JPH0241165B2 - - Google Patents

Info

Publication number
JPH0241165B2
JPH0241165B2 JP57209158A JP20915882A JPH0241165B2 JP H0241165 B2 JPH0241165 B2 JP H0241165B2 JP 57209158 A JP57209158 A JP 57209158A JP 20915882 A JP20915882 A JP 20915882A JP H0241165 B2 JPH0241165 B2 JP H0241165B2
Authority
JP
Japan
Prior art keywords
processing chambers
lower processing
plasma
disk
sample holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57209158A
Other languages
Japanese (ja)
Other versions
JPS5999716A (en
Inventor
Toshio Masuoka
Okihiko Hirasa
Masao Suda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP20915882A priority Critical patent/JPS5999716A/en
Publication of JPS5999716A publication Critical patent/JPS5999716A/en
Publication of JPH0241165B2 publication Critical patent/JPH0241165B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Description

【発明の詳細な説明】 本発明は、低温プラズマを用いて薄膜を形成す
る装置に関するものであつて、特に試料ホルダー
を回転円板に構成して所要の薄膜を多段的に得る
ようにしたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for forming a thin film using low-temperature plasma, and in particular, an apparatus in which the sample holder is configured as a rotating disk to obtain a desired thin film in multiple stages. It is.

近年、薄膜技術の重要性がエレクトロニクス、
化学工業等の多くの分野において認識されてい
る。この発明は、低温プラズマの化学性を利用し
て減圧下に薄膜形成を行うものであつて、プラズ
マ重合法あるいはプラズマCVD法への応用が可
能のものである。
In recent years, the importance of thin film technology has increased in electronics,
It is recognized in many fields such as the chemical industry. This invention utilizes the chemistry of low-temperature plasma to form a thin film under reduced pressure, and can be applied to plasma polymerization or plasma CVD.

すなわち、本発明は、低温プラズマを用いて薄
膜を形成する装置において、二重隔壁をもつて内
部に不活性気体収容室を形成した隔板により気密
的に区画された上下処理室を有する外箱の内部
に、中心よりほぼ等距離の位置の表裏面に複数の
試料取付用の凹陥部を有する円板形試料ホルダー
を、あらかじめ該隔板に設けたスリツトに回転可
能に貫挿して上下処理室にわたり立設軸支すると
ともに、上下処理室内の上記凹陥部に各対応する
位置に対向して2対の電極板を各設立し、さらに
外箱周面に、上下処理室、不活性気体収容室に通
じる気体供給管、排気管、上下電極板に接続する
電力供給回路及び円板形試料ホルダーの回転機構
を各付設してなるプラズマによる多段薄膜形成装
置を提供するものである。
That is, the present invention provides an apparatus for forming a thin film using low-temperature plasma, in which an outer box has upper and lower processing chambers that are airtightly partitioned by a double partition wall and an inert gas storage chamber inside. A disk-shaped sample holder, which has a plurality of recesses for mounting samples on the front and back surfaces at positions approximately equidistant from the center, is rotatably inserted into the slit provided in the partition plate in advance to open the upper and lower processing chambers. The upper and lower processing chambers, the inert gas storage chamber, and the upper and lower processing chambers are provided with two pairs of electrode plates facing each other at corresponding positions in the upper and lower processing chambers. The present invention provides a multi-stage thin film forming apparatus using plasma, which is equipped with a gas supply pipe leading to a gas supply pipe, an exhaust pipe, a power supply circuit connected to upper and lower electrode plates, and a rotating mechanism for a disk-shaped sample holder.

本発明の実施例を図面について説明すると、1
は外箱であつて、底板2上に両端にフランジを有
する2個の立筒3,3を、中間に上下2枚の軟質
膜体等の板体4,4からなる隔板を挾んで不活性
気体収容室5を介設するとともに、上端に蓋板6
を被装して上下処理室7,8を形成した1つの密
閉槽に作られている。
Embodiments of the present invention will be explained with reference to the drawings: 1
is an outer box, which is made up of two vertical tubes 3, 3 having flanges at both ends placed on a bottom plate 2, with a partition plate consisting of two upper and lower plates 4, 4 such as upper and lower soft membrane bodies sandwiched between them. An active gas storage chamber 5 is provided, and a lid plate 6 is provided at the upper end.
The upper and lower processing chambers 7 and 8 are formed into a single sealed tank.

この外箱1内には、1つの円板の表裏面にそれ
ぞれ中心を挾んで対応位置に試料取付用の浅い凹
陥部9,9,9,9を設けた円板形試料ホルダー
10が、前記板体4,4に透設したスリツトに気
密状態にはめ込まれて立設され、上下処理室の気
体の混合を防ぐとともに不活性気体収容室5の上
面に添つて水平に設けられた中心軸11を外部に
設けたモータ12から自在接手を介して低速回転
されるようになつている。また、上下処理室7,
8内には上記円板形試料ホルダー10を前後から
挾んでプラズマ発生用の各一対の上部電極板1
3,13、下部電極板14,14がそれぞれ凹陥
部9…と対向するようにして支柱15,15によ
つて立設されている。
Inside this outer box 1, a disk-shaped sample holder 10 is provided with shallow recesses 9, 9, 9, 9 for mounting a sample at corresponding positions on the front and back surfaces of one disk, sandwiching the center. A central shaft 11 is vertically installed in a hermetically sealed manner through slits formed in the plates 4, 4 to prevent gas from mixing in the upper and lower processing chambers, and is provided horizontally along the upper surface of the inert gas storage chamber 5. It is designed to be rotated at low speed by a motor 12 provided externally via a universal joint. In addition, the upper and lower processing chambers 7,
Inside 8 are a pair of upper electrode plates 1 for plasma generation, sandwiching the disk-shaped sample holder 10 from the front and back.
3, 13 and lower electrode plates 14, 14 are erected by supports 15, 15 so as to face the recesses 9, respectively.

外箱1の周面には前記モーチ12のほか、上下
処理室7,8に各通じる気体供給管16,17な
らびに不活性気体収容室5に通ずる不活性気体供
給管18が一端を所定の供給源に接続して設けら
れ、また反対側には上部処理室7からの排気管1
9、底板2を貫通して下部処理室からの排気管2
0、同じく上端を第2図に点線で示すように3個
所に分岐して不活性気体収容室5からの排気管2
1が各配設されている。さらに外箱1の周面には
上下電極板13,13,14,14に通ずる電力
供給回路22,23、また一端を上下処理室7,
8および不活性気体収容室5内に臨ませて設けら
れた圧力センサー24,25,26が各配設され
ている。
In addition to the moat 12, the outer box 1 has gas supply pipes 16 and 17 leading to the upper and lower processing chambers 7 and 8, and an inert gas supply pipe 18 leading to the inert gas storage chamber 5, one end of which is connected to a predetermined supply line. An exhaust pipe 1 from the upper processing chamber 7 is provided on the opposite side.
9. Exhaust pipe 2 from the lower processing chamber passing through the bottom plate 2
0. Similarly, the upper end is branched into three locations as shown by dotted lines in FIG. 2, and an exhaust pipe 2 is connected from the inert gas storage chamber 5.
1 is arranged in each case. Further, on the circumferential surface of the outer box 1, there are power supply circuits 22, 23 connected to the upper and lower electrode plates 13, 13, 14, 14, and one end connected to the upper and lower processing chambers 7,
8 and pressure sensors 24, 25, and 26 facing into the inert gas storage chamber 5 are provided.

本発明は上記の構成であつて、これを用いるに
は外箱の蓋板6を開けて円板形試料ホルダー10
の凹陥部9,9,9,9に試料である薄膜を嵌合
装着したのち、試料取出し口を閉じて、上下処理
室7,8を同時に排気しながら、それぞれ所要の
気体を導入して所定圧力とした後、円板形試料ホ
ルダー10を回転し、上下電極板13,13,1
4,14の両方あるいはどちらか一方に、高周波
電力を印加し、プラズマ処理を行う。この際、試
料はホルダーの回転に伴つて上下処理室7,8を
交互に通過し、所要の組成、構造の薄膜が形成さ
れる。また、上下処理室7,8の間に圧力勾配が
ある条件下で操作する場合には、隔壁である不活
性気体収容室5に不活性ガスを流入させてバラン
スをとる。この上下処理室7,8の気体混合の有
無は、プラズマの発光スペクトルを分光器により
モニターすることにより検出できる。プラズマ重
合反応中の容器内圧力は、反応開始前と異なるの
が普通であり、重合が主に起こる条件では圧力が
低下し、分解が主に起こる条件では逆に増加す
る。また、重合の速い膜原料気体では、流量を増
加するとかえつて容器内圧力が低下することがあ
る。一般に、酸素、フツ素を含む気体では、高電
力条件で容器内圧力が増加することが多く、逆に
不飽和化合物、環状化合物、窒素、シリコンを含
む気体では高電力でも圧力低下することが多い。
上述のような圧力変化に関する傾向は気体によつ
て異なるのでそれぞれ圧力変化を確かめた上で両
室のバランスをとるようにする。
The present invention has the above-mentioned configuration, and in order to use it, open the cover plate 6 of the outer box and place the disc-shaped sample holder 10 in place.
After fitting and mounting the thin film as a sample into the concave portions 9, 9, 9, 9, the sample take-out port is closed, and while the upper and lower processing chambers 7, 8 are simultaneously evacuated, the required gases are introduced into each of them to a predetermined value. After applying the pressure, the disk-shaped sample holder 10 is rotated, and the upper and lower electrode plates 13, 13, 1
High frequency power is applied to either or both of 4 and 14 to perform plasma treatment. At this time, the sample passes alternately through the upper and lower processing chambers 7 and 8 as the holder rotates, and a thin film having the desired composition and structure is formed. Further, when operating under conditions where there is a pressure gradient between the upper and lower processing chambers 7 and 8, balance is maintained by flowing an inert gas into the inert gas storage chamber 5, which is a partition wall. The presence or absence of gas mixing in the upper and lower processing chambers 7 and 8 can be detected by monitoring the plasma emission spectrum with a spectrometer. The pressure inside the container during the plasma polymerization reaction is usually different from that before the reaction starts; under conditions where polymerization mainly occurs, the pressure decreases, and on the contrary, under conditions where decomposition mainly occurs, the pressure increases. Furthermore, in the case of a membrane raw material gas that polymerizes quickly, increasing the flow rate may actually reduce the pressure inside the container. In general, for gases containing oxygen and fluorine, the pressure inside the container often increases under high power conditions, and conversely, for gases containing unsaturated compounds, cyclic compounds, nitrogen, and silicon, the pressure often decreases even under high power conditions. .
The above-mentioned tendencies regarding pressure changes vary depending on the gas, so check the pressure changes for each type before balancing the two chambers.

本発明の装置では、次に述べるようないくつか
の異なつた操作様式が可能である。
Several different modes of operation are possible with the device of the invention, as described below.

(1) 一定時間ごとに円盤を180゜回転させ積層膜を
形成する。この場合各処理室には、基質膜のあ
る時間だけ膜原料気体と電力を供給すればよ
い。
(1) Rotate the disk 180° at regular intervals to form a laminated film. In this case, it is sufficient to supply membrane raw material gas and electric power to each processing chamber for a certain period of time for the substrate membrane.

(2) 円板形試料ホルダー10の回転速度あるいは
180゜回転の間隔を徐々に変えることによつて厚
み方向にある化学構造分布をもつ薄膜が形成で
きる。この場合、両室同時に気体と電力を供給
する必要がある。
(2) Rotation speed of the disc-shaped sample holder 10 or
By gradually changing the interval of 180° rotation, a thin film with a certain chemical structure distribution in the thickness direction can be formed. In this case, it is necessary to supply gas and power to both chambers simultaneously.

(3) 一定で円板形試料ホルダー10を回転させ両
方に同じ気体を供給しながら、電力を一方の処
理室にのみ供給する。
(3) Electric power is supplied to only one processing chamber while rotating the disk-shaped sample holder 10 at a constant rate and supplying the same gas to both chambers.

各操作様式の特徴としては次に挙げるものがあ
る。
The characteristics of each operation mode are as follows.

(1)の操作様式の場合、一方の処理室で基質膜を
処理中は、他方に気体を供給しないので、両方の
気体の混合はなく、また処理室が別々なためプラ
ズマによるスパツタリングなどによつて成分元素
の混合も防止でき明瞭な積層膜の形成が可能であ
る。
In the case of operation mode (1), while the substrate film is being processed in one processing chamber, gas is not supplied to the other, so there is no mixing of both gases, and since the processing chambers are separate, plasma sputtering, etc. Therefore, it is possible to prevent mixing of component elements and form a clear laminated film.

(2)の場合、2種の気体混合物をプラズマ中に供
給し、混合組成を徐々に変化させてゆく場合と異
なりプラズマ中での気体相互の反応が起らないた
め生成膜の化学構造が比較的予測しやすく、制御
もより容易である。
In case (2), unlike the case where a mixture of two gases is supplied into the plasma and the mixture composition is gradually changed, there is no mutual reaction between the gases in the plasma, so the chemical structure of the produced film is comparable. targets are more predictable and easier to control.

(3)の場合、従来から問題となつていたプラズマ
重合膜中のラジカルの蓄積を半サイクル中原料気
体に接触させることにより抑制でき、膜性能の経
時変化を小さくできる。ただし、同様の効果は、
電力供給を連続パルスとして行う場合にも観測さ
れているが、電力のモニターが不可能であり、本
発明の装置では厳密なモニターが可能である。
In the case of (3), the accumulation of radicals in the plasma-polymerized membrane, which has been a problem in the past, can be suppressed by contacting the raw material gas during the half cycle, and changes in membrane performance over time can be reduced. However, similar effects
This has also been observed when power is supplied as continuous pulses, but it is impossible to monitor the power, but strict monitoring is possible with the device of the present invention.

以上のように、本発明においては、プラズマ薄
膜形成操作を同一の装置で、円板を回転させるだ
けで実現できる点は既存の汎用プラズマ膜形成装
置にない特徴である。
As described above, the present invention is unique in that existing general-purpose plasma film forming apparatuses do not have the ability to perform plasma thin film forming operations using the same apparatus by simply rotating a disk.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は側面断面図、第2図は蓋板を取りはず
した状態の平面図である。 1……外箱、4……板体、5……不活性気体収
容室、6……蓋板、7……上部処理室、8……下
部処理室、9……凹陥部、10……円板形試料ホ
ルダー、12……モータ、13……上部電極板、
14……下部電極板、16,17……気体供給
管、18……不活性気体供給管、19,20,2
1……排気管、22,23……電力供給回路、2
4,25,26……圧力センサー。
FIG. 1 is a side sectional view, and FIG. 2 is a plan view with the lid plate removed. DESCRIPTION OF SYMBOLS 1... Outer box, 4... Plate body, 5... Inert gas storage chamber, 6... Lid plate, 7... Upper processing chamber, 8... Lower processing chamber, 9... Recessed part, 10... Disc-shaped sample holder, 12... motor, 13... upper electrode plate,
14... Lower electrode plate, 16, 17... Gas supply pipe, 18... Inert gas supply pipe, 19, 20, 2
1... Exhaust pipe, 22, 23... Power supply circuit, 2
4, 25, 26...pressure sensor.

Claims (1)

【特許請求の範囲】[Claims] 1 低温プラズマを用いて薄膜を形成する装置に
おいて、二重隔壁をもつて内部に不活性気体収容
室を形成した隔板により気密的に区画された上下
処理室を有する外箱の内部に、中心よりほぼ等距
離の位置の表裏面に複数の試料取付用の凹陥部を
有する円板形試料ホルダーを、あらかじめ該隔板
に設けたスリツトに回転可能に貫挿して上下処理
室にわたり立設軸支するとともに、上下処理室内
の上記凹陥部に各対応する位置に対向して2対の
電極板を各立設し、さらに外箱周面に、上下処理
室、不活性気体収容室に通じる気体供給管、排気
管、上下電極板に接続する電力供給回路及び円板
形試料ホルダーの回転機構を各付設してなるプラ
ズマによる多段薄膜形成装置。
1 In an apparatus for forming thin films using low-temperature plasma, a central A disk-shaped sample holder, which has a plurality of recesses for attaching samples on the front and back surfaces at positions approximately equidistant from each other, is rotatably inserted into a slit provided in the partition plate in advance, and is installed with an upright shaft support across the upper and lower processing chambers. At the same time, two pairs of electrode plates are provided upright so as to face each other at positions corresponding to the recessed portions in the upper and lower processing chambers, and furthermore, gas supply lines are provided on the circumferential surface of the outer box that communicate with the upper and lower processing chambers and the inert gas storage chamber. A multi-stage thin film forming apparatus using plasma, which is equipped with a pipe, an exhaust pipe, a power supply circuit connected to the upper and lower electrode plates, and a rotating mechanism for a disk-shaped sample holder.
JP20915882A 1982-11-29 1982-11-29 Multi-stage thin-film forming apparatus Granted JPS5999716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20915882A JPS5999716A (en) 1982-11-29 1982-11-29 Multi-stage thin-film forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20915882A JPS5999716A (en) 1982-11-29 1982-11-29 Multi-stage thin-film forming apparatus

Publications (2)

Publication Number Publication Date
JPS5999716A JPS5999716A (en) 1984-06-08
JPH0241165B2 true JPH0241165B2 (en) 1990-09-14

Family

ID=16568274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20915882A Granted JPS5999716A (en) 1982-11-29 1982-11-29 Multi-stage thin-film forming apparatus

Country Status (1)

Country Link
JP (1) JPS5999716A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5350973A (en) * 1976-10-20 1978-05-09 Matsushita Electric Ind Co Ltd Vapor phase growth method and vapor phase growth apparatus
JPS53142868A (en) * 1977-05-18 1978-12-12 Gnii Pi Redkometa Device for epitaxially growing semiconductor period structure from gaseous phase

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5350973A (en) * 1976-10-20 1978-05-09 Matsushita Electric Ind Co Ltd Vapor phase growth method and vapor phase growth apparatus
JPS53142868A (en) * 1977-05-18 1978-12-12 Gnii Pi Redkometa Device for epitaxially growing semiconductor period structure from gaseous phase

Also Published As

Publication number Publication date
JPS5999716A (en) 1984-06-08

Similar Documents

Publication Publication Date Title
US4430547A (en) Cleaning device for a plasma etching system
US4673588A (en) Device for coating a substrate by means of plasma-CVD or cathode sputtering
AU546700B2 (en) Rotary dispenser
KR20130075696A (en) Film forming method
JPH0241165B2 (en)
JPS58110673A (en) Reactive sputtering device
JPS59112611A (en) Vapor growth apparatus
JPS5841658B2 (en) dry etching equipment
KR20210059620A (en) Temperature measurement system, temperature measurement method, and substrate processing apparatus
Beams et al. Magnetically suspended equilibrium ultracentrifuge
JPS61212014A (en) Semiconductor wafer processing device using chemical vapor deposition method
JP3056241B2 (en) Heat treatment equipment
US11702747B2 (en) Rotation driving mechanism and rotation driving method, and substrate processing apparatus and substrate processing method using same
JPS61174388A (en) Etching device
JPH0278225A (en) Precipitation method for organosilane
JPS63147894A (en) Vapor growth method and vertical vapor growth device
JPH05263225A (en) Sputtering method
JPH0193130A (en) Vertical furnace
US20220186373A1 (en) Substrate processing device
JPH0519352U (en) Microwave plasma CVD device
JP2686996B2 (en) Vacuum processing equipment
JPH02115359A (en) Formation of compound thin film and device therefor
JPH05160027A (en) Film formation device
JPH05238A (en) Liquid material supply device
JPH0382768A (en) Method and device for forming metal oxide thin film