350 Torr, penetration is not saturated and increases as the welding speed decreases. For reference, the penetration depth of electron beam welding is also shown, but the penetration depth of laser welding in a vacuum atmosphere is extremely close to that of electron beam welding. The reason that penetration becomes saturated in the low welding speed range during welding under atmospheric pressure is due to the generation of a large amount of plasma.
以上のようにこの発明に係るビームガイドなど
を用いた真空雰囲気下でのレーザ溶接において
は、溶込み深さの増大及びビード形状の向上とそ
れに伴う耐ポロシテイ性の著しい向上が達成され
るとともに、レーザの透過窓の汚染進行を長期間
抑制するから、従来困難視されていた真空雰囲気
下でのレーザ加工を長時間にわたつて安定して行
うことができる。
As described above, in laser welding in a vacuum atmosphere using the beam guide or the like according to the present invention, an increase in penetration depth and an improvement in bead shape, as well as a significant improvement in porosity resistance due to this, are achieved. Since the progress of contamination of the laser transmission window is suppressed over a long period of time, laser processing in a vacuum atmosphere, which has been considered difficult in the past, can be performed stably over a long period of time.
第1図はこの発明の一実施例を示すレーザ加工
装置の断面図、第2図a,b,cはこの発明の他
の実施例のビームガイドの構成を示す断面図、第
3図a,b,c,dはこの発明の別の実施例で、
排出口のあるビームガイドの構成を示す断面図、
第4図はストレート形状のビームガイドの断面
図、第5図a,bは溶込み深さと、溶接速度と、
雰囲気圧の関係を示す線図、第6図は従来の大気
中でのレーザ溶接方法を示す断面図、第7図は従
来の真空加工室内でのレーザ溶接方法を示す断面
図、第8図a,bはレーザ溶接部のビードの横断
面図で、aは大気圧下、bは真空下(1Torr)で
の横断面図である。
図において、1はレーザビーム、3は被加工
物、5は蒸発物質、7は透過窓、8は真空加工
室、9はビームガイド、13は蒸着防止用ガスで
ある。なお各図中、同一符号は同一又は相当部分
を示す。
FIG. 1 is a sectional view of a laser processing device showing one embodiment of the present invention, FIGS. b, c, d are other embodiments of this invention,
A cross-sectional view showing the configuration of a beam guide with an outlet,
Figure 4 is a cross-sectional view of a straight beam guide, Figures 5a and b are penetration depths, welding speeds,
Diagram showing the relationship between atmospheric pressures, Figure 6 is a cross-sectional view showing a conventional laser welding method in the atmosphere, Figure 7 is a cross-sectional view showing a conventional laser welding method in a vacuum processing chamber, and Figure 8 a. , b are cross-sectional views of the bead of the laser welded part, a is a cross-sectional view under atmospheric pressure, and b is a cross-sectional view under vacuum (1 Torr). In the figure, 1 is a laser beam, 3 is a workpiece, 5 is an evaporated substance, 7 is a transmission window, 8 is a vacuum processing chamber, 9 is a beam guide, and 13 is a vapor deposition prevention gas. In each figure, the same reference numerals indicate the same or corresponding parts.
Claims (1)
空容器のレーザビーム透過窓の内側に、内径に凹
凸を有するビームガイドを設けたことを特徴とす
るレーザ加工装置。 2 真空容器内の圧力は600〔Torr〕以下である
ことを特徴とする特許請求の範囲第1項記載のレ
ーザ加工装置。 3 ビームガイドは側壁に蒸発物質排出口を設
け、このビームガイドの一端側から蒸着防止用ガ
スを導入する構成であることを特徴とする特許請
求範囲第1項記載のレーザ加工装置。 4 蒸着防止用ガスはHe、Ar、N2、CO2、空気
などのガスであることを特徴とする特許請求範囲
第3項記載のレーザ加工装置。[Scope of Claims] 1. A laser processing device comprising: a vacuum vessel connected to a vacuum pump; and a beam guide having an uneven inner diameter provided inside a laser beam transmission window of the vacuum vessel. 2. The laser processing apparatus according to claim 1, wherein the pressure inside the vacuum container is 600 [Torr] or less. 3. The laser processing apparatus according to claim 1, wherein the beam guide is configured to have an evaporated substance exhaust port on a side wall, and a vapor deposition prevention gas is introduced from one end of the beam guide. 4. The laser processing apparatus according to claim 3, wherein the vapor deposition prevention gas is a gas such as He, Ar, N2 , CO2 , or air.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60247914A JPS62107891A (en) | 1985-11-07 | 1985-11-07 | Laser beam machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60247914A JPS62107891A (en) | 1985-11-07 | 1985-11-07 | Laser beam machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62107891A JPS62107891A (en) | 1987-05-19 |
JPH0242307B2 true JPH0242307B2 (en) | 1990-09-21 |
Family
ID=17170428
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60247914A Granted JPS62107891A (en) | 1985-11-07 | 1985-11-07 | Laser beam machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62107891A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4979181A (en) * | 1989-04-28 | 1990-12-18 | Nissan Motor Co., Ltd. | Vacuum laser irradiating apparatus |
JPH0838746A (en) * | 1994-07-27 | 1996-02-13 | Taiyo Kogyo Kk | Direction control device for radio control motorcycle toy |
US6024627A (en) * | 1997-08-19 | 2000-02-15 | Tilbor; Neil | Toy vehicle with gyroscopic action rear wheels |
JP7168430B2 (en) | 2018-12-04 | 2022-11-09 | 株式会社アイシン福井 | laser welding equipment |
JP2020089898A (en) * | 2018-12-04 | 2020-06-11 | アイシン・エィ・ダブリュ工業株式会社 | Laser welding device |
JP7239307B2 (en) * | 2018-12-04 | 2023-03-14 | 株式会社アイシン福井 | laser welding equipment |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60115391A (en) * | 1983-11-25 | 1985-06-21 | Nuclear Fuel Co Ltd | Welding device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59153089U (en) * | 1983-03-31 | 1984-10-13 | 三菱電機株式会社 | Laser beam processing equipment |
-
1985
- 1985-11-07 JP JP60247914A patent/JPS62107891A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60115391A (en) * | 1983-11-25 | 1985-06-21 | Nuclear Fuel Co Ltd | Welding device |
Also Published As
Publication number | Publication date |
---|---|
JPS62107891A (en) | 1987-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100445836B1 (en) | A laser welding method and a laser weleding apparatus | |
US6056827A (en) | Laser decontamination method | |
US7692115B2 (en) | Laser processing device, laser processing head and laser processing method | |
Jin et al. | Multiple reflections and Fresnel absorption in an actual 3D keyhole during deep penetration laser welding | |
KR950024836A (en) | Laser processing method and apparatus thereof | |
US20090134132A1 (en) | Laser Beam Welding Method with a Metal Vapour Capillary Formation Control | |
CA2091512A1 (en) | Laser irradiation nozzle and laser apparatus using the same | |
JPH0679484A (en) | Laser welding method | |
FR2600568A1 (en) | IMPROVEMENTS IN METHODS OF CUTTING LASER METAL PARTS | |
JPH0242307B2 (en) | ||
JP2004188451A (en) | Device and method for laser beam machining | |
WO2020116513A1 (en) | Laser welding device | |
JP2009166080A (en) | Laser beam welding method | |
EP1003624A1 (en) | Method of laser beam welding of zinc-coated steel sheet | |
WO2020116515A1 (en) | Laser welding device | |
JP2015107514A (en) | Laser welding method and laser welding device | |
Jovic et al. | Laser welding with side-gas application and its impact on spatter formation and weld seam shape | |
JP3596326B2 (en) | Welding method of aluminum alloy | |
JPH042353B2 (en) | ||
JPH04182093A (en) | Laser beam machining method | |
JPH0242308B2 (en) | ||
JP2005199287A (en) | Weld bead structure and welding method | |
JPS63112088A (en) | Laser beam machining method | |
JP2005021932A (en) | Laser cutting method, and laser cutting device | |
JP2015107515A (en) | Laser welding method and laser welding device |