JPH024169A - Regeneration type airconditioner - Google Patents

Regeneration type airconditioner

Info

Publication number
JPH024169A
JPH024169A JP15429188A JP15429188A JPH024169A JP H024169 A JPH024169 A JP H024169A JP 15429188 A JP15429188 A JP 15429188A JP 15429188 A JP15429188 A JP 15429188A JP H024169 A JPH024169 A JP H024169A
Authority
JP
Japan
Prior art keywords
water
cooling
heat
condenser
heat storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15429188A
Other languages
Japanese (ja)
Inventor
Nobuhide Yoshida
吉田 信英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP15429188A priority Critical patent/JPH024169A/en
Publication of JPH024169A publication Critical patent/JPH024169A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To improve an application efficiency of stored cooling heat and hence reduce a total electric service power by switching the supply of cooling water to a condenser between a cooling device and a regeneration tank as required, overcooling refrigerant condensed by a condenser by stored cooling heat in a heat storage tank and controlling an application ratio of cooling water to said condenser based on said cooling device and regeneration tank, responding with operation conditions so that it may be variable. CONSTITUTION:During ordinary cooling operation, a first circulation mechanism 31 is turned in operating state. Refrigerant is condensed in a condenser 2 due to the heat exchange with cooling water cooled by a cooling device 15, and evaporated by an evaporator, thereby cooling the interior of a room. When it is necessary to increase the condensation capacity of the refrigerant in the condenser 2, a switch over means 33 turns a second circulation mechanism 32 in operating state so that the pre-stored and cool-heated water in a heat storage tank 9 may circulate to the condenser 2. When the condensation capacity is also called for, an overcooling means 34 is adapted to overcool the cooling medium condensed in the condenser 2. Furthermore, a control means 35 controls the supply ratio of cooling water to the condenser 2 by the first circulation mechanism and the second circulation mechanism 32 so that it may be variable.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は水冷式凝縮器と蓄熱槽とを備えた蓄熱式空気調
和装置に係り、特に蓄熱槽内の蓄冷熱の利用効率の向上
対策に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a regenerative air conditioner equipped with a water-cooled condenser and a heat storage tank, and particularly relates to measures for improving the utilization efficiency of cold heat stored in the heat storage tank. .

(従来の技術) 従来より、例えば実開昭55−94661号公報に開示
される如く、蓄熱槽を備えた空気調和装置において、蓄
熱槽に2つの熱交換コイルを配置して、夜間等電力の安
価な時に、一方の熱交換コイルを蒸発器として使用する
ことにより蓄熱槽内の蓄熱媒体に冷熱を付与して蓄冷熱
しておき、冷房運転時には、凝縮器で液化凝縮された冷
媒を他方のコイルでさらに過冷却することにより、室内
熱交換器における冷房能力を増大させて、トータルとし
ての運転効率を高め、使用電力を低減しようとするもの
は知られている。
(Prior Art) Conventionally, as disclosed in, for example, Japanese Utility Model Application Publication No. 55-94661, in an air conditioner equipped with a heat storage tank, two heat exchange coils are arranged in the heat storage tank to reduce the power consumption during nighttime, etc. When it is inexpensive, one heat exchange coil can be used as an evaporator to impart cold heat to the heat storage medium in the heat storage tank and store cold heat, and during cooling operation, the refrigerant that has been liquefied and condensed in the condenser is transferred to the other coil. It is known that the cooling capacity of the indoor heat exchanger is increased by further supercooling, thereby increasing the total operating efficiency and reducing power consumption.

(発明が解決しようとする課題) しかしながら、上記従来のものを利用して蓄冷熱回収冷
房運転を行う場合、蓄熱槽内に予め蓄えられた冷熱が冷
媒の過冷却用にしか用いられないために、次のような問
題がある。
(Problem to be Solved by the Invention) However, when performing cold storage heat recovery cooling operation using the above conventional system, the cold heat stored in advance in the heat storage tank is only used for supercooling the refrigerant. , there are the following problems.

すなわち、冷房負荷の低い日には蓄熱槽内の蓄冷熱を全
て使い切れず、蓄冷熱を残したまま次の追加蓄熱を行う
ことになるために、結果的に蓄冷熱を長時間蓄えている
こととなって、その間の熱損失が大きい。また、蓄熱槽
内を氷化するいわゆる潜熱を利用することにより高い蓄
冷熱効果を得ることができるが、その場合、上記従来の
ようなものでは、冷房運転の終了時に氷が残存するので
、不均一に残った氷の存在する蓄熱槽を再び蓄冷熱運転
により製氷しようとすると、蓄熱槽、熱交換コイル等に
無理な応力が作用して破損を生ずる虞れもある。
In other words, on days when the cooling load is low, all the stored cold heat in the heat storage tank is not used up, and the next additional heat storage is carried out with the stored cold heat left behind, resulting in the stored cold heat being stored for a long time. Therefore, the heat loss during that time is large. In addition, a high cold storage heat effect can be obtained by using so-called latent heat that freezes inside the heat storage tank, but in that case, with the conventional type described above, ice remains at the end of the cooling operation, so it is not possible to If an attempt is made to make ice again by cold storage heat operation in a heat storage tank in which uniformly remaining ice exists, there is a risk that unreasonable stress will be applied to the heat storage tank, heat exchange coil, etc., resulting in damage.

本発明は斯かる点に鑑みてなされたものであり、第1の
目的は、水冷式の凝縮器において蓄熱槽内の蓄冷熱を凝
縮源として利用しつる手段を講することにより、蓄冷熱
の利用効率を高め、総使用電力の低減を図ることにある
The present invention has been made in view of the above, and its first object is to utilize the stored cold heat in the heat storage tank as a condensation source in a water-cooled condenser, thereby reducing the amount of stored cold heat. The aim is to increase usage efficiency and reduce total power consumption.

また、第2の目的は、蓄冷熱を凝縮源のみならず凝縮冷
媒の過冷却用としても併用することにより、蓄冷熱の利
用法を拡大して、さらに総使用電力の低減を図ることに
ある。
The second purpose is to expand the usage of cold storage heat and further reduce the total power consumption by using the stored cold heat not only as a condensation source but also as a subcooling source for condensed refrigerant. .

そして、第3の目的は、凝縮器で蓄熱槽内の蓄冷熱を利
用する際、その利用率を適宜調節することにより、蓄冷
熱の細やかな利用を行って、さらに総使用電力の低減を
図ることにある。
The third purpose is to use the stored cold heat in the heat storage tank in a condenser by adjusting the utilization rate appropriately, thereby making more careful use of the stored cold heat and further reducing the total power consumption. There is a particular thing.

(課題を解決するための手段) 上記目的を達成するため本発明の解決手段は、第1図に
示すように、圧縮機(1)、水冷式凝縮器(2)、減圧
機構(4)および蒸発器(5)を順次接続してなる主冷
媒回路(8)と、蓄熱媒体としての水を内蔵する蓄熱槽
(9)と、該蓄熱槽(9)の水と冷媒との熱交換を行う
熱交換コイル(10)とを備えた蓄熱式空気調和装置を
前提とする。
(Means for Solving the Problems) In order to achieve the above object, the solving means of the present invention includes a compressor (1), a water-cooled condenser (2), a pressure reducing mechanism (4) and A main refrigerant circuit (8) formed by sequentially connecting an evaporator (5), a heat storage tank (9) containing water as a heat storage medium, and heat exchange between the water in the heat storage tank (9) and the refrigerant. The present invention is based on a heat storage type air conditioner equipped with a heat exchange coil (10).

そして、上記凝縮器(2)の冷却水を冷却するための冷
却装置(15)と、該冷却装置(15)と凝縮器(2)
とを冷却水の循環可能に接続する第1循環機構(31)
と、上記蓄熱槽(9)と凝縮器(2)とを蓄熱槽(9)
内の水の循環可能に接続する第2循環機構(32)と、
上記第1循環機構(31)と第2循環機構(32)とに
よる凝縮器(2)への冷却水の供給を択一的に切換える
切換手段(33)とを設けたものである。
and a cooling device (15) for cooling the cooling water of the condenser (2), and the cooling device (15) and the condenser (2).
and a first circulation mechanism (31) that connects the cooling water so that the cooling water can be circulated.
The heat storage tank (9) and the condenser (2) are combined into a heat storage tank (9).
a second circulation mechanism (32) connected to enable circulation of water within;
A switching means (33) is provided for selectively switching the supply of cooling water to the condenser (2) by the first circulation mechanism (31) and the second circulation mechanism (32).

また、第2の解決手段は、第3図に示すように、上記第
1の解決手段と同様の蓄熱式空気調和装置を前提とし、
上記凝縮器(2)の冷却水を冷却するための冷却装置(
15)と、該冷却装置(15)と凝縮器(2)とを冷却
水の循環可能に接続する第1循環機構(31)と、上記
蓄熱槽(9)と凝縮器(2)とを蓄熱槽(9)内の水の
循環可能に接続する第2循環機構(32)と、上記第1
循環機構(31)と第2循環機構(32)とによる凝縮
器(2)への冷却水の供給を択一的に切換える切換手段
(33)と、上記凝縮器(2)で凝縮された冷媒を蓄熱
槽(9)の水で過冷却する過冷却機構(34)とを設け
たものである。
In addition, as shown in FIG. 3, the second solution is based on a regenerative air conditioner similar to the first solution,
A cooling device for cooling the cooling water of the condenser (2) (
15), a first circulation mechanism (31) that connects the cooling device (15) and the condenser (2) so that cooling water can be circulated, and a heat storage tank (9) and the condenser (2) that connect the heat storage tank (9) and the condenser (2) to each other for heat storage. a second circulation mechanism (32) connected to enable circulation of water in the tank (9);
a switching means (33) for selectively switching the supply of cooling water to the condenser (2) by the circulation mechanism (31) and the second circulation mechanism (32); and a refrigerant condensed in the condenser (2). A supercooling mechanism (34) is provided for supercooling the water in the heat storage tank (9).

さらに、第3の解決手段は、第8図に示すように、上記
第1の解決手段と同様の蓄熱式空気調和装置を前提とし
、上記凝縮器(2)の冷却水を冷却するための冷却装置
(15)と、該冷却装置(15)と凝縮器(2)とを冷
却水の循環可能に接続する第1循環機構(31)と、上
記蓄熱槽(9)と凝縮器(2)とを蓄熱槽(9)内の水
の循環可能に接続する第2循環機構(32)と、上記第
1循環機構(31)と第2循環機構(32)とによる凝
縮器(2)への冷却水の供給比率可変に調節する調節手
段(35)とを設けたものである。
Furthermore, as shown in FIG. 8, the third solution is based on a regenerative air conditioner similar to the first solution, and has a cooling system for cooling the cooling water of the condenser (2). A device (15), a first circulation mechanism (31) that connects the cooling device (15) and the condenser (2) so that cooling water can be circulated, and the heat storage tank (9) and the condenser (2). cooling to the condenser (2) by the second circulation mechanism (32) that connects the water in the heat storage tank (9) so that the water can be circulated, and the first circulation mechanism (31) and the second circulation mechanism (32). A control means (35) for variably adjusting the water supply ratio is provided.

(作用) 以上の構成により、請求項(1)の発明では、通常の冷
房運転時、第1循環機構(31)が作動状態となって、
凝縮器(2)では、冷却装置(15)で冷却された冷却
水との熱交換により冷媒が凝縮されて、蒸発器(5)で
蒸発することにより室内の冷房が行われる。
(Function) With the above configuration, in the invention of claim (1), during normal cooling operation, the first circulation mechanism (31) is in the operating state,
In the condenser (2), the refrigerant is condensed by heat exchange with the cooling water cooled by the cooling device (15), and is evaporated in the evaporator (5), thereby cooling the room.

そのとき、室内の空調負荷が増大した場合、ピークカッ
ト要求がある場合等、凝縮器(2)における冷媒の凝縮
能力を増大する必要がある場合には、切換手段(33)
により、第2循環機構(32)が作動状態となって、蓄
熱槽(9)内の予め蓄冷熱された水が凝縮器(2)に循
環するので、高い凝縮能力で凝縮作用が行われ、能力増
大要求に応えることができる。
At that time, if it is necessary to increase the refrigerant condensing capacity in the condenser (2), such as when the indoor air conditioning load increases or when there is a peak cut request, the switching means (33)
As a result, the second circulation mechanism (32) is activated, and the water stored in the heat storage tank (9) in advance is circulated to the condenser (2), so that a condensing action is performed with a high condensing capacity. Able to meet demands for increased capacity.

また、蓄冷熱のために蓄熱槽(9)内を製氷しておいた
場合、−日の冷房運転で蓄熱槽(9)内の氷が使い切れ
ないようなと舎にも、蓄熱槽(9)の水の蓄冷熱を利用
して凝縮器(2)における凝縮作用が行われ、蓄熱槽(
9)内が全て解氷されるので、蓄熱槽(9)内の再製氷
時における各機器の破損が有効に防止されるとともに、
冷却装置(15)の停止や圧縮機(1)の運転容量の低
減により、総使用電力が低減することになる。
In addition, if ice is made in the heat storage tank (9) to store cold heat, the heat storage tank (9) may The condensation action in the condenser (2) is performed using the stored cold heat of the water, and the heat storage tank (
9) Since all the ice inside the heat storage tank (9) is thawed, damage to each device during re-making of ice inside the heat storage tank (9) is effectively prevented, and
By stopping the cooling device (15) and reducing the operating capacity of the compressor (1), the total power consumption is reduced.

また、請求項(21の発明では、上記請求項(1)の作
用において、凝縮能力の必要時には、第1循環機構(3
1)は作動したままで、凝縮器(2)で凝縮後の冷媒が
過冷却手段(34)により過冷却されるので、能力増大
要求に応えることができるとともに、蓄熱槽(9)の残
氷を使い切るべきときには、切換手段(33)により第
2循環機構(32)が作動状態となる。よって、運転条
件の状態に応じた蓄冷熱の利用法の切換により、装置の
破損が有効に防止されるとともに、総使用電力低減効果
がさらに向上することになる。
Further, in the invention of claim (21), in the operation of claim (1), when the condensing capacity is required, the first circulation mechanism (3
1) remains in operation, and the refrigerant after condensing in the condenser (2) is supercooled by the subcooling means (34), so it is possible to meet the demand for increased capacity, and to reduce the amount of ice remaining in the heat storage tank (9). When the amount should be used up, the second circulation mechanism (32) is activated by the switching means (33). Therefore, by switching the usage of the stored cold heat according to the operating conditions, damage to the device can be effectively prevented, and the effect of reducing the total power consumption can be further improved.

さらに、請求項(3)の発明では、調節手段(35)に
より、第1循環機構(31)と第2循環機構(32)に
よる凝縮器(2)への冷却水の供給比率が可変に調節さ
れるので、冷房運転時、冷却装置(15)の冷却水温度
の上昇等により凝縮器(2)の凝縮能力が不足したとき
には、第2循環機構(32)側から低温に蓄冷熱された
水が凝縮器(2)に多く供給され、所定の凝縮能力増大
要求に応えるとともに、蓄熱槽(9)の残氷解消、ピー
クカット等、上記請求項(1)の発明と同様の作用がよ
り細やかに行われる。よって、装置の破損が有効に防止
されるとともに、総使用電力の低減効果がさらに向上す
ることになる。
Furthermore, in the invention of claim (3), the ratio of cooling water supplied to the condenser (2) by the first circulation mechanism (31) and the second circulation mechanism (32) is variably adjusted by the adjustment means (35). Therefore, during cooling operation, when the condensing capacity of the condenser (2) is insufficient due to an increase in the temperature of the cooling water in the cooling device (15), the water that has been stored as cold heat at a low temperature is transferred from the second circulation mechanism (32) side. A large amount of water is supplied to the condenser (2) to meet a predetermined request for increased condensing capacity, and the same effects as the invention of claim (1) above, such as eliminating residual ice in the heat storage tank (9) and cutting peaks, are performed in a more detailed manner. It will be held on. Therefore, damage to the device is effectively prevented, and the effect of reducing total power consumption is further improved.

(実施例) 以下、本発明の実施例について、図面に基づき説明する
(Example) Hereinafter, an example of the present invention will be described based on the drawings.

第1図は請求項(1)の発明に係る第1実施例の空気調
和装置の全体構成を示し、圧縮機(1)と、水冷式凝縮
器としての熱源側熱交換器(2)と、第1電磁開閉弁(
3)と、冷媒の減圧を行う減圧機構としての第1自動膨
張弁(4)と、蒸発器としての負荷側熱交換器(5)と
が配置されており、上記各機器(1)〜(5)は冷媒配
管(7)により冷媒の流通可能に順次接続されて、熱源
側熱交換器(2)で室外空気との熱交換により付与され
た冷熱を負荷側熱交換器(5)で室内空気へ移動させる
冷房専用の主冷媒回路(8)が構成されている。 また
、蓄熱媒体として水を内蔵する蓄熱槽(9)が設置され
ており、該蓄熱槽(9)には、槽内の水と冷媒との熱交
換を行うための熱交換コイルとしての蓄熱コイル(10
)が配置されている。そして、上記主冷媒回路(8)の
液管(7a)とガス管(7b)との間は、第1バイパス
路(11)により冷媒のバイパス可能に接続されていて
、該第1バイパス路(11)には、第2電磁開閉弁(1
2)と、蓄熱運転時に冷媒を減圧するための第2自動膨
張弁(13)と、上記蓄熱槽(9)に設けられた蓄熱コ
イル(10)とが液管(7a)側から順に介設されてお
り、冷房用蓄熱運転時、上記蓄熱コイル(10)で冷媒
との熱交換により蓄熱槽(9)の蓄熱媒体たる水に冷熱
を付与するようになされている。
FIG. 1 shows the overall configuration of an air conditioner according to a first embodiment of the invention as claimed in claim (1), which includes a compressor (1), a heat source side heat exchanger (2) as a water-cooled condenser, First electromagnetic on-off valve (
3), a first automatic expansion valve (4) as a pressure reduction mechanism that reduces the pressure of the refrigerant, and a load-side heat exchanger (5) as an evaporator, and each of the above-mentioned devices (1) to ( 5) are sequentially connected by refrigerant pipes (7) to allow refrigerant to flow, and the cold heat provided by heat exchange with outdoor air in the heat source side heat exchanger (2) is transferred indoors to the load side heat exchanger (5). A main refrigerant circuit (8) dedicated to cooling that is transferred to the air is configured. Further, a heat storage tank (9) containing water as a heat storage medium is installed, and the heat storage tank (9) includes a heat storage coil as a heat exchange coil for exchanging heat between the water in the tank and the refrigerant. (10
) are placed. The liquid pipe (7a) and the gas pipe (7b) of the main refrigerant circuit (8) are connected by a first bypass path (11) so that the refrigerant can bypass the first bypass path (11). 11) has a second electromagnetic on-off valve (1
2), a second automatic expansion valve (13) for reducing the pressure of the refrigerant during heat storage operation, and a heat storage coil (10) provided in the heat storage tank (9) are interposed in order from the liquid pipe (7a) side. During the cooling heat storage operation, the heat storage coil (10) exchanges heat with the refrigerant to impart cold heat to the water serving as the heat storage medium in the heat storage tank (9).

一方、上記熱源側熱交換器(2)には、その冷却水を冷
却するための冷却装置としてのクーリングタワー(15
)と、該クーリングタワー(15)と熱源側熱交換器(
2)とを冷却水の流通可能に接続する冷却水配管(16
)とが付設されている。
On the other hand, the heat source side heat exchanger (2) has a cooling tower (15
), the cooling tower (15) and the heat source side heat exchanger (
2) and cooling water piping (16
) is attached.

ここで、第2図に詳示するように、上記クーリングタワ
ー(15)は、ケーシング(15a)と、該ケーシング
(15a)内の上部に設置されたファン(15b)と、
ケーシング(15a)最下部に設けられた貯水タンク(
15c)と、ポンプ(15d)を介して上記タンク(1
5c)から上方に水を供給する汲上げ管(15e)と、
該汲上げ管(15e)から供給される水をケーシング(
15a)内で下方に散水するための散水管(15f)と
を備えてなり、上記冷却水配管(16)は、第1ポンプ
(17〕を介して熱源側熱交換器(2)から上方のクー
リングタワー(15)に冷却水を排出する排出管(16
a)と、クーリングタワー(15)から熱源側熱交換器
(2)に冷却水を供給する供給管(16b)と、上記ク
ーリングタワー(15)のケーシング(15a)内の散
水管(15f)直下方でコイル上に垂設された冷却コイ
ル(16c)とからなる。そして、クーリングタワー(
15)の内部で、散水管(15f)で散水された水をフ
ァン(15b)により上方から供給される風の作用で霧
状に気化して、冷却水コイル(16c)中の冷却水と熱
交換させることにより、熱源側熱交換器(2)で冷媒の
暖熱を付与されて暖まった冷却水を再冷却するようにな
されている。上記冷却水配管(16)と第1ポンプ(1
7)により、クーリングタワー(冷却装置)(15)と
熱源側熱交換器(凝縮器)(2)とを冷却水の循環可能
に接続する第1循環機構(31)が構成されている。
Here, as shown in detail in FIG. 2, the cooling tower (15) includes a casing (15a), a fan (15b) installed in the upper part of the casing (15a),
A water storage tank (
15c) and the tank (1) via the pump (15d).
a pumping pipe (15e) that supplies water upward from 5c);
The water supplied from the pumping pipe (15e) is passed through the casing (
The cooling water pipe (16) is provided with a water sprinkler pipe (15f) for spraying water downward in the heat source side heat exchanger (2) via the first pump (17). A discharge pipe (16) that discharges cooling water to the cooling tower (15).
a), a supply pipe (16b) that supplies cooling water from the cooling tower (15) to the heat source side heat exchanger (2), and a water sprinkler pipe (15f) in the casing (15a) of the cooling tower (15) directly below. It consists of a cooling coil (16c) installed vertically above the coil. And cooling tower (
15), the water sprinkled by the water pipe (15f) is vaporized into a mist by the action of the wind supplied from above by the fan (15b), and the cooling water and heat in the cooling water coil (16c) are vaporized. By exchanging the refrigerant, the cooling water that has been warmed by the warm heat of the refrigerant in the heat source side heat exchanger (2) is recooled. The above cooling water pipe (16) and the first pump (1
7) constitutes a first circulation mechanism (31) that connects the cooling tower (cooling device) (15) and the heat source side heat exchanger (condenser) (2) so that cooling water can be circulated.

ここで、本発明の特徴として、上記蓄熱槽(9)と熱源
側熱交換器(2)とは、第2ポンプ(19)を介して、
水配管(18)により蓄熱槽(9)内の蓄熱媒体として
の水の循環可能に接続されていて、冷房運転時、熱源側
熱交換器(2)において、蓄熱槽(9)の水に蓄えた冷
熱で直接冷媒を凝縮できるようになされている。上記水
配管(18)および第2ポンプ(19)により、第2循
環機構(32)が構成されている。
Here, as a feature of the present invention, the heat storage tank (9) and the heat source side heat exchanger (2) are connected via the second pump (19),
Water piping (18) connects the heat storage tank (9) so that water can be circulated as a heat storage medium, and during cooling operation, the water is stored in the heat storage tank (9) in the heat exchanger (2) on the heat source side. This allows the refrigerant to be directly condensed using the cooled heat. The water pipe (18) and the second pump (19) constitute a second circulation mechanism (32).

上記空気調和装置において、蓄熱運転時には、第1電磁
開閉弁(3)が閉じ、第2電磁開閉弁(12)が開いた
状態で運転が行われ、熱源側熱交換器(2)で凝縮され
た冷媒が主冷媒回路(8)から第1バイパス路(11)
側に流れる。そして、tJ2自動膨張弁(13)で減圧
されて、蓄熱槽(9)内の蓄熱コイル(10)で蓄熱媒
体との熱交換により、蓄熱媒体に冷熱を付与しながら蒸
発して圧縮機(1)に戻る。
In the above air conditioner, during heat storage operation, the first electromagnetic on-off valve (3) is closed and the second electromagnetic on-off valve (12) is open, and the heat is condensed in the heat source side heat exchanger (2). The refrigerant is transferred from the main refrigerant circuit (8) to the first bypass path (11).
flows to the side. Then, the pressure is reduced by the tJ2 automatic expansion valve (13), and by heat exchange with the heat storage medium in the heat storage coil (10) in the heat storage tank (9), the heat storage medium is evaporated while imparting cold heat to the compressor (1 ).

一方、蓄冷熱回収冷房運転時には、第1電磁開閉弁(3
)が開き、第2電磁開閉弁(12)が閉じた状態で運転
が行われ、熱源側熱交換器(2)で凝縮された冷媒が第
1バイパス路(11)側に流れることなく、主冷媒回路
(8)を循環する。
On the other hand, during cold storage heat recovery cooling operation, the first electromagnetic on-off valve (3
) is opened and the second electromagnetic shut-off valve (12) is closed, the refrigerant condensed in the heat source side heat exchanger (2) does not flow to the first bypass path (11) side, and the main The refrigerant circulates through the refrigerant circuit (8).

そして、第1自動膨張弁(4)により減圧されて負荷側
熱交換器(5)で室内空気に冷熱を付与しながら蒸発し
て圧縮機(1)に戻る。
Then, the pressure is reduced by the first automatic expansion valve (4), and the air is evaporated while imparting cold heat to the indoor air in the load-side heat exchanger (5), and returned to the compressor (1).

そのとき、室内の空調負荷と蓄熱槽(9)内の残氷状態
とに応じ、蓄熱槽(9)内に氷が十分残存している場合
には、上記第1ポンプ(17)を停止し、第2ポンプ(
19)を運転して第2循環機構(32)を作動させ、蓄
熱槽(9)内の水を熱源側熱交換器(2)に供給する一
方、蓄熱槽(9)内の残氷が殆どないような場合には、
第2ポンプ(19)を停止し、第1ポンプ(17−)を
運転して第1循環機構(31)を作動させ、クーリング
タワー(15)で冷却された冷却水を熱源側熱交換器(
2)に供給するようになされている。
At that time, depending on the indoor air conditioning load and the state of remaining ice in the heat storage tank (9), if enough ice remains in the heat storage tank (9), the first pump (17) is stopped. , second pump (
19) to activate the second circulation mechanism (32) and supply the water in the heat storage tank (9) to the heat source side heat exchanger (2), while making sure that most of the remaining ice in the heat storage tank (9) is If there is no
The second pump (19) is stopped, the first pump (17-) is operated to activate the first circulation mechanism (31), and the cooling water cooled by the cooling tower (15) is transferred to the heat source side heat exchanger (
2).

よって、上記第1ポンプ(17)および第2ポンプ(1
9)は、第1循環機構(31)と第2循環機構(32)
とによる熱源側熱交換器(凝縮器)(2)への冷却水の
供給を択一的に切換える切換手段(33)としての機能
を有するものである。
Therefore, the first pump (17) and the second pump (1
9) is a first circulation mechanism (31) and a second circulation mechanism (32).
It has a function as a switching means (33) for selectively switching the supply of cooling water to the heat source side heat exchanger (condenser) (2).

したがって、上記実施例では、主冷媒回路(8)の熱源
側熱交換器(2)に直接蓄熱槽(9)の水が循環可能に
なされているので、第2循環機構(32)を作動させる
ことにより、予め蓄熱媒体たる水に蓄えた蓄冷熱でもっ
て高い凝縮効果を得る。すなわち、負荷側熱交換器(5
)における冷房効果の向上を図ることができるのである
。また、ピークカット要求時にも、蓄熱媒体たる水の蓄
冷熱を利用することにより、熱源側熱交換器(2)にお
ける冷媒の凝縮圧力を大きく下げることができ、その分
、圧縮機(1)の運転容量を低減してピークカット要求
に十分対応することができることになる。
Therefore, in the above embodiment, since the water in the heat storage tank (9) can be directly circulated to the heat source side heat exchanger (2) of the main refrigerant circuit (8), the second circulation mechanism (32) is activated. By doing so, a high condensation effect can be obtained by using the cold storage heat stored in water, which is a heat storage medium, in advance. In other words, the load side heat exchanger (5
), it is possible to improve the cooling effect. In addition, even when a peak cut is requested, by using the cold storage heat of water as a heat storage medium, the condensation pressure of the refrigerant in the heat source side heat exchanger (2) can be significantly lowered, and the compressor (1) can be reduced accordingly. This means that the operating capacity can be reduced to fully meet peak cut requests.

そして、例えば、高い蓄冷熱効果を得る目的で、夜間に
蓄熱槽(9)内を製氷運転で氷化しておきその蓄冷熱を
昼間の冷房運転に利用する場合、その日の終りに氷が余
りそうなときには、その状態を温度センサ等で検知して
、クーリングタワー(15)および第1循環機構(31
)を停止し、第2循環機構(32)だけ作動させて、蓄
熱槽(9)内の蓄冷熱を利用した冷房運転に切換えるこ
とにより、蓄熱槽(9)内の解氷を行うことができる。
For example, in order to obtain a high cold storage heat effect, if the inside of the heat storage tank (9) is frozen by ice-making operation at night and the stored cold heat is used for air conditioning operation during the day, there may be excess ice at the end of the day. In such a case, the condition is detected by a temperature sensor, etc., and the cooling tower (15) and the first circulation mechanism (31
), activating only the second circulation mechanism (32), and switching to cooling operation that utilizes the cold heat stored in the heat storage tank (9), it is possible to thaw the ice in the heat storage tank (9). .

すなわち、蓄冷熱を従来のもののように長時間保持せず
にその日のうちに使い切ってしまうことにより、蓄熱槽
(9)内の再製氷時にも蓄熱槽(9)自体や蓄熱コイル
(10)等の機器に無理な応力が作用することなく、そ
れらの破損を有効に防止することができるとともに、使
用電力節減を図ることができるのである。
In other words, by using up the stored cold heat within the same day instead of holding it for a long time as in the conventional case, the heat storage tank (9) itself, the heat storage coil (10), etc. This makes it possible to effectively prevent damage to these devices without applying undue stress to them, and to reduce power consumption.

さらに、直接熱源側熱交換器(2)に蓄熱媒体たる水を
循環させるようにしたことにより、冷房運転と通常の冷
房運転とで冷媒の流れを切換える必要がなく、第1.第
2ポンプ(17)、(19)の作動、停止で対応するこ
とができるので、冷媒状態が安定し、装置全体の信頼性
が向上するという効果もある。
Furthermore, by circulating water as a heat storage medium through the direct heat source side heat exchanger (2), there is no need to switch the flow of refrigerant between cooling operation and normal cooling operation. Since this can be handled by activating and stopping the second pumps (17) and (19), the refrigerant condition is stabilized and the reliability of the entire device is improved.

なお、上記第1実施例において、減圧機構としての第1
.第2自動膨張弁(4)、(13)の代りに、電子式制
御弁等の閉鎖機能を有するものを配置することもでき、
その場合、上記第1.第2電磁開閉弁(4a)、(13
a)は省略することができる。
In addition, in the first embodiment, the first
.. Instead of the second automatic expansion valves (4) and (13), it is also possible to arrange one having a closing function, such as an electronic control valve,
In that case, the above 1. Second electromagnetic on-off valve (4a), (13
a) can be omitted.

また、上記切換手段(33)は第1.第2ポンプ(17
)、(19)の運転・停止で構成するようにしたが、例
えば第1.第2循環機構(31)。
Further, the switching means (33) is the first switching means (33). 2nd pump (17
) and (19), but for example, the first. Second circulation mechanism (31).

(32)を熱源側熱交換器(2)に対して三方弁等で並
列に接続し、その切換えにより構成してもよいことはい
うまでもな−1゜ 次に、本発明の第2実施例について第3図〜第7図に基
づき説明する。第3図は、請求項(2)の発明の実施例
に係る空気調和装置の全体構成を示し、基本的な構成は
上記第1実施例と同様である。
It goes without saying that (32) may be connected in parallel to the heat source side heat exchanger (2) by a three-way valve or the like and configured by switching the three-way valve. An example will be explained based on FIGS. 3 to 7. FIG. 3 shows the overall structure of an air conditioner according to an embodiment of the invention of claim (2), and the basic structure is the same as that of the first embodiment.

ここて、本実施例では、上記第1実施例の第1゜第2循
環機構(31)、(32)を2つの切換え用三方弁(2
0)、(21)で熱源側熱交換器(2)に対して並列に
接続している。つまり、第2循環機構(32)の排出管
(18a)および供給管(18b)にそれぞれ第1.第
2三方弁(20)、(21)が介設され、該2つの三方
弁(20)、  (21)のもう一方のボートに第1循
環機構(31)の冷却水の排出管(18a)と供給管(
18b)とがそれぞれ接続されていて、画工方弁(20
)、(21)の切換えにより第1.第2循環機構(31
)、(32)の熱源側熱交換器(2)への水の供給を択
一的に切換えるようにしている。すなわち、第1.第2
三方弁(20)。
Here, in this embodiment, the first and second circulation mechanisms (31) and (32) of the first embodiment are replaced with two switching three-way valves (2
0) and (21) are connected in parallel to the heat source side heat exchanger (2). That is, the discharge pipe (18a) and the supply pipe (18b) of the second circulation mechanism (32) each have the first. A second three-way valve (20), (21) is interposed, and a cooling water discharge pipe (18a) of the first circulation mechanism (31) is connected to the other boat of the two three-way valves (20), (21). and supply pipe (
18b) are connected to each other, and the painter's valve (20
), (21) causes the first. Second circulation mechanism (31
) and (32), the supply of water to the heat source side heat exchanger (2) is selectively switched. That is, 1st. Second
Three-way valve (20).

(21)により、切換手段(33)が構成されている。(21) constitutes a switching means (33).

なお、この場合、第1ポンプ(17)は不要であって、
第2ポンプ(19)を共通に使用して双方の循環を行う
ようにしている。また、蓄熱槽(9)の出入口近辺の排
出管(18a)と供給管(18b)との間は、バイパス
管(22)により、水のバイパス可能になされていて、
該バイパス管(22)−にそのバイパス量を調節する流
量制御弁(23)が介設されている。
Note that in this case, the first pump (17) is unnecessary,
A second pump (19) is commonly used to circulate both. Further, a bypass pipe (22) is provided between the discharge pipe (18a) and the supply pipe (18b) near the entrance and exit of the heat storage tank (9), so that water can be bypassed.
A flow control valve (23) for adjusting the amount of bypass is provided in the bypass pipe (22).

ここで、請求項(′2Jの発明の特徴として、蓄熱槽(
9)には上記蓄熱コイル(10)に加えて過冷却コイル
(24)が配置されていて、上記第1電磁開閉弁(3)
の前後から第2バイパス路(25)が延び、第3電磁開
閉弁(26)を介して過冷却コイル(24)に接続され
ていて、該過冷却コイル(24)および蓄熱槽(9)に
より、熱源側熱交換器(凝縮器)(2)で凝縮された冷
媒を蓄熱槽(9)の水で過冷却する過冷却機構(34)
が構成されている。
Here, as a feature of the invention of claim ('2J), the heat storage tank (
In addition to the heat storage coil (10), a subcooling coil (24) is arranged in 9), and the first electromagnetic on-off valve (3)
A second bypass path (25) extends from the front and back of and is connected to the subcooling coil (24) via a third electromagnetic on-off valve (26), and is connected to the subcooling coil (24) and the heat storage tank (9). , a supercooling mechanism (34) that supercools the refrigerant condensed in the heat source side heat exchanger (condenser) (2) with water in the heat storage tank (9).
is configured.

そして、第4図〜第7図は空気調和装置の運転モードを
示し、図中実線矢印は冷媒の流れを、破線矢印は蓄熱媒
体たる水および冷却装置(15)への冷却水の流れを示
している。蓄冷熱運転時、第4図に示すように、第1.
第3電磁開閉弁(3)(26)が閉じ、第2電磁開閉弁
(12)が開いた状態で運転が行われ、熱源側熱交換器
(2)で凝縮された冷媒が第1バイパス路(11)に流
れ、蓄熱コイル(10)で蒸発するように循環すること
により、蓄熱槽(9)内の水に冷熱が付与され、所定の
蓄冷熱が行われる。そのとき、熱源側熱交換器(2)の
冷却水については、両三方弁(20)、  (21)が
いずれもクーリングタワー(15)側に切換わり、第1
循環機構(31)が作動して、蓄熱槽(9)の水は熱源
側熱交換器(2)に循環しない。
Figures 4 to 7 show the operating modes of the air conditioner, in which the solid arrows indicate the flow of refrigerant, and the dashed arrows indicate the flow of water as a heat storage medium and cooling water to the cooling device (15). ing. During cold storage heat operation, as shown in FIG.
Operation is performed with the third electromagnetic on-off valve (3) (26) closed and the second electromagnetic on-off valve (12) open, and the refrigerant condensed in the heat source side heat exchanger (2) is transferred to the first bypass path. (11) and is circulated so as to be evaporated in the heat storage coil (10), thereby imparting cold heat to the water in the heat storage tank (9), and predetermined cold heat storage is performed. At that time, both three-way valves (20) and (21) switch to the cooling tower (15) side for the cooling water of the heat source side heat exchanger (2), and the first
The circulation mechanism (31) operates, and the water in the heat storage tank (9) does not circulate to the heat source side heat exchanger (2).

また、通常の冷房運転時には、第5図に示すように、冷
却水の循環は上記と同様の状態で、第1電磁開閉弁(3
)が開き、第2.第3電磁開閉弁(12)、(26)が
閉じた状態で運転が行われ、熱源側熱交換器(2)で凝
縮された冷媒が負荷側熱交換器(5)で蒸発して室内の
冷房を行う。
In addition, during normal cooling operation, as shown in Figure 5, the circulation of cooling water is in the same state as above, and the first electromagnetic on-off valve (3
) opens, and the second. Operation is performed with the third electromagnetic on-off valves (12) and (26) closed, and the refrigerant condensed in the heat source side heat exchanger (2) evaporates in the load side heat exchanger (5) and Cool the room.

そのとき、室内の空調負荷が大きくなると、第6図に示
すように、第1電磁開閉弁(3)を閉じ、第3電磁開閉
弁(26)を開いて、凝縮された冷媒をいったん過冷却
コイル(24)で過冷却した後、負荷側熱交換器(5)
に供給するようになされている。つまり、蓄冷熱を過冷
却コイル(24)で回収する。
At that time, when the indoor air conditioning load becomes large, the first solenoid on-off valve (3) is closed and the third solenoid on-off valve (26) is opened to temporarily subcool the condensed refrigerant, as shown in Figure 6. After supercooling with the coil (24), the load side heat exchanger (5)
It is designed to supply That is, the cold storage heat is recovered by the subcooling coil (24).

一方、ピークカット要求がある場合あるいはその日の冷
房運転で蓄熱槽(9)内の氷が残存しそうな場合には、
蓄熱槽(9)内の蓄冷熱を直接冷媒の凝縮に利用する。
On the other hand, if there is a peak cut request or if ice is likely to remain in the heat storage tank (9) due to the cooling operation that day,
The cold heat stored in the heat storage tank (9) is directly used to condense the refrigerant.

すなわち、第7図に示すように、両三方弁・(20)、
  (21)を切換えて、第2循環機構(32)を作動
させ、蓄熱槽(9)内の水を熱源側熱交換器(2)に供
給するようになされている。なお、そのとき、熱源側熱
交換器(2)における冷媒の凝縮能力を室内の空調負荷
に応じて調節するために、バイパス管(22)の流量制
御弁(23)の開度を調節して、熱源側熱交換器(2)
に供給する低温の水量を調節するようになされている。
That is, as shown in FIG. 7, both three-way valves (20),
(21) to operate the second circulation mechanism (32) and supply water in the heat storage tank (9) to the heat source side heat exchanger (2). At this time, in order to adjust the condensing capacity of the refrigerant in the heat source side heat exchanger (2) according to the indoor air conditioning load, the opening degree of the flow control valve (23) of the bypass pipe (22) is adjusted. , heat source side heat exchanger (2)
The system is designed to adjust the amount of low-temperature water supplied to the

したがって、本実施例では、請求項(1)の発明の構成
に加えて、凝縮された冷媒を過冷却する過冷却機構(3
4)を配置したので、上記請求項(1)の発明の効果と
同様の効果を発揮することができるとともに、室内の空
調負荷の要求、ピークカット要求、蓄熱槽(9)内の氷
残存量等のファクタに応じて、蓄熱媒体たる水の蓄冷熱
を過冷却熱源、凝縮熱源に使い分けることができ、運転
条件に適合した蓄冷熱の利用によりいっそう高い総使用
電力節減効果を得ることができるのである。
Therefore, in this embodiment, in addition to the structure of the invention of claim (1), a supercooling mechanism (3
4), it is possible to achieve the same effect as that of the invention of claim (1) above, and also to reduce indoor air conditioning load requirements, peak cut requirements, and the amount of ice remaining in the heat storage tank (9). Depending on factors such as this, the cold storage heat of water, which is a heat storage medium, can be used as a supercooling heat source or a condensing heat source, and by using the cold storage heat that matches the operating conditions, it is possible to obtain an even higher total power consumption saving effect. be.

次に、本発明の第3実施例について説明する。Next, a third embodiment of the present invention will be described.

第8図は請求項(3)の発明の実施例に係る空気調和装
置の全体構成を示し、その構成は殆ど上記第3図と同様
である。そして、本実施例においては、上記第1.第2
三方弁(20)、  (21)の代りに、流量調節機能
を有する2つの三方弁(20’)(21’)が配置され
ていて、該2つの三方弁(20’)、  (21’)に
より、第1.第2循環機構(31)、(32)による熱
源側熱交換器(2)への冷却水の供給比率を可変に調節
するようにした調節手段(35)が構成されている。な
お、過冷却機構(34)は必ずしも必要ではない。
FIG. 8 shows the overall configuration of an air conditioner according to an embodiment of the invention of claim (3), and the configuration is almost the same as that of FIG. 3 above. In this embodiment, the above-mentioned 1. Second
Instead of the three-way valves (20) and (21), two three-way valves (20') and (21') having a flow rate adjustment function are arranged, and the two three-way valves (20' and (21')) According to 1st. A regulating means (35) is configured to variably regulate the supply ratio of cooling water to the heat source side heat exchanger (2) by the second circulation mechanisms (31) and (32). Note that the supercooling mechanism (34) is not necessarily required.

本実施例では、第9図に示すように、クーリングタワー
(15)における冷却水温度が一日の時刻と共に変化し
て、熱源側熱交換器(2)での冷媒凝縮に必要な最低水
温Tsよりも低下した場合(図中斜線部分■)、調節手
段(35)により、第1.第2循環機構(31)、(3
2)による冷却水の供給比率を調節して、熱源側熱交換
器(2)の冷却水温度を所定値に維持することができる
In this embodiment, as shown in FIG. 9, the temperature of the cooling water in the cooling tower (15) changes with the time of day, and is lower than the minimum water temperature Ts required for condensing the refrigerant in the heat source side heat exchanger (2). If the first. Second circulation mechanism (31), (3
By adjusting the cooling water supply ratio according to step 2), the cooling water temperature of the heat source side heat exchanger (2) can be maintained at a predetermined value.

例えば、通常、早朝には熱源側熱交換器(2)から排出
される排出管(16a)の冷却水温度が32℃で、クー
リングタワー(15)で27℃に冷却されるのに対し、
昼間になると、排出管(16a)の冷却水温度が37℃
に上昇し、クーリングタワー(15)で32℃に冷却さ
れて戻るものとすると、所定の必要な水温(例えば30
℃)以下に保持できないことになる。そのような場合、
調節手段(35)により、蓄熱槽(9)の水をクーリン
グタワー(15)からの冷却水に対して一定割合で熱源
側熱交換器(2)に供給することにより、例えば27℃
の冷却水を熱源側熱交換器(2)に供給することができ
、所定の冷房効果を発揮することができるのである。ま
た、室内負荷が増大した場合にも同様に冷却水温度を調
節することができ、全体として、上記請求項(1)の発
明の効果に加えて、より微細な熱源側熱交換器(2)の
冷却水温度の調節ができ、総使用電力節減効果を向上す
ることができるのである。
For example, normally in the early morning, the temperature of the cooling water in the discharge pipe (16a) discharged from the heat source side heat exchanger (2) is 32°C, which is cooled to 27°C in the cooling tower (15).
During the day, the temperature of the cooling water in the discharge pipe (16a) reaches 37°C.
Assuming that the water rises to
℃) or below. In such a case,
For example, by supplying the water in the heat storage tank (9) to the heat source side heat exchanger (2) at a constant ratio to the cooling water from the cooling tower (15) by the regulating means (35), the temperature is increased to 27°C.
of cooling water can be supplied to the heat source side heat exchanger (2), and a predetermined cooling effect can be achieved. Further, even when the indoor load increases, the cooling water temperature can be adjusted in the same way, and as a whole, in addition to the effect of the invention of claim (1), the finer heat source side heat exchanger (2) This makes it possible to adjust the cooling water temperature and improve the overall power consumption saving effect.

次に、第4実施例について、第10図〜第14図に基づ
き説明する。第10図は、前述の第2実施例の変形例を
示し、過冷却コイル(14)を蓄熱槽(9)内ではなく
、主冷媒回路(8)の液管(7a)に介設している。こ
こで、上記過冷却コイル(14)は、ケーシング(14
a)内に装着されていて、該ケーシング(14a)は排
出管(14b)および供給管(14c)により第2ポン
プ(19)を介して蓄熱槽(9)と蓄熱媒体たる水の流
通可能になされている。そして、第2ポンプ(19)と
蓄熱槽(10)の間の排出管(14b)に第2三方弁(
21)が介設されていて、該第2三方弁(21)のもう
一方のポートから熱源側熱交換器(2)への水の供給管
(18b)が延びている。該供給管(18b)には、冷
却装置(15)からの冷却水の供給管(16b)が接続
されている。また、第2三方弁(21)と蓄熱槽(9)
との間の排出管(14b)から熱源側熱交換器(2)か
らの水の排出管(18a)が延びていて、排出管(18
a)に第1三方弁(20)が介設されている。そして、
該第1三方弁(20)のもう一方のボートに冷却装置(
15)への冷却水の排出管(18a)が接続されている
。したがって、本実施例では、第1循環機構(31)は
上記第2.第3実施例と同様であるが、第2循環機構(
32)は、過冷却コイル(14)のケーシング(14a
)への水の供給管(14c)、および排出管(14b)
をも含めて、熱源側熱交換器(2)への排出管(16a
)、供給管(16b)および第2ポンプ(19)により
構成されている。
Next, a fourth embodiment will be described based on FIGS. 10 to 14. FIG. 10 shows a modification of the second embodiment described above, in which the supercooling coil (14) is interposed not in the heat storage tank (9) but in the liquid pipe (7a) of the main refrigerant circuit (8). There is. Here, the supercooling coil (14) is connected to the casing (14).
a), and the casing (14a) allows water, which is a heat storage medium, to flow to the heat storage tank (9) via the second pump (19) through the discharge pipe (14b) and the supply pipe (14c). being done. A second three-way valve (
21) is interposed, and a water supply pipe (18b) extending from the other port of the second three-way valve (21) to the heat source side heat exchanger (2). A cooling water supply pipe (16b) from the cooling device (15) is connected to the supply pipe (18b). In addition, the second three-way valve (21) and the heat storage tank (9)
A discharge pipe (18a) for water from the heat source side heat exchanger (2) extends from a discharge pipe (14b) between the
A first three-way valve (20) is interposed in a). and,
A cooling device (
15) is connected to the cooling water discharge pipe (18a). Therefore, in this embodiment, the first circulation mechanism (31) is the second circulation mechanism (31). It is similar to the third embodiment, but the second circulation mechanism (
32) is the casing (14a) of the supercooled coil (14).
) water supply pipe (14c) and discharge pipe (14b) to
including the exhaust pipe (16a) to the heat source side heat exchanger (2).
), a supply pipe (16b) and a second pump (19).

なお、(22’ )は過冷却コイル(14)のケーシン
グ(14a)からの排出管(14a)から蓄熱槽(9)
に水をバイパスするためのバイパス管、(23’)は該
バイパス管(22’)に介設された流量制御弁である。
In addition, (22') is the discharge pipe (14a) from the casing (14a) of the supercooling coil (14) to the heat storage tank (9).
A bypass pipe (23') for bypassing water is a flow control valve installed in the bypass pipe (22').

ここで、本実施例における運転モードについて説明する
に、空気調和装置の蓄冷熱運転時、第1電磁開閉弁(3
)が閉じ、第2電磁開閉弁(12)が開いた状態で運転
が行われる。すなわち、第11図に示すように、吐出ガ
ス冷媒が熱源側熱交換器(2)で凝縮された後、第1バ
イパス路(11)に流れ、蓄熱コイル(10)で蓄熱槽
(9)内を製氷するように循環する(図中実線矢印参照
)−方、第2循環機構(32)は停止しておき、熱源側
熱交換器(2)への冷却水の供給は第1循環機構(31
)だけによる(図中破線矢印参照)。また、通常の冷房
運転時には、第2電磁開閉弁(12)が閉じ、第1電磁
開閉弁(3)が開いた状態で運転が行われる。すなわち
、第12図に示すように、熱源側熱交換器(2)で凝縮
された冷媒が負荷側熱交換器(5)で蒸発して室内の冷
房を行うように循環する(図中実線矢印)一方、冷却水
の循環は上記蓄冷熱運転時と同様である。そして、冷房
運転中に室内の冷房負荷が増大したり、冷却水温度が上
昇したりして、熱源側熱交換器(2)における凝縮能力
の不足が生じた場合には、第13図に示すように、第2
循環機構(32)のうち過冷却コイル(14)側の部分
だけを作動させて、過冷却コイル(14)のケーシング
(14a)に蓄熱槽(9)の蓄熱媒体たる水を供給し、
冷媒の過冷却を行って所定の冷房能力を維持するように
なされている。さらに、ピークカット要求がある場合あ
るいはその日の蓄熱槽(9)内の氷が余りそうな場合に
は、第14図に示すように、第2循環機構(32)を全
体的に作動させて、蓄熱槽(9)の水を過冷却コイル(
14)を経て熱源側熱交換器(2)に供給する(図中破
線矢印)ことにより、蓄冷熱を使い切るようになされて
いる。
Here, to explain the operation mode in this embodiment, during the cold storage heat operation of the air conditioner, the first electromagnetic on-off valve (3
) is closed and the second electromagnetic on-off valve (12) is open. That is, as shown in FIG. 11, after the discharged gas refrigerant is condensed in the heat source side heat exchanger (2), it flows into the first bypass path (11) and is transferred to the heat storage tank (9) by the heat storage coil (10). On the other hand, the second circulation mechanism (32) is stopped, and the supply of cooling water to the heat source side heat exchanger (2) is carried out by the first circulation mechanism (see solid line arrow in the figure) to make ice. 31
) (see the dashed arrow in the figure). Further, during normal cooling operation, the second electromagnetic on-off valve (12) is closed and the first electromagnetic on-off valve (3) is opened. That is, as shown in Fig. 12, the refrigerant condensed in the heat source side heat exchanger (2) evaporates in the load side heat exchanger (5) and circulates to cool the room (solid line arrows in the figure). ) On the other hand, the circulation of cooling water is the same as in the above-mentioned cold storage heat operation. If the indoor cooling load increases or the cooling water temperature rises during cooling operation, and the condensing capacity in the heat source side heat exchanger (2) is insufficient, the Like, the second
Activating only the part of the circulation mechanism (32) on the side of the supercooling coil (14) to supply water, which is the heat storage medium of the heat storage tank (9), to the casing (14a) of the supercooling coil (14);
The refrigerant is subcooled to maintain a predetermined cooling capacity. Furthermore, if there is a peak cut request or if there is likely to be excess ice in the heat storage tank (9) on that day, the second circulation mechanism (32) is activated as a whole, as shown in FIG. The water in the heat storage tank (9) is transferred to the supercooling coil (
14) to the heat source side heat exchanger (2) (indicated by the broken line arrow in the figure), the stored cold heat is used up.

したがって、本実施例では、上記第2実施例と同様の効
果を発揮することができるとともに、熱源側熱交換器(
2)には過冷却コイル(14)を経てやや温度が上昇し
た蓄熱媒体たる水が供給されるので、第2実施例等のご
とく非常に低温の水を熱源側熱交換器(2)に供給する
のに比べて、無理のない、凝縮、過冷却作用を行うので
、蓄冷熱の利用効率が勝れているものである。
Therefore, in this embodiment, the same effects as in the second embodiment can be achieved, and the heat source side heat exchanger (
2) is supplied with water as a heat storage medium whose temperature has increased slightly through the supercooling coil (14), so very low temperature water is supplied to the heat source side heat exchanger (2) as in the second embodiment etc. Compared to conventional methods, it performs condensation and supercooling in a natural manner, so it is more efficient in using stored cold heat.

次に上記第4実施例をさらに変形した第5実施例につい
て、第15図〜第19図に基づき説明する。第15図は
請求項(2)の発明の実施例に係る空気調和装置の全体
構成を示し、本実施例では、過冷却コイル(14)と共
に蓄熱コイル(10)も蓄熱槽(9)の外部に設置され
ている。すなわち、第1バイパス路(11)に直接蓄熱
コイル(10)が介設されているとともに、そのケーシ
ング(10a)は蓄熱槽(9)と2つの水配管(10b
)。
Next, a fifth embodiment, which is a further modification of the fourth embodiment, will be described with reference to FIGS. 15 to 19. Fig. 15 shows the overall configuration of an air conditioner according to an embodiment of the invention of claim (2). It is installed in That is, the heat storage coil (10) is directly interposed in the first bypass path (11), and its casing (10a) connects the heat storage tank (9) and two water pipes (10b).
).

(10c)で蓄熱媒体たる水の流通可能に接続されてい
る。ここで、第2ポンプ(19)は過冷却コイル(14
)のケーシング(14a)への供給管(14c)に介設
されていて、該第2ポンプ(19)とケーシング(14
a)との間の供給管(14c)に第4三方弁(29)が
介設されている。そして、該第4三方弁(29)のもう
一方のホードに蓄熱コイル(10)のケーシング(10
a)への水の供給管(10c)が接続されている。
(10c) is connected to allow water, which is a heat storage medium, to flow therethrough. Here, the second pump (19) is connected to the subcooling coil (14).
) is interposed in the supply pipe (14c) to the casing (14a) of the second pump (19) and the casing (14a).
A fourth three-way valve (29) is interposed in the supply pipe (14c) between a) and the supply pipe (14c). The casing (10) of the heat storage coil (10) is placed in the other hoard of the fourth three-way valve (29).
A water supply pipe (10c) to a) is connected.

また、熱源側熱交換器(2)からの水の排出管(18a
)に介設された第2三方弁(21)に過冷却コイル(1
4)からの水の排出管(14b)が接続され、該排出管
(14b)に第3三方弁(28)が介設されている。該
第3三方弁(28)のもう一方のボートからは熱源側熱
交換器(2)への水の供給管(18b)が延びてその先
端が第1三方弁(20)に接続される一方、第3三方弁
(28)と第2三方弁(21)との間の排出管(14b
)に蓄熱コイル(10)のケーシング(10a)からの
水の排出管(10b)が接続されている。したがって、
第2循環機構(32)は、上記第4実施例と同様に過冷
却コイル(14)のケーシング(14a)への配管(1
4b)、(14c)をも含んで構成され、切換手段(3
3)は第1〜第4三方弁(20)、(21)、(28)
In addition, a water discharge pipe (18a) from the heat source side heat exchanger (2) is also provided.
) The supercooling coil (1
A water discharge pipe (14b) from 4) is connected, and a third three-way valve (28) is interposed in the discharge pipe (14b). A water supply pipe (18b) to the heat source side heat exchanger (2) extends from the other boat of the third three-way valve (28), and its tip is connected to the first three-way valve (20). , a discharge pipe (14b) between the third three-way valve (28) and the second three-way valve (21)
) is connected to a water discharge pipe (10b) from the casing (10a) of the heat storage coil (10). therefore,
The second circulation mechanism (32) connects the pipe (1) to the casing (14a) of the supercooling coil (14) as in the fourth embodiment.
4b) and (14c), and the switching means (3
3) are the first to fourth three-way valves (20), (21), (28)
.

(29)により構成されている。(29).

なお、(22)は2つの水配管(14c)。In addition, (22) is two water pipes (14c).

(16a)の間をバイパス可能に接続するバイパス管、
(23)は該バイパス管(22)に介設された流量制御
弁であって、その機能は前述の第2実施例と同様である
(16a) A bypass pipe connecting the space in a bypass manner;
(23) is a flow control valve installed in the bypass pipe (22), and its function is the same as in the second embodiment described above.

次に、本実施例における運転モードについて説明するに
、上記第4実施例と同様の電磁開閉弁(3)、  (1
2)の切換により冷媒系が切換えられて運転が行われる
。すなわち、蓄冷熱運転時には、第16図に示すように
、熱源側熱交換器(2)で凝縮された冷媒が第1バイパ
ス路(11)側に流れて蓄熱コイル(10)で蒸発する
ように循環する(図中実線矢印)。また、切換手段(3
3)により、熱源側熱交換器(2)への冷却水の供給は
専ら第1循環機構(31)つまり冷却装置(15)側か
らなされる一方、第2循環機構(32)は作動せずに蓄
熱槽(9)から蓄熱コイル(10)のケーシング(10
a)に蓄熱媒体たる水が供給されて(図中破線矢印)、
水に冷熱を付与して蓄熱槽(9)内の蓄冷熱を行う。そ
して、通常の冷房運転時には、第17図に示すように、
熱源側熱交換器(2)で凝縮された冷媒が負荷側熱交換
器(5)で蒸発するように循環する(図中実線矢印)一
方、上記蓄冷熱運転時とは異なり、蓄熱コイル(10)
側への蓄熱槽(9)からの蓄熱媒体たる水の供給は行わ
れずに、冷却装置(15)と熱源側熱交換器(2)間の
冷却水の循環のみ行われる(図中破線矢印)。そのとき
、凝縮能力の不足があった場合には、第18図に示すよ
うに、第2ポンプ(19)を作動させ、第2.第3.第
4三方弁(21)、  (2g)、  (29)の切換
により、蓄熱槽(9)内の水を過冷却コイル(14)側
にのみ循環させて(図中破線矢印)、凝縮後の冷媒をさ
らに過冷却する。さらに、ピークカット要求あるいは一
日の運転で蓄熱槽(9)内の氷が残存しそうな場合には
、第19図に示すように、第1循環機構(31)を停止
させ、第2循環機構(32)を全体的に作動させて、蓄
熱媒体たる水が過冷却コイル(14)側を経て熱源側熱
交換器(2)に循環するように流れる(図中破線矢印)
Next, to explain the operation mode in this embodiment, the electromagnetic on-off valve (3), (1
By switching 2), the refrigerant system is switched and operation is performed. That is, during cold storage heat operation, as shown in FIG. 16, the refrigerant condensed in the heat source side heat exchanger (2) flows to the first bypass path (11) side and evaporates in the heat storage coil (10). It circulates (solid line arrow in the figure). In addition, the switching means (3
3), cooling water is supplied to the heat source side heat exchanger (2) exclusively from the first circulation mechanism (31), that is, the cooling device (15) side, while the second circulation mechanism (32) does not operate. from the heat storage tank (9) to the casing (10) of the heat storage coil (10).
Water as a heat storage medium is supplied to a) (dashed line arrow in the figure),
Cold heat is imparted to water to store cold heat in the heat storage tank (9). During normal cooling operation, as shown in Figure 17,
The refrigerant condensed in the heat source side heat exchanger (2) is circulated so as to evaporate in the load side heat exchanger (5) (solid arrow in the figure). )
Water as a heat storage medium is not supplied from the heat storage tank (9) to the side, and only cooling water is circulated between the cooling device (15) and the heat source side heat exchanger (2) (dashed line arrow in the figure). . At that time, if there is a shortage of condensing capacity, the second pump (19) is operated as shown in FIG. Third. By switching the fourth three-way valves (21), (2g), and (29), the water in the heat storage tank (9) is circulated only toward the supercooling coil (14) (dashed line arrow in the figure), and the water after condensation is The refrigerant is further subcooled. Furthermore, if there is a peak cut request or if ice is likely to remain in the heat storage tank (9) after one day's operation, the first circulation mechanism (31) is stopped and the second circulation mechanism (32) is activated as a whole, and water, which is a heat storage medium, flows through the subcooling coil (14) side and circulates to the heat source side heat exchanger (2) (dashed line arrow in the figure).
.

したがって、本実施例でも、上記第4実施例と同様の効
果を得ることができる。
Therefore, in this embodiment as well, the same effects as in the fourth embodiment can be obtained.

なお、本発明は、いずれも上記第3図等のような主冷媒
回路(8)の切換機構のないものだけでなく、冷媒の循
環方向を切換えるようにしたいわゆるヒートポンプ回路
を有する空気調和装置についても適用しうるちのである
The present invention applies not only to an air conditioner without a switching mechanism for the main refrigerant circuit (8) as shown in FIG. It is also applicable.

(発明の効果) 以上説明したように、請求項(1)の発明によれば、冷
却装置で冷却される凝縮器と蓄熱媒体たる水を内蔵した
蓄熱槽とを備えた蓄熱式空気調和装置において、上記蓄
熱槽と凝縮器とを水の循環可能に接続するとともに、必
要に応じて凝縮器への冷却水の供給を冷却装置側と蓄熱
槽側とに切換えるようにしたので、装置の破損を有効に
防止しながら、蓄冷熱の利用効率の向上による総使用電
力の低減を図ることができる。
(Effects of the Invention) As explained above, according to the invention of claim (1), in a regenerative air conditioner equipped with a condenser cooled by a cooling device and a heat storage tank containing water as a heat storage medium. The heat storage tank and condenser are connected to allow water circulation, and the supply of cooling water to the condenser can be switched between the cooling system and the heat storage tank as necessary, thereby preventing damage to the equipment. While effectively preventing this, it is possible to reduce the total power consumption by improving the utilization efficiency of cold storage heat.

また、請求項(2)の発明によれば、上記請求項(1)
の発明に加えて、凝縮器で凝縮された冷媒をさらに蓄熱
槽内の蓄冷熱で過冷却するようにしたので、運転状態等
の変化に対応して蓄冷熱の利用法を切換えることができ
、装置の破損を有効に防止しながら、総使用電力の低減
効果をさらに向上することができる。
Furthermore, according to the invention of claim (2), the above claim (1)
In addition to the above invention, the refrigerant condensed in the condenser is further supercooled using the cold heat stored in the heat storage tank, so the method of using the stored cold heat can be changed in response to changes in operating conditions, etc. The effect of reducing total power consumption can be further improved while effectively preventing damage to the device.

また、請求項(3)の発明によれば、上記請求項(1)
の発明の構成において、冷却装置と蓄熱槽による凝縮器
への冷却水の利用比率を運転状態に応じて可変に調節す
るようにしたので、より細やかな蓄冷熱の利用により、
請求項(1)め発明の効果をより高く発揮することがで
きる。
Moreover, according to the invention of claim (3), the above claim (1)
In the configuration of the invention, the usage ratio of cooling water to the condenser by the cooling device and the heat storage tank is variably adjusted according to the operating condition, so that more detailed use of the stored cold heat can be achieved.
According to claim (1), the effects of the invention can be more effectively exhibited.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図は請求項(1)の
発明に係る第1実施例の冷媒系統および冷却水配管を示
す図、第2図はクーリングタワーの構造図、第3図は請
求項(2)の発明に係る第2実施例の冷媒系統および冷
却水配管を示す図、第4図〜第7図は第2実施例におけ
る運転モードを示し、それぞれ順に、蓄冷熱運転、通常
冷房運転、過冷却源としての蓄冷熱回収冷房運転、凝縮
源としての蓄冷熱回収冷房運転のモードを示す図、第8
図は請求項(3)の発明に係る第3実施例の冷媒系統お
よび冷却水配管を示す図、第9図はクーリングタワーに
おける一日の冷却水の温度変化を示す特性図、第10図
は第4実施例の冷媒系統および冷却水配管を示す図、第
11図〜第14図は第4実施例における上記第4図〜第
7図相当図、第15図は第5実施例の冷媒系統および冷
却水配管を示す図、第16図〜第19図は第5実施例に
おける上記第11図〜第14図相当図である。 (1)・・・圧縮機、(2)・・・熱源側熱交換器(凝
縮器)、(3)・・・第1自動膨張弁(減圧機構)、(
5)・・・負荷側熱交換器(蒸発器)、(8)・・・主
冷媒回路、(9)蓄熱槽、(10)・・・蓄熱コイル(
熱交換コイル)、(15)・・・クーリングタワー(冷
却装置)、(31)・・・第1循環機構、(32)第2
循環機構、(33)・・・切換手段、(34)・・・過
冷却機構、 ・・・調節手段。 第 図 第 図 第13図 第11 図 第 図 第 1ソ 区 第16図
The drawings show an embodiment of the present invention, FIG. 1 is a diagram showing a refrigerant system and cooling water piping of the first embodiment according to the invention of claim (1), FIG. 2 is a structural diagram of a cooling tower, and FIG. 3 is a diagram showing the refrigerant system and cooling water piping of the second embodiment according to the invention of claim (2), and FIGS. 4 to 7 show the operation modes in the second embodiment, which are respectively cold storage heat operation, cold storage heat operation, Diagram 8 showing the modes of normal cooling operation, cold storage heat recovery cooling operation as a supercooling source, and cold storage heat recovery cooling operation as a condensation source.
The figure shows the refrigerant system and cooling water piping of the third embodiment according to the invention of claim (3), FIG. A diagram showing the refrigerant system and cooling water piping of the fourth embodiment, FIGS. 11 to 14 are views corresponding to FIGS. 4 to 7 in the fourth embodiment, and FIG. 15 shows the refrigerant system and cooling water piping of the fifth embodiment. Figures 16 to 19 showing cooling water piping are equivalent to Figures 11 to 14 in the fifth embodiment. (1) Compressor, (2) Heat source side heat exchanger (condenser), (3) First automatic expansion valve (pressure reduction mechanism), (
5) Load side heat exchanger (evaporator), (8) Main refrigerant circuit, (9) Heat storage tank, (10) Heat storage coil (
heat exchange coil), (15)... cooling tower (cooling device), (31)... first circulation mechanism, (32) second
Circulation mechanism, (33)...Switching means, (34)...Supercooling mechanism,...Adjustment means. Figure Figure Figure 13 Figure 11 Figure Figure 1 Section 1 Figure 16

Claims (3)

【特許請求の範囲】[Claims] (1)圧縮機(1)、水冷式凝縮器(2)、減圧機構(
4)および蒸発器(5)を順次接続してなる主冷媒回路
(8)と、蓄熱媒体としての水を内蔵する蓄熱槽(9)
と、該蓄熱槽(9)の水と冷媒との熱交換を行う熱交換
コイル(10)とを備えた蓄熱式空気調和装置において
、上記凝縮器(2)の冷却水を冷却するための冷却装置
(15)と、該冷却装置(15)と凝縮器(2)とを冷
却水の循環可能に接続する第1循環機構(31)と、上
記蓄熱槽(9)と凝縮器(2)とを蓄熱槽(9)内の水
の循環可能に接続する第2循環機構(32)と、上記第
1循環機構(31)と第2循環機構(32)とによる凝
縮器(2)への冷却水の供給を択一的に切換える切換手
段(33)とを備えたことを特徴とする蓄熱式空気調和
装置。
(1) Compressor (1), water-cooled condenser (2), pressure reduction mechanism (
4) and an evaporator (5) connected in sequence, and a main refrigerant circuit (8), and a heat storage tank (9) containing water as a heat storage medium.
and a heat exchange coil (10) for exchanging heat between the water in the heat storage tank (9) and the refrigerant, the cooling for cooling the cooling water in the condenser (2). A device (15), a first circulation mechanism (31) that connects the cooling device (15) and the condenser (2) so that cooling water can be circulated, and the heat storage tank (9) and the condenser (2). cooling to the condenser (2) by the second circulation mechanism (32) that connects the water in the heat storage tank (9) so that the water can be circulated, and the first circulation mechanism (31) and the second circulation mechanism (32). A regenerative air conditioner characterized by comprising a switching means (33) for selectively switching the supply of water.
(2)圧縮機(1)、水冷式凝縮器(2)、減圧機構(
4)および蒸発器(5)を順次接続してなる主冷媒回路
(8)と、蓄熱媒体としての水を内蔵する蓄熱槽(9)
と、該蓄熱槽(9)の水と冷媒との熱交換を行う熱交換
コイル(10)とを備えた蓄熱式空気調和装置において
、上記凝縮器(2)の冷却水を冷却するための冷却装置
(15)と、該冷却装置(15)と凝縮器(2)とを冷
却水の循環可能に接続する第1循環機構(31)と、上
記蓄熱槽(9)と凝縮器(2)とを蓄熱槽(9)内の水
の循環可能に接続する第2循環機構(32)と、上記第
1循環機構(31)と第2循環機構(32)とによる凝
縮器(2)への冷却水の供給を択一的に切換える切換手
段(33)と、上記凝縮器(2)で凝縮された冷媒を蓄
熱槽(9)の水で過冷却する過冷却機構(34)とを備
えたことを特徴とする蓄熱式空気調和装置。
(2) Compressor (1), water-cooled condenser (2), pressure reduction mechanism (
4) and an evaporator (5) connected in sequence, and a main refrigerant circuit (8), and a heat storage tank (9) containing water as a heat storage medium.
and a heat exchange coil (10) for exchanging heat between the water in the heat storage tank (9) and the refrigerant, the cooling for cooling the cooling water in the condenser (2). A device (15), a first circulation mechanism (31) that connects the cooling device (15) and the condenser (2) so that cooling water can be circulated, and the heat storage tank (9) and the condenser (2). cooling to the condenser (2) by the second circulation mechanism (32) that connects the water in the heat storage tank (9) so that the water can be circulated, and the first circulation mechanism (31) and the second circulation mechanism (32). A switching means (33) for selectively switching the supply of water, and a supercooling mechanism (34) for supercooling the refrigerant condensed in the condenser (2) with water in the heat storage tank (9). A heat storage air conditioner featuring:
(3)圧縮機(1)、水冷式凝縮器(2)、減圧機構(
4)および蒸発器(5)を順次接続してなる主冷媒回路
(8)と、蓄熱媒体としての水を内蔵する蓄熱槽(9)
と、該蓄熱槽(9)の水と冷媒との熱交換を行う熱交換
コイル(10)とを備えた蓄熱式空気調和装置において
、上記凝縮器(2)の冷却水を冷却するための冷却装置
(15)と、該冷却装置(15)と凝縮器(2)とを冷
却水の循環可能に接続する第1循環機構(31)と、上
記蓄熱槽(9)と凝縮器(2)とを蓄熱槽(9)内の水
の循環可能に接続する第2循環機構(32)と、上記第
1循環機構(31)と第2循環機構(32)とによる凝
縮器(2)への冷却水の供給比率可変に調節する調節手
段(35)とを備えたことを特徴とする蓄熱式空気調和
装置。
(3) Compressor (1), water-cooled condenser (2), pressure reduction mechanism (
4) and an evaporator (5) connected in sequence, and a main refrigerant circuit (8), and a heat storage tank (9) containing water as a heat storage medium.
and a heat exchange coil (10) for exchanging heat between the water in the heat storage tank (9) and the refrigerant, the cooling for cooling the cooling water in the condenser (2). A device (15), a first circulation mechanism (31) that connects the cooling device (15) and the condenser (2) so that cooling water can be circulated, and the heat storage tank (9) and the condenser (2). cooling to the condenser (2) by the second circulation mechanism (32) that connects the water in the heat storage tank (9) so that the water can be circulated, and the first circulation mechanism (31) and the second circulation mechanism (32). A regenerative air conditioner characterized by comprising: an adjusting means (35) for variably adjusting the water supply ratio.
JP15429188A 1988-06-22 1988-06-22 Regeneration type airconditioner Pending JPH024169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15429188A JPH024169A (en) 1988-06-22 1988-06-22 Regeneration type airconditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15429188A JPH024169A (en) 1988-06-22 1988-06-22 Regeneration type airconditioner

Publications (1)

Publication Number Publication Date
JPH024169A true JPH024169A (en) 1990-01-09

Family

ID=15580931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15429188A Pending JPH024169A (en) 1988-06-22 1988-06-22 Regeneration type airconditioner

Country Status (1)

Country Link
JP (1) JPH024169A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068563A1 (en) * 2013-11-07 2015-05-14 日立Geニュークリア・エナジー株式会社 Cooling system for nuclear reactor suppression pool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068563A1 (en) * 2013-11-07 2015-05-14 日立Geニュークリア・エナジー株式会社 Cooling system for nuclear reactor suppression pool
JPWO2015068563A1 (en) * 2013-11-07 2017-03-09 日立Geニュークリア・エナジー株式会社 Reactor suppression pool cooling system

Similar Documents

Publication Publication Date Title
KR0153546B1 (en) Heat storage type airconditioner and defrosting method
CN111043781A (en) Compressor and fluorine pump combined air conditioning system
WO2007112671A1 (en) A supercooled ice cold-storage unit, an air conditioning system using the same and a control method thereof
CN113983577A (en) Cold accumulation type air conditioner and control method
JP4345178B2 (en) Air conditioner
KR20060106128A (en) Apparatus for air-cooling using a cooling tower in winter season
JP2003279079A (en) Ice thermal accumulating system and heating method of ice thermal accumulating system
JPH10223442A (en) Transforming apparatus cooling system and operation method thereof
JP3418891B2 (en) Refrigeration equipment
JPH024169A (en) Regeneration type airconditioner
CN114198872A (en) Machine room air conditioner and operation control method and device thereof
KR20030082822A (en) The Combined Cooling and Heating Ice Regenerative System
JP3781340B2 (en) Thermal storage refrigeration air conditioner
JP3370501B2 (en) Cooling system
JPH1089729A (en) Ice heat storage device by supercooled water and operation method
JP2000179952A (en) Refrigeration cycle controller
JPH01174834A (en) Air conditioning system for building
JPH0730959B2 (en) Air conditioner
JP3253276B2 (en) Thermal storage type air conditioner and operation method thereof
JPH07269983A (en) Air conditioner for shop
JPH11173689A (en) Heat storage type cooling device
JP2007147133A (en) Air conditioner
JP2001116423A (en) Deep freezing air conditioner
JPH05157297A (en) Heat accumulating type cooling device
JPH10170086A (en) Air conditioner