JPH0241315A - Epoxy resin composition - Google Patents
Epoxy resin compositionInfo
- Publication number
- JPH0241315A JPH0241315A JP19004988A JP19004988A JPH0241315A JP H0241315 A JPH0241315 A JP H0241315A JP 19004988 A JP19004988 A JP 19004988A JP 19004988 A JP19004988 A JP 19004988A JP H0241315 A JPH0241315 A JP H0241315A
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- curing agent
- molecular weight
- average molecular
- tables
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003822 epoxy resin Substances 0.000 title claims abstract description 130
- 229920000647 polyepoxide Polymers 0.000 title claims abstract description 130
- 239000000203 mixture Substances 0.000 title claims abstract description 32
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 77
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 claims abstract description 35
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 21
- 238000002156 mixing Methods 0.000 claims abstract description 11
- 150000001412 amines Chemical class 0.000 claims abstract description 8
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims abstract description 5
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims abstract description 5
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical class C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229930185605 Bisphenol Natural products 0.000 claims abstract description 4
- 150000008065 acid anhydrides Chemical class 0.000 claims abstract description 4
- 150000004982 aromatic amines Chemical class 0.000 claims abstract description 4
- 125000001424 substituent group Chemical group 0.000 claims abstract description 4
- 229920001568 phenolic resin Polymers 0.000 claims abstract description 3
- 239000005011 phenolic resin Substances 0.000 claims abstract description 3
- 239000000126 substance Substances 0.000 claims description 12
- 229920000642 polymer Polymers 0.000 claims description 9
- 239000004952 Polyamide Substances 0.000 claims description 7
- 229920002647 polyamide Polymers 0.000 claims description 7
- JESXATFQYMPTNL-UHFFFAOYSA-N 2-ethenylphenol Chemical compound OC1=CC=CC=C1C=C JESXATFQYMPTNL-UHFFFAOYSA-N 0.000 claims description 6
- 125000006575 electron-withdrawing group Chemical group 0.000 claims description 6
- VYKXQOYUCMREIS-UHFFFAOYSA-N methylhexahydrophthalic anhydride Chemical compound C1CCCC2C(=O)OC(=O)C21C VYKXQOYUCMREIS-UHFFFAOYSA-N 0.000 claims description 4
- LTVUCOSIZFEASK-MPXCPUAZSA-N (3ar,4s,7r,7as)-3a-methyl-3a,4,7,7a-tetrahydro-4,7-methano-2-benzofuran-1,3-dione Chemical compound C([C@H]1C=C2)[C@H]2[C@H]2[C@]1(C)C(=O)OC2=O LTVUCOSIZFEASK-MPXCPUAZSA-N 0.000 claims description 3
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 claims description 3
- MWSKJDNQKGCKPA-UHFFFAOYSA-N 6-methyl-3a,4,5,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1CC(C)=CC2C(=O)OC(=O)C12 MWSKJDNQKGCKPA-UHFFFAOYSA-N 0.000 claims description 3
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 claims description 3
- JMANVNJQNLATNU-UHFFFAOYSA-N oxalonitrile Chemical compound N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 claims description 3
- 229940014800 succinic anhydride Drugs 0.000 claims description 3
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 claims description 2
- 239000004593 Epoxy Substances 0.000 abstract description 9
- 125000001931 aliphatic group Chemical group 0.000 abstract 1
- 239000004566 building material Substances 0.000 abstract 1
- RINCXYDBBGOEEQ-UHFFFAOYSA-N succinic anhydride Chemical class O=C1CCC(=O)O1 RINCXYDBBGOEEQ-UHFFFAOYSA-N 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 15
- 229920005989 resin Polymers 0.000 description 14
- 239000011347 resin Substances 0.000 description 14
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 10
- 229910052739 hydrogen Inorganic materials 0.000 description 10
- 239000001257 hydrogen Substances 0.000 description 10
- 239000011159 matrix material Substances 0.000 description 9
- 238000004132 cross linking Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 125000002490 anilino group Chemical group [H]N(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 3
- ZZTCPWRAHWXWCH-UHFFFAOYSA-N diphenylmethanediamine Chemical compound C=1C=CC=CC=1C(N)(N)C1=CC=CC=C1 ZZTCPWRAHWXWCH-UHFFFAOYSA-N 0.000 description 3
- 230000009477 glass transition Effects 0.000 description 3
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical class FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- ZMVMYBGDGJLCHV-UHFFFAOYSA-N n-methyl-4-[[4-(methylamino)phenyl]methyl]aniline Chemical compound C1=CC(NC)=CC=C1CC1=CC=C(NC)C=C1 ZMVMYBGDGJLCHV-UHFFFAOYSA-N 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- KUBDPQJOLOUJRM-UHFFFAOYSA-N 2-(chloromethyl)oxirane;4-[2-(4-hydroxyphenyl)propan-2-yl]phenol Chemical compound ClCC1CO1.C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 KUBDPQJOLOUJRM-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- 229910015900 BF3 Inorganic materials 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- FQYUMYWMJTYZTK-UHFFFAOYSA-N Phenyl glycidyl ether Chemical compound C1OC1COC1=CC=CC=C1 FQYUMYWMJTYZTK-UHFFFAOYSA-N 0.000 description 1
- AWMVMTVKBNGEAK-UHFFFAOYSA-N Styrene oxide Chemical compound C1OC1C1=CC=CC=C1 AWMVMTVKBNGEAK-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- -1 aliphatic amines Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004841 bisphenol A epoxy resin Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000011353 cycloaliphatic epoxy resin Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000003733 fiber-reinforced composite Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 1
- 239000004845 glycidylamine epoxy resin Substances 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 150000003217 pyrazoles Chemical class 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 238000010125 resin casting Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Epoxy Resins (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、一般にはエポキシ樹脂組成物に関するもので
あり、更に詳しく言えば弾性率、硬度、耐熱性に優れて
いると共に、特に靭性に優れたエポキシ樹脂組成物、例
えば土木建築用材料、塗料、ライニング材、接着剤、電
気機器成形材料1機械部品、治工具、繊維強化複合材料
(以下FRPと略す)用マトリクス樹脂等を得ることの
できる優れたエポキシ樹脂組成物に関するものである。[Detailed Description of the Invention] [Field of Industrial Application] The present invention generally relates to an epoxy resin composition, and more specifically, an epoxy resin composition that has excellent elastic modulus, hardness, and heat resistance, and particularly has excellent toughness. It is possible to obtain epoxy resin compositions such as civil engineering and construction materials, paints, lining materials, adhesives, electrical equipment molding materials, machine parts, jigs and tools, matrix resins for fiber reinforced composite materials (hereinafter abbreviated as FRP), etc. This invention relates to an excellent epoxy resin composition.
従来、エポキシ樹脂は、耐熱性1弾性率、硬度および耐
薬品性に優れ、特にアラミド繊維、ガラス繊維及び炭素
繊維などの強化繊維とマトリクス樹脂からなる複合材料
に広く用いられている。しかしながら、従来のエポキシ
樹脂は、用途や使用方法によって種々の問題点がある。Conventionally, epoxy resins have excellent heat resistance, high elastic modulus, hardness, and chemical resistance, and are particularly widely used in composite materials made of reinforcing fibers such as aramid fibers, glass fibers, and carbon fibers, and matrix resins. However, conventional epoxy resins have various problems depending on their purpose and method of use.
特にFRP用マトリクス樹脂として用いた際のFRPの
機械的強度、とりわけ衝撃特性、疲労特性等に影響を与
える靭性に問題がある。そのために、エポキシ樹脂をマ
トリクス樹脂として使用する場合には、マトリクス樹脂
、つまりエポキシ樹脂硬化物に可撓性を付与させ1機械
的強度、特に靭性に優れたエポキシ樹脂硬化物を提供す
るべく、例えば硬化剤を選択したり、可撓性付与剤を添
加する等の種々の方法が検討されている。In particular, when used as a matrix resin for FRP, there is a problem with the mechanical strength of FRP, especially its toughness, which affects impact properties, fatigue properties, etc. For this reason, when using an epoxy resin as a matrix resin, it is necessary to impart flexibility to the matrix resin, that is, a cured epoxy resin, and to provide a cured epoxy resin with excellent mechanical strength, particularly toughness, for example. Various methods are being considered, such as selecting a hardening agent or adding a flexibility imparting agent.
このような従来の方法では、エポキシ樹脂硬化物の可撓
性は成る程度改善することはできるが、エポキシ樹脂硬
化物の本来の特長である弾性率、硬度及び耐熱性等の物
性の著しい低下が見られ。Although such conventional methods can improve the flexibility of cured epoxy resin products to some extent, they also significantly reduce the physical properties such as elastic modulus, hardness, and heat resistance, which are the original characteristics of cured epoxy resin products. Seen.
FRPの靭性の大きな改善を図り得ないばかりか、更に
は耐薬品性、耐候性、耐水性等をも低下させる問題が生
じる。Not only is it not possible to greatly improve the toughness of FRP, but there is also the problem of lowering chemical resistance, weather resistance, water resistance, etc.
一方、特開昭62−127317号には、−分子中に少
なくとも二個以上のポリエポキシ化合物、高分子量エポ
キシ樹脂、ジシアンジアミド、及び/又は硬化促進剤か
らなるプリプレグ用エポキシ樹脂組成物が開示されてい
る。On the other hand, JP-A-62-127317 discloses an epoxy resin composition for prepregs comprising at least two polyepoxy compounds, a high molecular weight epoxy resin, dicyandiamide, and/or a curing accelerator in the molecule. There is.
しかしながら、このようなエポキシ樹脂組成物をプリプ
レグ用エポキシ樹脂組成物として使用した場合には、タ
ック性、ドレープ性、樹脂フロー性1作業性、保存安定
性等に問題があり、その改善が望まれていた。However, when such an epoxy resin composition is used as an epoxy resin composition for prepreg, there are problems with tackiness, drape properties, resin flow properties, workability, storage stability, etc., and improvements are desired. was.
この点を改善するため、本発明者らは先に「ビスフェノ
ールA系エポキシ樹脂とエポキシ樹脂硬化剤とを含有し
、前記ビスフェノールA系エポキシ樹脂は、エポキシ当
量が190以下のものを40重量部以下含み、全体の数
平均分子量は600−1300であることを特徴とする
エポキシ樹脂組成物」を提案した(特願昭63−773
25号)。In order to improve this point, the inventors of the present invention previously proposed that ``contains a bisphenol A-based epoxy resin and an epoxy resin curing agent, and the bisphenol A-based epoxy resin has an epoxy equivalent of 190 or less and 40 parts by weight or less. "an epoxy resin composition characterized by having a total number average molecular weight of 600-1300" (Japanese patent application No. 63-773).
No. 25).
かかるエポキシ樹脂組成物はプリプレグ用樹脂として用
いた時のタック性、ドレープ性、作業性及び保存安定性
に優れたものであるが、その後の本発明者らの検討によ
れば、このエポキシ樹脂は数平均分子量が高くその溶融
粘度も高いことから、常温あるいはそれ以下の温度では
タック性やドレープ性が必ずしも良好なものとはいえず
、更には環境温度によってタック性やドレープ性が変化
してしまい、広い温度範囲で安定した性状を示すもので
なく、また靭性や可撓性等の機械的物性更には剛性及び
強度の点に若干の問題点があることが判明した。This epoxy resin composition has excellent tackiness, drapeability, workability, and storage stability when used as a prepreg resin, but according to subsequent studies by the present inventors, this epoxy resin has Due to its high number average molecular weight and high melt viscosity, it does not necessarily have good tack and drape properties at room temperature or lower temperatures, and furthermore, its tack and drape properties change depending on the environmental temperature. It has been found that these materials do not exhibit stable properties over a wide temperature range, and that they have some problems in mechanical properties such as toughness and flexibility, as well as in rigidity and strength.
本発明はかかる事情に鑑みてなされたものであって、そ
の目的は高温下はもとより常温あるいはそれ以下の温度
下においても優れたタック性及びドレープ性を示し、し
かもこれらの性状が広い温度範囲に亘って安定に持続す
ると共に靭性や可撓性等の機械的性能吏には剛性や強度
の物理的性能等の優れた成形体を与えるエポキシ樹脂組
成物を提供することにある。The present invention was made in view of the above circumstances, and its purpose is to exhibit excellent tack and drape properties not only at high temperatures but also at room temperature or lower temperatures, and which also exhibits excellent tack and drape properties over a wide temperature range. The object of the present invention is to provide an epoxy resin composition that remains stable over a long period of time and provides a molded article with excellent mechanical properties such as toughness and flexibility, as well as physical properties such as rigidity and strength.
本発明者らの検討によれば、上記目的は特定範囲の数平
均分子量をもち、かつ特定の分子量分布を有するエポキ
シ樹脂を用いると共に特定の混合系エポキシ樹脂硬化剤
を併用することによって達成できることが知見された。According to the studies of the present inventors, the above object can be achieved by using an epoxy resin having a number average molecular weight in a specific range and a specific molecular weight distribution, and by using a specific mixed epoxy resin curing agent. It was discovered.
すなわち、本発明のエポキシ樹脂組成物はビスフェノー
ルA系エポキシ樹脂とエポキシ樹脂硬化剤とを含有し、
前記ビスフェノールA系エポキシ樹脂は、数平均分子量
が450〜700であり、かつその重量平均分子量と数
平均分子量の比(重量平均分子量/数平均分子量)が1
.3−3.0であり、前記エポキシ樹脂硬化剤は、脂肪
族アミン、芳香族アミン、ポリアミドアミン、ジシアン
ポリアミド等のアミン系硬化剤;ビスフェノール類、フ
ェノールHffl類、ビニルフェノールの重合物等のフ
ェノール系硬化剤;及び無水マレイン酸、無水コハク酸
、メチルテトラヒドロ無水フタル酸、無水メチルナジッ
ク酸、メチルヘキサヒドロ無水フタル酸等の酸無水物類
硬化剤から選択される一種又は複数種のエポキシ樹脂硬
化剤(A)と下記一般式低級アルキル基及びフェニル基
から選ばれる基であり、 ;Y、 Y’はH1低級アル
キル基及び電子吸引性基から選ばれる基であり、;Rは
H及び低級アルキル基から選ばれる基であり、;m、
nは1〜4の整数であり置換基の数を表わす。)で示さ
れるエポキシ樹脂硬化剤(B)とを混合してなる混合系
のエポキシ樹脂硬化剤であることを特徴とする。That is, the epoxy resin composition of the present invention contains a bisphenol A-based epoxy resin and an epoxy resin curing agent,
The bisphenol A-based epoxy resin has a number average molecular weight of 450 to 700, and a ratio of the weight average molecular weight to the number average molecular weight (weight average molecular weight/number average molecular weight) of 1.
.. 3-3.0, and the epoxy resin curing agent is an amine-based curing agent such as aliphatic amine, aromatic amine, polyamide amine, dicyan polyamide; bisphenols, phenol Hffl, vinyl phenol polymers, etc. Phenolic curing agent; and one or more epoxy resins selected from acid anhydride curing agents such as maleic anhydride, succinic anhydride, methyltetrahydrophthalic anhydride, methylnadic anhydride, and methylhexahydrophthalic anhydride. Curing agent (A) and the following general formula: a group selected from a lower alkyl group and a phenyl group; ;Y and Y' are groups selected from H1 lower alkyl group and an electron-withdrawing group; A group selected from alkyl groups; m,
n is an integer of 1 to 4 and represents the number of substituents. ) The epoxy resin curing agent is a mixed type epoxy resin curing agent formed by mixing with the epoxy resin curing agent (B) shown in (B).
本発明で用いるビスフェノールA系エポキシ樹脂の第1
の特徴はその数平均分子量が450〜700.好ましく
は500〜650の範囲にあることである。数平均分子
量が450未満であると、低分子量成分が多くなり過ぎ
、得られるプリプレグのタック性やドレープ性が劣り、
また硬化時に樹脂フロー性が大きくなり、更には硬化物
の物性特に靭性が低下し、本発明の所期の目的を達成で
きない。また数平均分子量が700を越えると、靭性を
はじめとする良好な硬化物物性が得られるものの、低分
子量成分が少ないために常温下でのタック性やドレープ
性が低下し、それより低温下ではタック性やドレープ性
の性状が更に悪化し、プリプレグとして取扱うことが不
可能となる。The first bisphenol A-based epoxy resin used in the present invention
The feature is that its number average molecular weight is 450-700. Preferably it is in the range of 500 to 650. If the number average molecular weight is less than 450, the amount of low molecular weight components will be too large, resulting in poor tackiness and drape properties of the resulting prepreg.
Moreover, resin flowability increases during curing, and furthermore, physical properties, particularly toughness, of the cured product deteriorate, making it impossible to achieve the intended purpose of the present invention. In addition, when the number average molecular weight exceeds 700, good physical properties of the cured product including toughness can be obtained, but the tackiness and drape properties at room temperature decrease due to the lack of low molecular weight components, and at lower temperatures. The tackiness and drape properties deteriorate further, making it impossible to handle it as a prepreg.
本発明で用いるエポキシ樹脂の第2の特徴は。The second feature of the epoxy resin used in the present invention is.
重量平均分子量と数平均分子量の比(重量平均分子fi
t/数平均分子址)が1.3〜3.0、好ましくは1,
5〜2.7の範囲にあることである。Ratio of weight average molecular weight to number average molecular weight (weight average molecular weight fi
t/number average molecular weight) is 1.3 to 3.0, preferably 1,
It should be in the range of 5 to 2.7.
重量平均分子量と数平均分子量の比(重量平均分子量/
数平均分子量)が1.3未満であると、低分子量成分が
多くなり過ぎ、数平均分子量が450未満と同様な欠点
を生じる。また重量平均分子量と数平均分子量の比(重
量平均分子量/数平均分子量)が3.0を越えると、高
分子量成分が多くなり過ぎ。Ratio of weight average molecular weight to number average molecular weight (weight average molecular weight/
When the number average molecular weight is less than 1.3, the amount of low molecular weight components becomes too large, resulting in the same drawbacks as when the number average molecular weight is less than 450. Moreover, when the ratio of weight average molecular weight to number average molecular weight (weight average molecular weight/number average molecular weight) exceeds 3.0, the high molecular weight component becomes too large.
数平均分子量が700を越えた場合と同様な結果を生じ
るので好ましくない。If the number average molecular weight exceeds 700, the same results will occur, which is not preferable.
本発明で用いるビスフェノールA系エポキシ樹脂は、例
えば、油化シェル■製のエピコート1001.1004
.1007.1009.1010(商品名)等を適宜混
合することにより調製できる。The bisphenol A-based epoxy resin used in the present invention is, for example, Epicoat 1001.1004 manufactured by Yuka Shell ■.
.. It can be prepared by appropriately mixing 1007.1009.1010 (trade name) and the like.
更に、本発明者らの検討によれば、一般式低級アルキル
基及びフェニル基から選ばれる基であり、;Y、 Y’
はH1低級アルキル基及び電子吸引性基から選ばれる基
であり、;RはH及び低級アルキル基から選ばれる基で
あり、 ;m、 nは1〜4の整数であり、好ましくは
l又は2である置換基の数を表わす。)で示されるエポ
キシ樹脂硬化剤を、上記ビスフェノールA系エポキシ樹
脂と共に使用してエポキシ樹脂組成物を調製した場合に
は鎖状高分子が容易に形成され、特に靭性の点で優れた
エポキシ樹脂硬化物が得られるが、その反応エポキシ樹
脂の網目構造が緩くなり、剛性及び強度の点で若干の問
題があることが知見された。Furthermore, according to the studies of the present inventors, the general formula is a group selected from a lower alkyl group and a phenyl group;
is a group selected from H1 lower alkyl groups and electron-withdrawing groups; R is a group selected from H and lower alkyl groups; m and n are integers of 1 to 4, preferably l or 2 represents the number of substituents. ) When an epoxy resin composition is prepared by using the epoxy resin curing agent shown in ) together with the bisphenol A-based epoxy resin described above, a chain polymer is easily formed, and the epoxy resin curing agent is particularly excellent in terms of toughness. Although a product was obtained, it was found that the network structure of the reacted epoxy resin became loose and there were some problems in terms of rigidity and strength.
そこで、本発明者らは更に研究を進めたところ、通常、
エポキシ樹脂硬化剤として使用されている脂肪族アミン
、芳香族アミン、ポリアミドアミン、ジシアンポリアミ
ド等のアミン系硬化剤;ビスフェノール類、フェノール
樹脂類、ビニルフェノールの重合物等のフェノール系硬
化剤;及び無水マレイン酸、無水コハクは、メチルテト
ラヒドロ無水フタル酸、無水メチルナジック酸、メチル
ヘキサヒドロ無水フタル酸等の酸無水物類硬化剤から選
択される一種又は複数種のエポキシ樹脂硬化剤(A)と
下記一般式
低級アルキル基及びフェニル基から選ばれる基であり、
;Y、 Y’はH1低級アルキル基及び電子吸引性基か
ら選ばれる基であり、;RはH及び低級アルキル基から
選ばれる基であり、 ;m、 nは1−4の整数であり
置換基の数を表わす。)で示されるエポキシ樹脂硬化剤
(B)とを混合してなる混合系のエポキシ樹脂硬化剤を
上記ビスフェノールA系エポキシ樹脂と共に使用すれば
、高靭性を得ると共に、耐熱性、剛性及び強度も十分な
エポキシ樹脂硬化物を得ることができることを見出した
。Therefore, the inventors conducted further research and found that
Amine-based curing agents such as aliphatic amines, aromatic amines, polyamide amines, and dicyan polyamides used as epoxy resin curing agents; phenolic curing agents such as bisphenols, phenolic resins, and vinylphenol polymers; Maleic anhydride and succinic anhydride are combined with one or more epoxy resin curing agents (A) selected from acid anhydride curing agents such as methyltetrahydrophthalic anhydride, methylnadic anhydride, and methylhexahydrophthalic anhydride. A group selected from the following general formula lower alkyl group and phenyl group,
;Y and Y' are groups selected from H1 lower alkyl groups and electron-withdrawing groups, ;R is a group selected from H and lower alkyl groups, ;m and n are integers of 1-4 and are substituted Represents the number of groups. ) If a mixed epoxy resin curing agent is used with the above bisphenol A epoxy resin, high toughness and sufficient heat resistance, rigidity and strength can be obtained. It has been found that it is possible to obtain a cured epoxy resin product.
通常のエポキシ樹脂硬化剤(A)に、前記一般式で示さ
れる特異な硬化剤(B)を混合して得られる混合系のエ
ポキシ樹脂硬化剤をビスフェノールA系エポキシ樹脂と
共に使用した場合には、エポキシ樹脂硬化物の硬化反応
の反応初期段階で前記−般式で示される硬化剤により鎖
状高分子が形成され、反応の後期段階ではその鎖状高分
子の水酸基とエポキシ樹脂側のグリシジル基との反応で
次々に橋かけ反応を起こし、又同時に混合した他の硬化
剤によりエポキシ樹脂との橋かけ反応が行なわれ、且つ
、これらの反応は均一にしかも連続して進行するために
上述した反応の2つの橋かけ構造が互いに複雑にからみ
合った形態を示し硬化物のモルフォロジーは均一となり
、靭性のみならず剛性及び強度も十分に得られるものと
解される。When a mixed epoxy resin curing agent obtained by mixing a normal epoxy resin curing agent (A) with a specific curing agent (B) represented by the above general formula is used together with a bisphenol A-based epoxy resin, At the initial stage of the curing reaction of the cured epoxy resin, a chain polymer is formed by the curing agent represented by the above general formula, and at the later stage of the reaction, the hydroxyl group of the chain polymer and the glycidyl group on the epoxy resin side are formed. The reaction described above causes a cross-linking reaction one after another, and the other curing agent mixed at the same time causes a cross-linking reaction with the epoxy resin. It is understood that the two cross-linked structures are intricately intertwined with each other, and the morphology of the cured product is uniform, and that not only toughness but also sufficient rigidity and strength can be obtained.
本発明においては、エポキシ樹脂硬化剤(A)とエポキ
シ樹脂硬化剤(B)の混合割合は任意に選択し得るが、
好ましくは、エポキシ樹脂硬化剤(A)は活性水素量比
85〜5%、エポキシ樹脂硬化剤(B)は活性水素量比
15〜95%である。In the present invention, the mixing ratio of the epoxy resin curing agent (A) and the epoxy resin curing agent (B) can be selected arbitrarily;
Preferably, the epoxy resin curing agent (A) has an active hydrogen content of 85 to 5%, and the epoxy resin curing agent (B) has an active hydrogen content of 15 to 95%.
又、前記エポキシ樹脂硬化剤(A)の中では、特に、ジ
アミノジフェニルスルフォン(OOS) 、ジアミノジ
フェニルメタン(DDM)、ポリアミドアミン。Among the epoxy resin curing agents (A), particularly diaminodiphenylsulfone (OOS), diaminodiphenylmethane (DDM), and polyamide amine.
ジシアンジアミド(DICY)、メチルヘキサヒドロ無
水フタル酸が好適である。Dicyandiamide (DICY) and methylhexahydrophthalic anhydride are preferred.
又、前記エポキシ樹脂硬化剤(B)は、全R中、Rが低
級アルキル基(例えば炭素数1−6)とされる2級アニ
リン骨格の量は60モル%以上、好ましくは80モル%
以上がアルキル基であり、つまりRがアルキル基とされ
る2級アニリン骨格の量が全アニリン骨格中の60モル
%以上、好ましくは80モル2以上とされる。In addition, in the epoxy resin curing agent (B), the amount of secondary aniline skeleton in which R is a lower alkyl group (for example, carbon number 1-6) is 60 mol% or more, preferably 80 mol%.
The above are alkyl groups, that is, the amount of the secondary aniline skeleton in which R is an alkyl group is 60 mol % or more, preferably 80 mol % or more of the total aniline skeleton.
又、エポキシ樹脂硬化剤(B)において、Rは炭素数1
〜3のアルキル基が好適であり、Xは−CH,−(R’
、R//がHである場合)が好ましい、更に、エポキシ
樹脂硬化剤(B)において、Y、Y’はH1低級アルキ
ル基又は電子吸引性基から選択された1種又は複数種の
基が存在しており、電子吸引性基はF、 Cm、 Br
のハロゲン基、或いはニトロ基、トリフルオロメチル基
とされ、R/、R/7は炭素数1〜6、特に1〜3のア
ルキル基、 m、nは1又は2が好適である。In addition, in the epoxy resin curing agent (B), R has 1 carbon number.
~3 alkyl groups are preferred, where X is -CH,-(R'
, R// is H). Furthermore, in the epoxy resin curing agent (B), Y and Y' are one or more groups selected from H1 lower alkyl groups or electron-withdrawing groups. exists, and the electron-withdrawing groups are F, Cm, Br
is a halogen group, a nitro group, or a trifluoromethyl group, R/ and R/7 are preferably alkyl groups having 1 to 6 carbon atoms, particularly 1 to 3 carbon atoms, and m and n are preferably 1 or 2.
上述したように、上記エポキシ樹脂硬化剤(A)とエポ
キシ樹脂硬化剤(B)との混合したものから成る混合系
のエポキシ樹脂硬化剤を前記ビスフェノールA系エポキ
シ樹脂と共に使用した場合には。As mentioned above, when a mixed epoxy resin curing agent consisting of a mixture of the epoxy resin curing agent (A) and the epoxy resin curing agent (B) is used together with the bisphenol A-based epoxy resin.
エポキシ樹脂硬化剤の硬化反応の反応初期段階で、硬化
剤(B)により、鎖状高分子が形成される6反応の後期
段階ではその鎖状高分子内の水酸基とエポキシ樹脂側の
グリシジル基との反応で次々に橋かけ反応を起こし、同
時に混合した硬化剤(A)により、又エポキシ樹脂との
橋かけ反応が行なわれる。これらの反応は均一にしかも
連続して進行するため、上述した反応の2つの橋かけ構
造が互いに複雑にからみ合った形態を示す。硬化剤の混
合割合は好ましくは、エポキシ樹脂硬化剤(A)は活性
水素量比85〜5%、エポキシ樹脂硬化剤(B)は活性
水素量比15〜95%、好ましくは、エポキシ樹脂硬化
剤(A)は活性水素量比25〜75%、その時のエポキ
シ樹脂硬化剤(B)は活性水素量比75〜25%の範囲
で極めて好適な橋かけ反応が進行し、硬化物のモルフォ
ロジーは均一となる。特に、硬化剤(B)による橋かけ
反応は、ことのほか靭性に優れた性質を示し、硬化剤(
A)による橋かけ反応は主に弾性率、耐熱性、更には剛
性及び強度の向上に寄与するものと思われる。In the initial stage of the curing reaction of the epoxy resin curing agent, a chain polymer is formed by the curing agent (B).6 In the latter stage of the reaction, the hydroxyl group in the chain polymer and the glycidyl group on the epoxy resin side are formed. A cross-linking reaction is caused one after another by the reaction, and at the same time, a cross-linking reaction with the epoxy resin is also performed by the mixed curing agent (A). Since these reactions proceed uniformly and continuously, the two bridging structures of the above-mentioned reactions exhibit a form in which they are intricately entangled with each other. The mixing ratio of the curing agents is preferably such that the epoxy resin curing agent (A) has an active hydrogen content of 85 to 5%, and the epoxy resin curing agent (B) has an active hydrogen content of 15 to 95%. (A) has an active hydrogen content ratio of 25 to 75%, and the epoxy resin curing agent (B) has an active hydrogen content ratio of 75 to 25%, allowing a very suitable crosslinking reaction to proceed, and the morphology of the cured product to be uniform. becomes. In particular, the cross-linking reaction caused by the curing agent (B) shows exceptionally excellent toughness;
It is believed that the cross-linking reaction caused by A) mainly contributes to improvements in elastic modulus, heat resistance, and further rigidity and strength.
第1図には、エポキシ樹脂硬化剤(A)としてジアミノ
ジフェニルメタン(DDM)を使用し、エポキシ樹脂硬
化剤(B)としてジメチルジアミノジフェニルメタン(
MeDDM)を種々の割合にて混合した場合の混合系の
エポキシ樹脂硬化剤の耐衝撃強度(IZOD)とガラス
転移温度(Tg)が示される。In Figure 1, diaminodiphenylmethane (DDM) is used as the epoxy resin curing agent (A), and dimethyldiaminodiphenylmethane (DDM) is used as the epoxy resin curing agent (B).
The impact strength (IZOD) and glass transition temperature (Tg) of mixed epoxy resin curing agents when MeDDM) are mixed in various proportions are shown.
第1図を参照することにより、本発明に使用される混合
系のエポキシ樹脂硬化剤のIZOD値は複合側ライン(
点線で示す)より相当大きくなることが理解されるであ
ろう。特にエポキシ樹脂(B)を活性水素量比15%以
上混合させた場合にIZOD値は飛躍的に向上すること
が理解されるであろう。又。By referring to FIG. 1, the IZOD value of the mixed epoxy resin curing agent used in the present invention can be determined from the composite side line (
It will be appreciated that this will be considerably larger than that shown by the dotted line). In particular, it will be understood that when the epoxy resin (B) is mixed in an active hydrogen amount ratio of 15% or more, the IZOD value is dramatically improved. or.
IZOD値はエポキシ樹脂硬化剤(B)を活性水素量比
50%混合した場合に最大値を示しているが、これはこ
の混合割合のときに鎖状高分子の成長と架橋構造の形成
が十分且つバランスよく行なわれるためである。The IZOD value shows the maximum value when the epoxy resin curing agent (B) is mixed with an active hydrogen amount ratio of 50%, but this is because the growth of chain polymers and the formation of a crosslinked structure are sufficient at this mixing ratio. This is because it is carried out in a well-balanced manner.
更に、第1図のガラス転移温度Tgのグラフから本発明
の如く混合系のエポキシ樹脂硬化剤を使用した場合には
、エポキシ樹脂硬化剤(B)の比率を上げるに従ってT
gは緩やかに低下することが理解される。Furthermore, from the graph of the glass transition temperature Tg in FIG. 1, when a mixed epoxy resin curing agent is used as in the present invention, as the ratio of the epoxy resin curing agent (B) is increased, Tg
It is understood that g decreases gradually.
上記−数式で示されるエポキシ樹脂硬化剤(B)の特に
好ましいものについて具体例を例示すれば、次の通りで
ある。Particularly preferred examples of the epoxy resin curing agent (B) represented by the above formula are as follows.
このように本発明で用いる混合系のエポキシ樹脂硬化剤
は、上記ビスフェノールA系エポキシ樹脂の1当量に対
し通常活性水素当量で0.6〜1.4、好ましくは0.
8〜1.2の割合で配合される。硬化剤の活性水素当量
比が0.6未満又は1.4より大きい場合には、エポキ
シ樹脂硬化剤の耐熱性、硬度が低下することとなり好ま
しくない。As described above, the mixed epoxy resin curing agent used in the present invention usually has an active hydrogen equivalent of 0.6 to 1.4, preferably 0.0.
It is blended at a ratio of 8 to 1.2. If the active hydrogen equivalent ratio of the curing agent is less than 0.6 or greater than 1.4, the heat resistance and hardness of the epoxy resin curing agent will decrease, which is not preferable.
本発明によると上記硬化剤は、そのまま或いは溶剤に溶
解して、常温又は例えば50℃に加温してビスフェノー
ルA系エポキシ樹脂と混合すればよい。溶剤としては、
ケトン類(アセトン、メチルエチルケトン、メチルイソ
ブチルケトン等)、セロソルブ等)、アミドW4(ジメ
チルホルムアミド等)が好ましい。又、本発明に係るエ
ポキシ樹脂組成物の硬化条件は通常130℃で2時間、
好ましくは130℃で2時間硬化をさせた後、180℃
で2時間の後硬化を施したものである。According to the present invention, the curing agent may be mixed with the bisphenol A-based epoxy resin either as it is or dissolved in a solvent, heated to room temperature or, for example, 50°C. As a solvent,
Ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.), cellosolve, etc.), and amides W4 (dimethylformamide, etc.) are preferred. Further, the curing conditions for the epoxy resin composition according to the present invention are usually 130°C for 2 hours,
Preferably, after curing at 130°C for 2 hours, 180°C
It was post-cured for 2 hours.
更に、本発明のエポキシ樹脂組成物を調製するに際して
は、必要に応じて、オレフィンオキサイド、グリシジル
メタクリレート、スチレンオキサイド、フェニルグリシ
ジルエーテル等の反応性稀釈剤;フェノール類、3級ア
ミン類、イミダゾール類、三弗化ホウ素の錯塩、ピラゾ
ール類、アミノトリでゾール等の硬化促進剤:更にはシ
リカ粉末、アルミニウム粉末、マイカ、炭素カルシウム
等の充填剤を加えることもできる0通常これらの添加物
の使用量は、硬化剤とエポキシ樹脂の配合物に対し1反
応性稀釈剤は0〜15重量%、硬化促進剤は0〜5重量
%、充填剤は0〜70重量%とされる。Furthermore, when preparing the epoxy resin composition of the present invention, reactive diluents such as olefin oxide, glycidyl methacrylate, styrene oxide, and phenyl glycidyl ether; phenols, tertiary amines, imidazoles, Curing accelerators such as complex salts of boron trifluoride, pyrazoles, and aminotridesols; fillers such as silica powder, aluminum powder, mica, and calcium carbonate may also be added. Normally, the amounts of these additives used are: , the amount of monoreactive diluent is 0 to 15% by weight, the amount of curing accelerator is 0 to 5% by weight, and the amount of filler is 0 to 70% by weight, based on the curing agent and epoxy resin blend.
本発明の他の態様によれば、特に多少靭性を犠牲にして
も耐熱性等を向上させたい場合には、更に、エポキシ樹
脂成分としてビスフェノールA系エポキシ樹脂とは異な
る他のエポキシ樹脂を全エポキシ樹脂100重量部に対
して50重量部以下含有させることができる。この場合
化のエポキシ樹脂の含有量が50重量部を越えると靭性
を著しく低下させることとなり好ましくない。According to another aspect of the present invention, when it is desired to improve heat resistance etc. even at the cost of some toughness, another epoxy resin other than the bisphenol A-based epoxy resin may be added as an epoxy resin component to the whole epoxy resin. It can be contained in an amount of 50 parts by weight or less per 100 parts by weight of the resin. In this case, if the content of the epoxy resin exceeds 50 parts by weight, the toughness will be significantly reduced, which is not preferable.
他のエポキシ樹脂としては、任意の通常市販されている
エポキシ樹脂を一種又は複数種選択して使用し得るが、
例えば、グリシジルエーテル系エポキシ樹脂(ビスフェ
ノールA、F、S系エポキシ樹脂、ノボラック系エポキ
シ樹脂、臭素化ビスフェノールA系エポキシ樹脂)、環
式脂肪族エポキシ樹脂。As the other epoxy resin, one or more kinds of epoxy resins that are commonly available on the market can be selected and used.
For example, glycidyl ether-based epoxy resins (bisphenol A, F, S-based epoxy resins, novolac-based epoxy resins, brominated bisphenol A-based epoxy resins), cycloaliphatic epoxy resins.
グリシジルエステル系エポキシ樹脂、グリシジルアミン
系エポキシ樹脂、複素環式エポキシ樹脂を挙げることが
できる。Examples include glycidyl ester epoxy resins, glycidyl amine epoxy resins, and heterocyclic epoxy resins.
次に、本発明を実施例によりさらに詳細に説明する。 Next, the present invention will be explained in more detail with reference to Examples.
実施例1〜7
本実施例では、ビスフェノールA系エポキシ樹脂として
、エピコート828(エポキシ当量184〜194、数
平均分子量380)、1001(エポキシ当量450〜
500、数平均分子量900)、1004(エポキシ当
量875〜975、数平均分子量1600)、1007
(エポキシ当量1750〜2200、数平均分子量29
00)、 1009(エポキシ当量2400−3300
、数平均分子量3750)及び1010(エポキシ当量
3000〜5000、数平均分子量5500) (油化
シェル■製、商品名)を、硬化剤(B)としてはジメチ
ルジアミノジフェニルメタン(MeDDM)又はジメチ
ルジアミノジフェニルスルホン(MeDDS)を硬化剤
(A)としてはジアミノジフェニルメタン(DDM)又
はジシアンジアミド(DICY)を使用し、表−1に示
す割合で調製しプリプレグ用のマトリクス樹脂を調製し
た。Examples 1 to 7 In this example, as bisphenol A-based epoxy resins, Epicote 828 (epoxy equivalent weight 184 to 194, number average molecular weight 380), 1001 (epoxy equivalent weight 450 to
500, number average molecular weight 900), 1004 (epoxy equivalent weight 875-975, number average molecular weight 1600), 1007
(Epoxy equivalent: 1750-2200, number average molecular weight: 29
00), 1009 (epoxy equivalent weight 2400-3300
, number average molecular weight 3750) and 1010 (epoxy equivalent 3000-5000, number average molecular weight 5500) (manufactured by Yuka Shell ■, trade name), dimethyldiaminodiphenylmethane (MeDDM) or dimethyldiaminodiphenyl sulfone as the curing agent (B). (MeDDS) was prepared using diaminodiphenylmethane (DDM) or dicyandiamide (DICY) as the curing agent (A) in the proportions shown in Table 1 to prepare a matrix resin for prepreg.
尚、実施例7では、ビスフェノールA系エポキシ樹脂と
は異なるエポキシ樹脂成分の一例として更にエピコート
152(エポキシ当量172〜179.平均分子量37
0) (油化シェル■製、商品名)を20重量部添加し
た。In Example 7, Epikote 152 (epoxy equivalent: 172 to 179, average molecular weight: 37
0) (manufactured by Yuka Shell ■, trade name) was added in an amount of 20 parts by weight.
更に説明すると、各実施例において、表−1に示すエポ
キシ樹脂成分を150℃で加熱混合した。この混合物を
80℃まで冷却し、表−1に示す配合比で調製されたエ
ポキシ樹脂硬化剤を化学量論量添加して、常温で高靭性
を示すエポキシ樹脂組成物を調製した。To explain further, in each Example, the epoxy resin components shown in Table 1 were heated and mixed at 150°C. This mixture was cooled to 80° C., and a stoichiometric amount of an epoxy resin curing agent prepared at the compounding ratio shown in Table 1 was added to prepare an epoxy resin composition exhibiting high toughness at room temperature.
これを2枚のガラス板とテフロンのスペーサから成る型
に流し込み、 100℃、2時間加熱し、更に200℃
、2時間オーブン中で加熱し、硬化させた。Pour this into a mold made of two glass plates and a Teflon spacer, heat it at 100℃ for 2 hours, and then heat it to 200℃.
, heated in an oven for 2 hours to cure.
このようにして得られたエポキシ樹脂硬化物は3゜cm
X 30em X 3m+aの樹脂注型板から試験片
を切り出し、耐衝撃強度(IZOD)を測定した。その
結果を表−1に示す。またこのものはプリプレグ用とし
てのタック性、ドレープ性、樹脂フロー性、ハンドリン
グ性、保存安定性を有し、特に靭性の優れたエポキシ樹
脂であった。The epoxy resin cured product obtained in this way has a thickness of 3°cm.
A test piece was cut out from a resin casting plate measuring 30<em>x 3 m+a, and the impact strength (IZOD) was measured. The results are shown in Table-1. Moreover, this epoxy resin had tackiness, drapeability, resin flowability, handlingability, and storage stability suitable for use in prepregs, and was particularly excellent in toughness.
又、上述の如くに加熱混合したエポキシ樹脂を一方向に
揃えた炭素繊維(強度350kg/m+a”、弾性率3
2t/am” )に含浸させ、プリプレグを得た。この
プリプレグはタック性に優れ、また15〜30℃の温度
範囲においてもタック性が変化せず、タック性の温度依
存性がないことが分った。In addition, carbon fibers (strength 350 kg/m+a'', elastic modulus 3
2t/am") to obtain a prepreg. This prepreg has excellent tackiness, and the tackiness does not change even in the temperature range of 15 to 30°C, indicating that there is no temperature dependence of tackiness. It was.
ついで、このプリプレグを12層積層し、上述の硬化条
件で加熱して成形体を得た。この成形体の衝撃後圧縮強
度(C^工)を測定した結果を表−1に示す、実施例1
.2.3.4.5.6.7の組成物は製造時の作業性も
よく、且つプリプレグとしての上記諸特性も良好であっ
た。Next, 12 layers of this prepreg were laminated and heated under the above-mentioned curing conditions to obtain a molded body. The results of measuring the post-impact compressive strength (C) of this molded body are shown in Table 1, Example 1
.. The composition of 2.3.4.5.6.7 had good workability during production and also had good properties as a prepreg.
比較例1〜11
表−1に示す組成割合にて、上記実施例1〜7に説明し
たと同様にしてエポキシ樹脂組成物及びプリプレグ等を
作製し試験を行なった。その結果を表−1に示す。Comparative Examples 1 to 11 Epoxy resin compositions, prepregs, and the like were prepared and tested in the same manner as described in Examples 1 to 7 using the composition ratios shown in Table 1. The results are shown in Table-1.
本発明に比較すれば、タック性、タック安定性(タック
性の温度依存性)および保存安定性、靭性等が悪いこと
が分る。また、 IZOD値やCAI値が著しく低下し
ていることが理解される。When compared to the present invention, it can be seen that tackiness, tack stability (temperature dependence of tackiness), storage stability, toughness, etc. are poor. It is also understood that the IZOD value and CAI value have decreased significantly.
なお、表−1における硬化剤の記号は次のものを示す。The curing agent symbols in Table 1 indicate the following.
MeDDN ニジメチルジアミノジフェニルメタンMe
DDS ニジメチルジアミノジフェニルスルフォンDI
CY :ジシアンジアミド
なお、実施例5に係るエポキシ樹脂組成物、比較例8の
エポキシ樹脂組成物及び比較例9のエポキシ樹脂組成物
をマトリクス樹脂としたプリプレグのタック性の温度依
存性に関するデータを第2図に示す。MeDDN Nidimethyldiaminodiphenylmethane Me
DDS Nidimethyldiaminodiphenylsulfone DI
CY: Dicyandiamide Note that data regarding the temperature dependence of the tackiness of prepregs using the epoxy resin composition according to Example 5, the epoxy resin composition of Comparative Example 8, and the epoxy resin composition of Comparative Example 9 as matrix resins is shown in the second table. As shown in the figure.
第1図から、比較例8のようにエポキシ樹脂の重量平均
分子量と数平均分子量の比が2.2のものであってもエ
ポキシ樹脂の数平均分子量760のものは温度の上昇と
共にタック値が急昇し、プリプレグの粘着性が極端に変
化するので操業性が悪いことが分る。また、比較例9の
ようにエポキシ樹脂の数平均分子量が700を越え、か
つ重量平均分子量と数平均分子量が1.3〜3.0の範
囲外のものは、温度の上昇と共にプリプレグが柔らかく
なり過ぎプリプレグの取扱い性が悪くなることが理解さ
れる。From Figure 1, even if the ratio of the weight average molecular weight to the number average molecular weight of the epoxy resin is 2.2 as in Comparative Example 8, the tack value of the epoxy resin with a number average molecular weight of 760 decreases as the temperature increases. It can be seen that the operability is poor because the temperature rises rapidly and the adhesiveness of the prepreg changes drastically. In addition, when the number average molecular weight of the epoxy resin exceeds 700 and the weight average molecular weight and number average molecular weight are outside the range of 1.3 to 3.0, as in Comparative Example 9, the prepreg becomes soft as the temperature rises. It is understood that too much prepreg becomes difficult to handle.
これに対して、本発明(実施例5)のエポキシ樹脂をマ
トリクスとしたプリプレグは温度が変化してもタック値
はその適正レベルである200〜300gの範囲内にあ
り、その保存性や作業性が良好であることが分る。In contrast, the tack value of the prepreg using the epoxy resin matrix of the present invention (Example 5) remains within the appropriate level of 200 to 300 g even when the temperature changes, and its storage stability and workability are It can be seen that the results are good.
なお、タック値は、溶融樹脂を紙上に30μs程度コー
ティングしたサンプルをled!の短冊上にカットし、
このものをタック測定機(東洋精機■製ピクマタック)
の上下2ケのサンプルホールダーに固定し、数秒押し付
けた後、一定スピード(20+u+/分)で剥離し、そ
の際の応力をサンプルのタック値とした。In addition, the tack value is based on a sample coated with molten resin on paper for about 30 μs. Cut into strips of
This tack measuring device (Pikmatack manufactured by Toyo Seiki)
The sample was fixed to two upper and lower sample holders, and after being pressed for several seconds, it was peeled off at a constant speed (20+u+/min), and the stress at that time was taken as the tack value of the sample.
以上説明した如く構成される本発明に係るエポキシ樹脂
組成物は、該組成物にて得られたエポキシ樹脂硬化物が
、耐熱性、弾性率、硬度、および耐薬品性に優れると共
に、靭性、可撓性、衝撃強度に著しく優れ、破断強度、
熱衝撃に対するクラック性、密着性、接着性に優れたも
のである。このものを含有するプリプレグは高温下はも
とより常温あるいはそれ以下の温度下においても優れた
タック性及びドレープ性を示し、しかもこれらの。The epoxy resin composition according to the present invention configured as described above has a cured epoxy resin product obtained from the composition that has excellent heat resistance, elastic modulus, hardness, and chemical resistance, as well as toughness and flexibility. Excellent flexibility, impact strength, breaking strength,
It has excellent crack resistance, adhesion, and adhesion against thermal shock. A prepreg containing this material exhibits excellent tack and drape properties not only at high temperatures but also at room temperature or lower temperatures.
性状が広い温度範囲に亘って安定に持続するので、作業
性や保存安定性が飛躍的に増大する。Since the properties remain stable over a wide temperature range, workability and storage stability are dramatically increased.
第1図は、DDMとMeDDMとの混合系エポキシ樹脂
硬化剤の混合割合と、 IZOD?i[r!!!値及び
ガラス転移温度Tg値との関係を示すグラフである。
第2図は本発明に係るエポキシ樹脂組成物と比較例に係
るエポキシ樹脂組成物をマトリクス樹脂としたプリプレ
グのタック値とタック安定性(タック値の温度依存性)
について比較したグラフである。
第1図
MeDDM/DDM 1ff164
特許出願人 東亜燃料工業株式会社
too 85 70 50 25西已杏
比
DMFigure 1 shows the mixing ratio of the mixed epoxy resin curing agent of DDM and MeDDM, and the IZOD? i[r! ! ! It is a graph showing the relationship between the value and the glass transition temperature Tg value. Figure 2 shows the tack value and tack stability (temperature dependence of tack value) of prepregs using the epoxy resin composition according to the present invention and the epoxy resin composition according to a comparative example as matrix resins.
This is a graph comparing . Figure 1 MeDDM/DDM 1ff164 Patent applicant Toa Fuel Industries Co., Ltd. too 85 70 50 25 Anbi Nishimi DM
Claims (1)
硬化剤とを含有し、前記ビスフェノールA系エポキシ樹
脂は、数平均分子量が450〜700であり、かつその
重量平均分子量と数平均分子量の比(重量平均分子量/
数平均分子量)が1.3〜3.0であり、前記エポキシ
樹脂硬化剤は、脂肪族アミン、芳香族アミン、ポリアミ
ドアミン、ジシアンポリアミド等のアミン系硬化剤;ビ
スフェノール類、フェノール樹脂類、ビニルフェノール
の重合物等のフェノール系硬化剤;及び無水マレイン酸
、無水コハク酸、メチルテトラヒドロ無水フタル酸、無
水メチルナジック酸、メチルヘキサヒドロ無水フタル酸
等の酸無水物類硬化剤から選択される一種又は複数種の
エポキシ樹脂硬化剤(A)と下記一般式▲数式、化学式
、表等があります▼ (式中、Xは▲数式、化学式、表等があります▼、▲数
式、化学式、表等があります▼、▲数式、化学式、表等
があります▼、▲数式、化学式、表等があります▼、▲
数式、化学式、表等があります▼、−S−、−O−、▲
数式、化学式、表等があります▼、▲数式、化学式、表
等があります▼及び▲数式、化学式、表等があります▼
から選ばれ;R′、R″はH、低級アルキル基及びフェ
ニル基から選ばれる基であり、;Y、Y′はH、低級ア
ルキル基及び電子吸引性基から選ばれる基であり、;R
はH及び低級アルキル基から選ばれる基であり、;m、
nは1〜4の整数であり置換基の数を表わす。)で示さ
れるエポキシ樹脂硬化剤(B)とを混合してなる混合系
のエポキシ樹脂硬化剤であることを特徴とするエポキシ
樹脂組成物。(1) Contains a bisphenol A-based epoxy resin and an epoxy resin curing agent, and the bisphenol A-based epoxy resin has a number average molecular weight of 450 to 700, and the ratio of the weight average molecular weight to the number average molecular weight (weight average Molecular weight/
number average molecular weight) is 1.3 to 3.0, and the epoxy resin curing agent is an amine-based curing agent such as aliphatic amine, aromatic amine, polyamide amine, dicyan polyamide; bisphenols, phenolic resins, selected from phenolic curing agents such as polymers of vinylphenol; and acid anhydride curing agents such as maleic anhydride, succinic anhydride, methyltetrahydrophthalic anhydride, methylnadic anhydride, and methylhexahydrophthalic anhydride. One or more types of epoxy resin curing agent (A) and the following general formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (In the formula, X is ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ Numerical formulas, chemical formulas, tables, etc. There are ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲
There are mathematical formulas, chemical formulas, tables, etc. ▼, -S-, -O-, ▲
There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ and ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼
R' and R'' are groups selected from H, lower alkyl groups and phenyl groups; Y and Y' are groups selected from H, lower alkyl groups and electron-withdrawing groups;
is a group selected from H and lower alkyl groups; m,
n is an integer of 1 to 4 and represents the number of substituents. ) An epoxy resin composition characterized in that it is a mixed epoxy resin curing agent obtained by mixing an epoxy resin curing agent (B) shown in the following formula.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19004988A JPH0241315A (en) | 1988-07-29 | 1988-07-29 | Epoxy resin composition |
US07/385,699 US4985530A (en) | 1988-07-29 | 1989-07-27 | Thermosetting epoxy resin composition |
EP89307696A EP0353089B1 (en) | 1988-07-29 | 1989-07-28 | Thermosetting epoxy resin composition |
DE68920086T DE68920086T2 (en) | 1988-07-29 | 1989-07-28 | Thermosetting epoxy resin composition. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19004988A JPH0241315A (en) | 1988-07-29 | 1988-07-29 | Epoxy resin composition |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0241315A true JPH0241315A (en) | 1990-02-09 |
Family
ID=16251498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19004988A Pending JPH0241315A (en) | 1988-07-29 | 1988-07-29 | Epoxy resin composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0241315A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012153746A (en) * | 2011-01-21 | 2012-08-16 | Yamamoto Chem Inc | Epoxy resin composition for fiber-reinforced composite material |
-
1988
- 1988-07-29 JP JP19004988A patent/JPH0241315A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012153746A (en) * | 2011-01-21 | 2012-08-16 | Yamamoto Chem Inc | Epoxy resin composition for fiber-reinforced composite material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0262891B1 (en) | Resin composition of thermosetting resin and thermoplastic resin | |
JP2013529709A (en) | Curable epoxy resin composition and composite material produced therefrom | |
US5091474A (en) | Epoxy resin curing agent based on blends containing disecondary aromatic diamines | |
KR20110131222A (en) | Curable epoxy resin compositions and cured products therefrom | |
JP3796953B2 (en) | Resin composition for fiber reinforced composite material, prepreg and fiber reinforced composite material | |
EP1302495B1 (en) | Epoxy resin composition and fiber-reinforced composite material formed with the epoxy resin composition | |
JP5870379B2 (en) | Polymer concrete composition | |
US4985530A (en) | Thermosetting epoxy resin composition | |
JPH0639519B2 (en) | Epoxy resin composition and prepreg | |
JPS61247724A (en) | Epoxy resin mixture | |
JPH01201321A (en) | Matrix resin composition | |
JPS58138729A (en) | Thermosetting molding composition | |
JPH0241315A (en) | Epoxy resin composition | |
JPS62141039A (en) | Resin composition for fiber reinforced prepreg | |
JPH02103223A (en) | Epoxy resin composition | |
JPS59174616A (en) | Epoxy resin composition and prepreg | |
JP5918425B1 (en) | Imido group-containing naphthol resin production method, thermosetting resin composition, cured product thereof, and use | |
JPH0241314A (en) | Epoxy resin composition | |
JPH02103222A (en) | Epoxy resin composition | |
JPH03243619A (en) | Epoxy resin composition | |
JPH031327B2 (en) | ||
JPH02269115A (en) | Epoxy resin composition | |
JPH01278524A (en) | Epoxy resin composition | |
JPS624716A (en) | Curable epoxy resin mixture | |
JPH01292028A (en) | Epoxy resin amine-based curing agent |