JPH024146B2 - - Google Patents

Info

Publication number
JPH024146B2
JPH024146B2 JP57013850A JP1385082A JPH024146B2 JP H024146 B2 JPH024146 B2 JP H024146B2 JP 57013850 A JP57013850 A JP 57013850A JP 1385082 A JP1385082 A JP 1385082A JP H024146 B2 JPH024146 B2 JP H024146B2
Authority
JP
Japan
Prior art keywords
source
field effect
electrode
semiconductor device
barrier diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57013850A
Other languages
Japanese (ja)
Other versions
JPS58131775A (en
Inventor
Kyoichi Ishii
Masumi Fukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1385082A priority Critical patent/JPS58131775A/en
Publication of JPS58131775A publication Critical patent/JPS58131775A/en
Publication of JPH024146B2 publication Critical patent/JPH024146B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は電界効果半導体装置に関し、特にデイ
プレシヨンモード電界効果半導体装置のバイアス
印加構造に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a field effect semiconductor device, and more particularly to a bias application structure for a depression mode field effect semiconductor device.

(b) 従来技術と問題点 GaAs等よりなるモノリシツク集積回路の中の
増幅素子として使われるデイプレシヨンモード電
界効果トランジスタ(以下D型MES FETと略記
する)は、特にリニア増幅器の場合、ソースSを
接地し、ドレインDに正の電圧を印加したとき、
所定のドレイン電流を与えるためにゲートに適切
な負極性のバイアスを与える必要がある。
(b) Prior art and problems A depletion mode field effect transistor (hereinafter abbreviated as D-type MES FET), which is used as an amplification element in a monolithic integrated circuit made of GaAs or the like, especially in the case of a linear amplifier, has a source S When grounded and a positive voltage applied to the drain D,
In order to provide a predetermined drain current, it is necessary to apply an appropriate negative bias to the gate.

例えばGaAs MES FETのDCバイアス方式に
は、この正のドレイン電圧と負のゲート電圧を外
部から供給する所謂2電源方式(第1図a)と、
外部より正の電圧のみを与え、負のゲート電圧は
ソースSに直列に挿入した抵抗Rとソース電流に
よつてゲートGの電位をソースSに対して負にバ
イアスする1電源方式((第1図b)とがある。
For example, the DC bias method for GaAs MES FETs includes a so-called dual power supply method (Figure 1a) that supplies this positive drain voltage and negative gate voltage from the outside.
One power supply method ((first Figure b).

このI電源方式は供給電源が1極性のみでよい
という大きな利点があるが、ソース抵抗Rは勿論
このRと並列に入れる必要のあるRF信号バイパ
ス用の容量Cは信号周波数に対応してかなり大き
な容量値、従つて相当大きなパターン面積を必要
とし、モノリシツク集積回路装置におけるチツプ
の面積効率を著しく低下させるばかりでなく、容
量Cは絶縁膜のピンホール等により短絡する危険
性があり、歩留を低下させる等、コストを増大さ
せる要因となる。このように自己バイアス方式の
電界効果半導体素子をモノリシツクで実現するこ
とは必ずしも容易ではなく、そのため従来はハイ
ブリツド方式で作成していた。
This I power supply method has the great advantage that the power supply only needs to be of one polarity, but the source resistance R and the RF signal bypass capacitance C that must be placed in parallel with R are quite large depending on the signal frequency. Not only does this require a capacitance value and therefore a considerably large pattern area, which significantly reduces the area efficiency of the chip in monolithic integrated circuit devices, but the capacitance C has the risk of being short-circuited due to pinholes in the insulating film, etc., which reduces yield. This is a factor that increases costs, such as lowering the cost. It is not necessarily easy to monolithically realize such a self-biasing field effect semiconductor device, and for this reason conventionally it has been fabricated using a hybrid method.

(c) 発明の目的 本発明の目的は上記問題点を解消し、製造容易
な1電源自己バイアス方式のデイプレシヨン型電
界効果半導体装置をモノリシツクで実現すること
にある。
(c) Object of the Invention The object of the present invention is to solve the above-mentioned problems and realize a monolithic depreciation field effect semiconductor device of a single power supply self-bias type that is easy to manufacture.

(d) 発明の構成 本発明の特徴は、半導体基板の同一表面に形成
された、ゲート電極、ソース電極並びにドレイン
電極を備えたデイプレシヨン型電界効果半導体素
子と、前記ソース電極と基準電位との間に介挿さ
れるシヨツトキバリア・ダイオードと、前記ゲー
ト電極と基準電位との間に介挿される抵抗或いは
インダクタンスとを具備してなることにある。
(d) Structure of the Invention The present invention is characterized by a depletion field effect semiconductor element having a gate electrode, a source electrode, and a drain electrode formed on the same surface of a semiconductor substrate, and a depletion type field effect semiconductor element having a gate electrode, a source electrode, and a drain electrode formed on the same surface of a semiconductor substrate; and a resistor or inductance inserted between the gate electrode and the reference potential.

(e) 発明の実施例 以下本発明に係るD型MES FETの一実施例を
図面により説明する。
(e) Embodiment of the Invention An embodiment of the D-type MES FET according to the present invention will be described below with reference to the drawings.

第2図は上記一実施例の構成を示す回路構成図
で、同図に見られる如く本実施例では、通常のD
型のGaAs MES FETのソースSと接地端との
間に、シヨツトキバリア・ダイオードDを挿入し
た。ここで上記シヨツトキバリア・ダイオードの
陽極側はソースSに、陰極側は接地端に接続す
る。またゲートGと接地端との間にゲートバイア
ス供給用の抵抗RGを挿入する。なおこのRGに変
て、図示はしていないがインダクタンスを用いて
もよい。なお本実施例では上記接地端電位を基準
電位として用いた。
FIG. 2 is a circuit configuration diagram showing the configuration of the above-described embodiment. As seen in the figure, in this embodiment, the normal D
A shotgun barrier diode D was inserted between the source S and the ground terminal of the type GaAs MES FET. Here, the anode side of the shotgun barrier diode is connected to the source S, and the cathode side is connected to the ground terminal. Furthermore, a resistor R G for gate bias supply is inserted between the gate G and the ground terminal. Although not shown, an inductance may be used instead of R G. Note that in this embodiment, the above-mentioned ground terminal potential was used as a reference potential.

シヨヨツトキバリア・ダイオードの順方向の電
圧−電流特性は第3図aに示す如く、順方向電圧
VFがある一定のしきい値電圧(凡そ0.7V)を越
えると、急激に大きな順方向電流IFが流れ、端子
電圧がほぼ一定になる。このような特性を有する
シヨツトキバリア・ダイオードをソースSと接地
端間に挿入した本実施例のFETにおいては、ド
レインDに正の電圧を印加すると、ソース電位は
上記しきい値電圧だけ正となり、従つてゲートG
の電位はソース電位に対し上記しきい値電圧分だ
け負にバイアスされることとなる。
As shown in Figure 3a, the forward voltage-current characteristics of the shovel barrier diode are as follows:
When V F exceeds a certain threshold voltage (approximately 0.7V), a large forward current I F suddenly flows, and the terminal voltage becomes almost constant. In the FET of this embodiment in which a shot barrier diode having such characteristics is inserted between the source S and the ground terminal, when a positive voltage is applied to the drain D, the source potential becomes positive by the above threshold voltage, and the Tsute Gate G
The potential of is biased negatively by the above threshold voltage with respect to the source potential.

第3図bは上述のシヨツトキバリア・ダイオー
ドの高周波(RF)領域における等価回路図で、
RSは半導体層の直列抵抗で、一般的に数Ω以下
で小さい。またRPはシヨツトキ接合のRF領域に
おける微分抵抗で、次式 RP=0.028/IF〔Ω〕 で示されるように非常に小さい。例えば順方向電
流IFが10,28,50〔mA〕のときRPはそれぞれ2.8,
1.0,0.56〔Ω〕である。第1図bと第3図bとを
比較すると、上記2つの抵抗の和(RS+RP)は
Rに対応するが、上述の如く(RS+RP)はRよ
り小さく、従つてRFに対する損失が小さい。
Figure 3b is an equivalent circuit diagram of the above-mentioned shotgun barrier diode in the radio frequency (RF) region.
R S is the series resistance of the semiconductor layer, and is generally small, several ohms or less. Furthermore, R P is the differential resistance in the RF region of the Schottky junction, which is extremely small as shown by the following formula R P =0.028/I F [Ω]. For example, when the forward current I F is 10, 28, and 50 [mA], R P is 2.8, respectively.
1.0, 0.56 [Ω]. Comparing Figure 1b and Figure 3b, the sum of the above two resistances (R S +R P ) corresponds to R, but as mentioned above, (R S +R P ) is smaller than R, so RF loss is small.

CPはシヨツトキ接合の順方向バイアスされた
状態での容量で、GaAsの比誘電率εrが約13と大
きく、また順方向バイアス時には空乏層の幅が数
100Å以下と小さいのため、従来使用されている
誘電体に二酸化シリコン(SiO2,比誘電率εr
4)や窒化シリコン(Si3N4,比誘電率εr≒6)
を用いた平行平板コンデンサより大きな容量が得
るられ、従つてRFに対して十分損失を少なくす
ることが出来る。
C P is the capacitance of the Schottky junction in the forward biased state, and the relative dielectric constant ε r of GaAs is large, approximately 13, and the width of the depletion layer is several times larger when the forward bias is applied.
Silicon dioxide (SiO 2 , relative dielectric constant ε r
4) or silicon nitride (Si 3 N 4 , relative dielectric constant ε r ≒ 6)
A larger capacitance can be obtained than a parallel plate capacitor using a parallel plate capacitor, and therefore the loss against RF can be sufficiently reduced.

このように本実施例のGaAs MES FETは従
来のものに比較して動作時の損失が減少する。
As described above, the GaAs MES FET of this embodiment has a reduced loss during operation compared to the conventional one.

第4図は本実施例のGaAs MES FETを示す
要部断面図及び上面図、第5図は比較のために掲
げた従来装置を示す要部断面図及び上面図であ
る。なお第4図及び第5図のaはそれぞれの図b
の―矢視部及び―矢視部断面を示す。
FIG. 4 is a cross-sectional view and a top view of a main part showing the GaAs MES FET of this example, and FIG. 5 is a cross-sectional view and a top view of a main part showing a conventional device for comparison. Note that a in Figures 4 and 5 is the respective figure b.
A section taken in the direction of the arrow and a section taken in the direction of the arrow are shown.

第4図及び第5図において、1はGaAsよりな
る半絶縁性基板、2,2′はn型GaAsよりなる
活性層、3,4は金・ゲルマニウム/金
(AuGe/Au)等よりなりn型GaAsに対してオ
ーミツク接触するソース電極及びドレイン電極、
5及び6はチタン/白金/金(Ti/Pt/Au)よ
りなり上記活性層2にシヨツトキ接触するゲート
電極及び前述のシヨツトキバリア・ダイオードの
陽極、7は二酸化シリコン(SiO2)膜、8は活
性層2′に対するオーミク電極でAuGe/Auより
なる。また9はゲートバイアス供給用抵抗RG
10及び11はゲートバイアス供給用抵抗RG
両端の電極である。更に12はバイパスキヤパシ
タ(第1図bのC)の電極、13はソース抵抗
(第1図bのR)、14及び15はソース抵抗Rの
電極である。
In Figures 4 and 5, 1 is a semi-insulating substrate made of GaAs, 2 and 2' are active layers made of n-type GaAs, and 3 and 4 are made of gold/germanium/gold (AuGe/Au), etc. source and drain electrodes in ohmic contact with type GaAs;
5 and 6 are gate electrodes made of titanium/platinum/gold (Ti/Pt/Au) and in short contact with the active layer 2, and the anodes of the above-mentioned short barrier diodes; 7 is a silicon dioxide (SiO 2 ) film; and 8 is an active electrode. Ohmic electrode for layer 2', consisting of AuGe/Au. 9 is a gate bias supply resistor R G ,
Reference numerals 10 and 11 are electrodes at both ends of the gate bias supply resistor RG . Further, 12 is an electrode of a bypass capacitor (C in FIG. 1B), 13 is a source resistor (R in FIG. 1B), and 14 and 15 are electrodes of the source resistor R.

両図より明らかな如く本実施例によれば、従来
装置におけるソース抵抗13が不要となり、また
シヨツトキバリア・ダイオードの面積はキヤパシ
タCよりも小さいので、素子を微細化出来、従つ
て集積回路装置を高密度化し得る。
As is clear from both figures, according to this embodiment, the source resistor 13 in the conventional device is unnecessary, and the area of the shot barrier diode is smaller than the capacitor C, so the element can be miniaturized and the integrated circuit device can be made more sophisticated. Can be densified.

例えば第5図の従来装置では、ドレイン電流を
10〔mA〕、ゲートバイアスを0.7〔V〕とした場合、
ソース抵抗13(第1図bのR)及び電極14,
15の面積は約7000〔μm2〕となり、またバイパ
スキヤパシタCの面積は遮断周波数が約30,300,
1000〔MHz〕の場合、それぞれ凡そ1×106,1×
105,3×104〔μm2〕を要する。
For example, in the conventional device shown in Figure 5, the drain current is
When the current is 10 [mA] and the gate bias is 0.7 [V],
A source resistor 13 (R in FIG. 1b) and an electrode 14,
The area of 15 is about 7000 [μm 2 ], and the area of bypass capacitor C has a cutoff frequency of about 30,300 μm 2 .
In the case of 1000 [MHz], approximately 1×10 6 and 1×
10 5 , 3×10 4 [μm 2 ].

これに対し第4図の本実施例では、シヨツトキ
バリア・ダイオードの面積は、ドレイン電流を上
述の如く10〔mA〕とした場合、凡そ1300〔μm2
でよく、これに電極部まで含めても凡そ3300〔μ
m2〕である。
On the other hand, in this embodiment shown in FIG. 4, the area of the shotgun barrier diode is approximately 1300 [μm 2 ] when the drain current is 10 [mA] as described above.
Even including the electrode part, it is approximately 3300 [μ
m 2 ].

従つて本実施例のシヨツトキバリア・ダイオー
ドの面積は従来装置のソース抵抗及びバイパスキ
ヤパシタの面積に対し、遮断周波数が30,300,
1000〔MHz〕の場合それぞれ、約1/326.1/35,
1/12と小さくて良いことになる。
Therefore, the area of the shot barrier diode of this embodiment is smaller than the area of the source resistor and bypass capacitor of the conventional device when the cutoff frequency is 30, 300, 300,
In the case of 1000 [MHz], approximately 1/326.1/35, respectively.
It is good that it is small at 1/12.

以上述べた如く本実施例においては、従来装置
のソース抵抗R及びバイパスキヤパシタCに変え
てシヨツトキバリア・ダイオードを配設すること
により、素子を大幅に微細化且つ動作時の損失を
低減可能となり、面積効率及び動作特性の良い一
電源方式のGaAs電界効果半導体装置が得るられ
る。なお上記シヨツトキバリア・ダイオードの各
部はCaAs電界効果半導体装置の各部を形成する
際に同時に形成し得る。従つて本実施例の半導体
装置を製作するに際しては、ホトマスクのパター
ンを一部変更するのみで良く、製造工程はなんら
変更を要しない。
As described above, in this embodiment, by disposing a shot barrier diode in place of the source resistor R and bypass capacitor C of the conventional device, it is possible to significantly miniaturize the element and reduce the loss during operation. A single power supply type GaAs field effect semiconductor device with good area efficiency and operating characteristics can be obtained. Note that each part of the above shot barrier diode can be formed at the same time as each part of the CaAs field effect semiconductor device is formed. Therefore, when manufacturing the semiconductor device of this embodiment, it is only necessary to partially change the pattern of the photomask, and no change is required in the manufacturing process.

また本発明の電界効果半導体装置は上記一実施
例に説明したGaAsに限定されることなく、例え
ばシリコン(Si)等を用いて実施し得ることは容
易に理解出来よう。
Furthermore, it is easy to understand that the field effect semiconductor device of the present invention is not limited to GaAs explained in the above embodiment, but can be implemented using silicon (Si) or the like, for example.

(f) 発明の効果 以上説明した如く本発明により、改良された一
電源方式のバイアス印加構造を有するデイプレシ
ヨンモード電界効果半導体装置が提供される。な
お本発明は、個別半導体装置及び集積回路装置の
いずれに対しても実施し得ることは勿論である。
(f) Effects of the Invention As described above, the present invention provides a depletion mode field effect semiconductor device having an improved bias application structure using a single power supply system. It goes without saying that the present invention can be applied to both individual semiconductor devices and integrated circuit devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a,bは従来の2電源方式及び1電源方
式のGaAs MES FETの構成を示す回路図、第
2図は本発明の一実施例の構成を回路図、第3図
a,bはそれぞれ第2図のシヨツトキバリア・ダ
イオードDの順方向特性を示す曲線図及び等価回
路図、第4図は上記一実施例の要部断面図及び上
面図、第5図は比較のために掲げた従来装置の要
部断面図及び上面図である。 図において、1は半絶縁性基板、2,2′は活
性層、3,4は活性層2とオーミツク接触をなす
ソース電極及びドレイン電極、5,6はそれぞれ
活性層2,2′とシヨツトキ接触をなすゲート電
極及びシヨツトキバリア・ダイオードの電極を示
す。
Figures 1a and b are circuit diagrams showing the configurations of conventional two-power supply system and single-power supply system GaAs MES FETs, Figure 2 is a circuit diagram showing the configuration of an embodiment of the present invention, and Figures 3a and b are Fig. 2 is a curve diagram and an equivalent circuit diagram showing the forward characteristics of the shot barrier diode D, Fig. 4 is a sectional view and top view of the main part of the above embodiment, and Fig. 5 is a conventional example shown for comparison. FIG. 2 is a sectional view and a top view of main parts of the device. In the figure, 1 is a semi-insulating substrate, 2 and 2' are active layers, 3 and 4 are source and drain electrodes that make ohmic contact with active layer 2, and 5 and 6 are in shot contact with active layers 2 and 2', respectively. The gate electrode and the electrode of the shot barrier diode are shown.

Claims (1)

【特許請求の範囲】 1 半導体基板の同一表面に形成された、 ゲート電極、ソース電極並びにドレイン電極を
備えたデイプレシヨン型電界効果半導体素子と、 前記ソース電極と基準電位との間に介挿される
シヨツトキバリア・ダイオードと、 前記ゲート電極と基準電位との間に介挿される
抵抗或いはインダクタンス とを具備してなることを特徴とする電界効果半導
体装置。
[Claims] 1. A depletion field effect semiconductor device formed on the same surface of a semiconductor substrate and provided with a gate electrode, a source electrode, and a drain electrode, and a shot barrier interposed between the source electrode and a reference potential. - A field effect semiconductor device comprising: a diode; and a resistor or inductance inserted between the gate electrode and a reference potential.
JP1385082A 1982-01-29 1982-01-29 Field- effect semiconductor device Granted JPS58131775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1385082A JPS58131775A (en) 1982-01-29 1982-01-29 Field- effect semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1385082A JPS58131775A (en) 1982-01-29 1982-01-29 Field- effect semiconductor device

Publications (2)

Publication Number Publication Date
JPS58131775A JPS58131775A (en) 1983-08-05
JPH024146B2 true JPH024146B2 (en) 1990-01-26

Family

ID=11844749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1385082A Granted JPS58131775A (en) 1982-01-29 1982-01-29 Field- effect semiconductor device

Country Status (1)

Country Link
JP (1) JPS58131775A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03217743A (en) * 1990-01-23 1991-09-25 Fujitsu General Ltd Operation control method for air conditioner

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2577719B2 (en) * 1984-07-06 1997-02-05 テキサス インスツルメンツ インコ−ポレイテツド Source electrode structure of field effect transistor
FR2583221B1 (en) * 1985-06-07 1987-07-31 Labo Electronique Physique SEMICONDUCTOR DEVICE FOR REALIZING THE DECOUPLING CAPACITIES PLACED BETWEEN THE SUPPLY AND THE GROUND OF THE INTEGRATED CIRCUITS
US6822321B2 (en) * 2002-09-30 2004-11-23 Cree Microwave, Inc. Packaged RF power transistor having RF bypassing/output matching network

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5588366A (en) * 1978-12-27 1980-07-04 Fujitsu Ltd Semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5588366A (en) * 1978-12-27 1980-07-04 Fujitsu Ltd Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03217743A (en) * 1990-01-23 1991-09-25 Fujitsu General Ltd Operation control method for air conditioner

Also Published As

Publication number Publication date
JPS58131775A (en) 1983-08-05

Similar Documents

Publication Publication Date Title
US5365197A (en) Low-noise distributed amplifier
JP3745901B2 (en) Switch circuit using MESFET
US6479843B2 (en) Single supply HFET with temperature compensation
EP0347111B1 (en) Metal-semiconductor field effect transistor device
EP0625822B1 (en) Semiconductor integrated circuit
US4709251A (en) Double Schottky-gate field effect transistor
JPH024146B2 (en)
US20030139159A1 (en) Protective circuit and radio frequency device using the same
EP1562284A1 (en) Bias circuit with threshold voltage change compensation and temperature change compensation
JP2679781B2 (en) Semiconductor device
US5032885A (en) Semiconductor device including a light receiving element, an amplifier, and an equalizer having a capacitor with the same laminate structure as the light receiving element
US5321284A (en) High frequency FET structure
US5399893A (en) Diode protected semiconductor device
US4786881A (en) Amplifier with integrated feedback network
JPS61206304A (en) Transistor integrated circuit
JPH0337327B2 (en)
JP3093230B2 (en) Semiconductor integrated circuit
JPS62269366A (en) Monolithic microwave integrated circuit
JPH1174367A (en) Semiconductor device and amplifier
JPS63280463A (en) Semiconductor device
JP3207451B2 (en) Microwave semiconductor device
JPH0652777B2 (en) Optical semiconductor device
JPS6348869A (en) Semiconductor device
JPH06104291A (en) Field effect-type semiconductor device
JP3499394B2 (en) Microwave integrated circuit