JPH0240580A - Observing apparatus of domain - Google Patents

Observing apparatus of domain

Info

Publication number
JPH0240580A
JPH0240580A JP19169588A JP19169588A JPH0240580A JP H0240580 A JPH0240580 A JP H0240580A JP 19169588 A JP19169588 A JP 19169588A JP 19169588 A JP19169588 A JP 19169588A JP H0240580 A JPH0240580 A JP H0240580A
Authority
JP
Japan
Prior art keywords
optical image
analyzer
magnetic domain
image
domain observation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19169588A
Other languages
Japanese (ja)
Inventor
Haruo Awano
晴夫 粟野
Masaharu Fujii
藤井 政春
Hitoshi Kimura
均 木村
Goro Fujita
五郎 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASUKA DENSHI KK
Sony Corp
Original Assignee
ASUKA DENSHI KK
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASUKA DENSHI KK, Sony Corp filed Critical ASUKA DENSHI KK
Priority to JP19169588A priority Critical patent/JPH0240580A/en
Publication of JPH0240580A publication Critical patent/JPH0240580A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

PURPOSE:To enable the reliable observation of a domain of a sample made of a material having a small Kerr rotation angle or a Faraday rotation angle, by making rotatable the polarization plane of a polarizer or the light transmission aixs of an analyzer. CONSTITUTION:A linear polarization is applied to a sample 11 at a first position of rotation of a polarizer 4 or an analyzer 17, and a first optical image of a transmitted light or a reflected light subjected to a light-magnetism mutual action in accordance with the state of magnetization of the sample 11, which is obtained after passing through the analyzer 17, is picked up by an image pickup camera 18. Next, a first pickup output is inputted to an image processing device 19 and memorized, and a second optical image having brightness and darkness inverse to ones of the first optical image is obtained at a second position of rotation of the analyzer 17, as an optical image obtained after the light passes through the analyzer 17, and is picked up by the camera 18. Subsequently, a second pickup output is inputted to the image processing device 19 and a difference signal from the input based on the first optical image memorized previously is obtained therein. By casting and reproducing 20 an optical image based on the difference signal, reliable observation of a domain can be performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、垂直磁気記録媒体や光磁気記録媒体の垂直磁
化膜等の磁性薄膜を始めとする各種磁性体の磁区観察を
行う観察装置に係わる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an observation device for observing magnetic domains of various magnetic materials including magnetic thin films such as perpendicular magnetic recording media and perpendicular magnetization films of magneto-optical recording media. Involved.

〔発明の概要〕[Summary of the invention]

本発明は、磁区観察試料に直線偏光を照射し、この磁区
観察試料における光−磁気相互作用の利用と画像処理に
よって試料の磁化状態、すなわち磁区をモニター用画像
映出装置によって直視的に観察できるようにし、特に偏
光子または検光子の回転によって観察磁区の明暗の反転
した2種の光学像を得、これを撮像して高速画像処理す
ることによってノイズの少ない鮮明な画像として磁区観
察を実時間いわゆるリアルタイムで直睨的に観察するこ
とができるようにした磁区観察装置を提供する。
The present invention irradiates a magnetic domain observation sample with linearly polarized light, and uses optical-magnetic interaction and image processing in the magnetic domain observation sample to directly observe the magnetization state of the sample, that is, the magnetic domains, using a monitor image projection device. In particular, by rotating the polarizer or analyzer, we obtain two types of optical images in which the brightness and darkness of the observed magnetic domain are reversed, and by capturing these images and performing high-speed image processing, we can observe the magnetic domains in real time as clear images with less noise. To provide a magnetic domain observation device capable of direct observation in so-called real time.

〔従来の技術〕[Conventional technology]

各種磁性薄膜、永久磁石等の磁性体の開発、 ri7F
究においてその磁区観察は重要である。例えば垂直磁気
記録媒体の記録状態の解析や光磁気記録媒体におけるノ
イズの解析のためにその垂直磁化欣自体の磁区状態、或
いは記録された情報ビットとしての磁区発生状態の観察
が正確かつ手軽るに行えるようにすることの要求が高い
。近年、磁区観察のためにポーラーカー効果と画像処理
による垂直磁区観察装置が開発されて来ている(例えば
アイ イー イー トランスアクションズ オンマグネ
ティックス(The In5titute of El
ectricaland Electronics E
ngineers Transactions onM
agneLics  )  Vol、MへG−21,(
1985)  PP1596〜159B。
Development of magnetic materials such as various magnetic thin films and permanent magnets, ri7F
Observation of magnetic domains is important in research. For example, in order to analyze the recording state of perpendicular magnetic recording media or noise in magneto-optical recording media, it is possible to accurately and easily observe the magnetic domain state of the perpendicular magnetization itself or the state of magnetic domain generation as recorded information bits. There is a high demand for being able to do this. In recent years, perpendicular magnetic domain observation devices using the polar Kerr effect and image processing have been developed for magnetic domain observation (for example, the IE Transactions on Magnetics (The Institute of Magnetics)
electricand electronics E
ngineers Transactions onM
agneLics) Vol, M to G-21, (
1985) PP1596-159B.

及び同誌νo1.MAG−23,(1987) PP2
067〜2069参照)。
and the same magazine νo1. MAG-23, (1987) PP2
067-2069).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このようなポーラーカー効果を用いて磁区観察を行う場
合、磁区観察の対象となる材料がカー回転角の大なるも
のにあっては、比較的鮮明な画像が得られるものの、カ
ー回転角が小さいものにあっては、特に研IS!跡など
によるバンクグラウンドノイズが比較的大きいものにあ
っては、まったく観察画像が得られないとか鮮明な観察
画像が得られないという課題がある。
When performing magnetic domain observation using such a polar Kerr effect, relatively clear images can be obtained if the material to be observed has a large Kerr rotation angle, but if the Kerr rotation angle is small, a relatively clear image can be obtained. When it comes to things, especially Ken IS! If the bank ground noise caused by marks or the like is relatively large, there is a problem that an observation image cannot be obtained at all or a clear observation image cannot be obtained.

本発明はこのような課題の解決をはかるようにした磁区
観察装置を提供する。
The present invention provides a magnetic domain observation device designed to solve these problems.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、第1図に示すように、直線偏光光源部(11
と、磁区観察試料配置部(12)と、検光子(17)と
、撮像カメラ(18)と、画像処理装置(19)と、モ
ニター用画像映出装置(20)とを具備し、直線偏光光
源部(L)における偏光子(4)の偏光面または検光子
(17)の光通過軸が少くともlO。
As shown in FIG. 1, the present invention provides a linearly polarized light source section (11
, a magnetic domain observation sample placement section (12), an analyzer (17), an imaging camera (18), an image processing device (19), and a monitor image projection device (20), The polarization plane of the polarizer (4) or the light passing axis of the analyzer (17) in the light source section (L) is at least 1O.

回転できるようにされる。そして、その偏光子(4)ま
たは検光子(17)の第1の回転位置において、直線偏
光を磁区観察試料に照射し、この磁区観察試料の磁化状
態に応じて光−磁気相互作用を受けた透過光もしくは反
射光の検光子(17)を通過して後の第1・の光学像を
撮像カメラ(18)によって撮像し、この第1の撮像出
力を画像処理装置(19)に入力してこれをメモリし、
検光子(17)の第2の回転位置で第1の光学像と明暗
が反転した第2の光学像を検光子(17)を通過後の光
学像として得てこの第2の光学像を撮像カメラ(18)
によって撮像し、この第2の撮像出力を画像処理装置(
19)に入力して先にメモリされた第1の光学像に基く
入力との差の信号を得、この信号による光学像を画像映
出装置(20)に映出再生することにより磁区観察を行
う。
Allowed to rotate. Then, at the first rotational position of the polarizer (4) or analyzer (17), the magnetic domain observation sample is irradiated with linearly polarized light, and the magnetic domain observation sample undergoes optical-magnetic interaction according to the magnetization state. A first optical image after passing through the transmitted light or reflected light analyzer (17) is captured by an imaging camera (18), and this first imaging output is input to an image processing device (19). Memorize this and
At a second rotational position of the analyzer (17), a second optical image whose brightness and darkness are reversed from that of the first optical image is obtained as an optical image after passing through the analyzer (17), and this second optical image is captured. Camera (18)
This second imaging output is sent to an image processing device (
19) to obtain a difference signal from the input based on the first optical image previously stored in memory, and the optical image based on this signal is projected and reproduced on the image projection device (20) to observe magnetic domains. conduct.

〔作用〕[Effect]

上述の本発明装置によれば、例えば垂直磁気記録媒体に
おいて磁気ヘッドによってシ録のなされた磁区による情
報ビットを有する試料や光磁気記録のなされたすなわち
例えばバブル磁区による情報ビットを有する試料の磁区
観察を行うことができる。この磁区観察は、先ず第2図
に実線a及びbごそれぞれの光通過軸を示すように偏光
子(4)と検光子(17)とを直交ニコルの状態に設定
する。この状態で例えば検光子(17)の光通過軸を鎖
線Cに示すように例えば+θ回転させる。このようにす
ると、試料(11)において破線d及びeで示す下向き
及び上向きの磁化に対応するカー効果によって±θに回
転した反射光の実線C方向の振動成分の光が検光子(1
7)を通過してこれが検出されることになる。つまり下
向きの磁化によって十〇X回転した光はより遮断されや
すく、上向きの磁化によって一〇X回転した光の実線C
方向の成分がより通過しやすく例えば第3図Aで示すよ
うな第1の光学像を得てこれを撮像カメラ(18)で撮
像し、画像処理装置(19)に記憶させる。次に、検光
子(17)の光通過軸を鎖線fに示すように−θ回転さ
せる。このようにすると、先の場合とは逆に上向きの磁
化によって一θに回転した光はより遮断されやすく下向
きの磁化によって±θに回転した光の実線C方向の成分
がより通過しやすく、第3図Bに示すように、第3図A
の第1の光学像とは明暗が反転した第2の光学像が得ら
れる。この第2の光学像を撮像カメラ(18)で撮像し
、画像処理装置(19)によって第1の光学像を減算す
る。このようにすると第3図Cに示すように、ノイズ成
分が殆んど排除され、しかも信号レベルの大きい出力が
得られるので、これを更に増幅して画像映出装置(20
)で画像映出すれば、明るく鮮明な磁区像を映出するこ
とができることになる。
According to the above-described apparatus of the present invention, it is possible to observe the magnetic domains of a sample having information bits formed by magnetic domains recorded by a magnetic head in a perpendicular magnetic recording medium, or a sample having information bits formed by magneto-optical recording, that is, by bubble magnetic domains, for example. It can be performed. In this magnetic domain observation, first, the polarizer (4) and the analyzer (17) are set in a crossed Nicol state so that the light passing axes of solid lines a and b are shown in FIG. In this state, for example, the light passing axis of the analyzer (17) is rotated, for example, by +θ as shown by the chain line C. In this way, the light of the vibration component in the solid line C direction of the reflected light rotated ±θ due to the Kerr effect corresponding to the downward and upward magnetization shown by broken lines d and e in the sample (11) is transmitted to the analyzer (1
7) and is detected. In other words, light rotated by 10X due to downward magnetization is more likely to be blocked, and the solid line C for light rotated by 10X due to upward magnetization.
A first optical image, for example, as shown in FIG. 3A, in which the directional component passes through more easily, is obtained, and this is captured by the imaging camera (18) and stored in the image processing device (19). Next, the light passing axis of the analyzer (17) is rotated by -θ as shown by the chain line f. In this case, contrary to the previous case, the light rotated by 1θ due to upward magnetization is more likely to be blocked, and the component in the direction of the solid line C of light rotated ±θ due to downward magnetization is more likely to pass through. As shown in Figure 3B, Figure 3A
A second optical image whose brightness and darkness are reversed from that of the first optical image is obtained. This second optical image is captured by an imaging camera (18), and the first optical image is subtracted by an image processing device (19). In this way, as shown in FIG. 3C, most of the noise components are eliminated and an output with a high signal level is obtained.
), it is possible to project a bright and clear image of the magnetic domain.

ここにθは、カー回転角θにと等しく選定することもで
きるが1θ1〉1θに 1とすることが望ましい。例え
ば光磁気ディスク用材料TbFe、 GdTbFc糸の
カー回転角の;θK l=0.1〜0.4°のとき、θ
I=■° とすることが望ましく、このようにする理由
は、人間の目による明暗を見分ける力は、画面全体があ
る程度明るい方が、能力が高し・しめである。また、そ
のため検光子を20=14°回転した時に、鏡筒(35
)の回転が0.1°以下になるよう鏡筒を固定調整して
おかなければならない。さもないと、高分解能の磁区観
察が不可能である。
Here, θ can be selected to be equal to the Kerr rotation angle θ, but it is preferable to set 1 so that 1θ1>1θ. For example, when the Kerr rotation angle of magneto-optical disk material TbFe or GdTbFc yarn is; θK l = 0.1 to 0.4°, θ
It is desirable to set I=■°, and the reason for doing so is that the human eye's ability to distinguish between brightness and darkness is better and better when the entire screen is bright to a certain extent. Also, for this reason, when the analyzer is rotated 20 = 14 degrees, the lens barrel (35
) must be fixed and adjusted so that the rotation is less than 0.1°. Otherwise, high-resolution magnetic domain observation is impossible.

尚、上述した説明では、検光子(17)を回転させて、
第1及び第2の光学像を得た場合であるが、偏光子(4
)を回転させることもでき、したがって、検光子(17
)及び偏光子(4)の相互を相対的に回転させて第1及
び第2の光学像を得るようにすることもできることは論
をまたないところである。
In addition, in the above explanation, by rotating the analyzer (17),
In the case where the first and second optical images were obtained, the polarizer (4
) can also be rotated so that the analyzer (17
) and the polarizer (4) can be rotated relative to each other to obtain the first and second optical images.

〔実施例〕〔Example〕

直線偏光光源部(1)は、例えば第1図に示すように、
100Wの超高圧水銀灯等の光源(1)と、ケーラーレ
ンズ(3)と、偏光子(4)例えば消光比l0−5以上
の方解石グラントムソンプリズムとを有して成る。
The linearly polarized light source section (1) is, for example, as shown in FIG.
It comprises a light source (1) such as a 100 W ultra-high pressure mercury lamp, a Koehler lens (3), and a polarizer (4), for example, a calcite Glan-Thompson prism with an extinction ratio of 10-5 or more.

(5)は光源!11としての超高圧水銀灯の起動電源を
示す。
(5) is a light source! 11 shows a starting power source for an ultra-high pressure mercury lamp.

外部磁場印加手段(16)は、第4図にその平面図を示
し、第5図に第4図のA−A線上の断面図を示すように
、置型構成とする。すなわちそれぞれ高透磁率のセンタ
ーボール(13)と、直型コア(15)と有して成る。
The external magnetic field applying means (16) has a stationary configuration, as shown in FIG. 4 as a plan view, and as shown in FIG. 5 as a sectional view taken along line A--A in FIG. 4. That is, they each have a high permeability center ball (13) and a straight core (15).

直型コア(15)は、センターボール(13)の図にお
いて下端と磁気的に密に結合された若しくは一体に構成
された底面板部(15A)と、その外周からセンターボ
ール(13)と同心的に上方に延長して配された周壁部
(15B)と、その上端に磁気的に密に結合して底面板
部(15A)に対向して配された上面板部(15C)と
を有して成る。そして上面板部(15C)の中心部には
透孔(15h)が穿設され、これにセンターボール(1
3)の、図において上端と対向する中心部に、中心孔(
21a)を有する円板状の例えば非磁性金属のSUS 
304より成る非磁性板(21)が嵌入かしつけられる
In the figure of the center ball (13), the straight core (15) has a bottom plate part (15A) that is magnetically tightly coupled or integrated with the lower end of the center ball (13), and a bottom plate part (15A) that is concentric with the center ball (13) from its outer periphery. The peripheral wall portion (15B) is arranged to extend upwardly, and the top plate portion (15C) is magnetically closely coupled to the upper end of the circumferential wall portion (15B) and is arranged to face the bottom plate portion (15A). It consists of A through hole (15h) is bored in the center of the top plate (15C), and a center ball (15h) is formed in the center of the top plate (15C).
3), there is a center hole (
21a), for example, a disc-shaped SUS of non-magnetic metal.
A non-magnetic plate (21) made of 304 is inserted and crimped.

第1図において(30)は外部磁場印加手段(16)の
励起用電源を示す。この外部磁場印加手段(16)の線
輪(14)への通電電流の変動等に因る磁場の変動は、
サブミクロンオーダの磁区の観察においては3%以下に
抑えることが望まれる。
In FIG. 1, (30) indicates an excitation power source for the external magnetic field applying means (16). Fluctuations in the magnetic field due to fluctuations in the current flowing to the wire ring (14) of the external magnetic field applying means (16), etc.
When observing submicron-order magnetic domains, it is desirable to suppress the amount to 3% or less.

この外部磁場印加手段(16)は、例えばその直型コア
の半径が73mm、非磁性板(21)の半径が25mm
とされ線輪(14)への印加電圧が0.21Vのときそ
の発生磁場は4 KOe 、 0.43Vのとき6.5
KOe 。
This external magnetic field applying means (16) has, for example, a straight core with a radius of 73 mm and a non-magnetic plate (21) with a radius of 25 mm.
When the voltage applied to the coil (14) is 0.21V, the generated magnetic field is 4 KOe, and when it is 0.43V, it is 6.5.
K.O.E.

IVのとき9にOeを得ることができる。You can get Oe at 9 when it is IV.

そして、また、この外部磁場印加手段(16)は、長時
間の連続使用によっても、試料(11)及び光学系への
熱的影響を回避する上で空冷による冷却をすることが望
ましい。
Furthermore, it is desirable that the external magnetic field applying means (16) be cooled by air cooling in order to avoid thermal effects on the sample (11) and the optical system even when used continuously for a long time.

そして、センターポール(13)の上端は、円錐状に形
成されることが望ましく、この円錐状端部に、ベルチェ
素子(22)が配される。
The upper end of the center pole (13) is preferably formed into a conical shape, and the Vertier element (22) is disposed at this conical end.

このベルチェ素子(22)は、第5図に示すように、そ
の中心部にセンターポール(13)の円錐状上端部が挿
入される例えば円筒状透孔(22a>が穿設され、相対
向する両主面に印加電圧極性によって一方が冷極となり
他方が熱りとなる電照(23□)及び(232)が配置
された構成をとり得る。そして、一方の電tJli (
23t )側を磁区観察試料配置部(12)として、セ
ンターポール(13)の上端面とほぼ同一面を形成する
ようにしてこれの上に磁区観察試料(11)が、Ii!
置装置されているようにする。
As shown in FIG. 5, this Beltier element (22) has, for example, a cylindrical through hole (22a>) into which the conical upper end of the center pole (13) is inserted, and is arranged oppositely. It is possible to adopt a configuration in which electric lights (23□) and (232) are arranged on both main surfaces, with one being a cold pole and the other being a hot pole depending on the polarity of the applied voltage.Then, one of the lights tJli (
23t) side as the magnetic domain observation sample arrangement part (12), and the magnetic domain observation sample (11) is placed on this so as to form almost the same surface as the upper end surface of the center pole (13).Ii!
Make sure that the equipment is installed.

そして、ベルチェ素子(22)の試料配置部(12)と
は反対側がセンターポール(13)と熱的に連結するよ
うにする。
Then, the side of the Vertier element (22) opposite to the sample placement section (12) is thermally connected to the center pole (13).

一方、磁区観察試料(11)を固定する固定手段(24
)を設ける。この固定手段(24)は、例えば対の非磁
性で熱伝導の低い例えばアルミニウムより成る抑え腕(
25t )及び(252)より成る。各抑え腕(251
)及び(252)は、例えばその各外端が、直型コア(
15)の上面板部(15C)にビス(261)及び(2
62)によって固定されて、各内端が試料(11)の側
縁部上に衝合して、試料(11)を試料配置部(12)
に向って、すなわちこの例ではベルチェ素子(22)に
向って、更にセンターポール(13)の上端面に向って
押しつけて保持するようになされる。
On the other hand, the fixing means (24) for fixing the magnetic domain observation sample (11)
) will be established. This fixing means (24) includes, for example, a pair of non-magnetic and low thermally conductive holding arms (24) made of aluminum, for example.
25t) and (252). Each holding arm (251
) and (252), for example, each outer end thereof has a straight core (
15) Screws (261) and (2
62), with each inner end abutting on the side edge of the sample (11), to place the sample (11) in the sample positioning section (12).
That is, in this example, it is pressed and held toward the Vertier element (22) and further toward the upper end surface of the center pole (13).

また試料配置部(12)には、第4図に示すように、例
えばデジタル温度計(26)の温度検出素子(27)例
えば熱電対を、磁区観察試料(11)にできるだけ近接
ないしは接して配置する。そしてデジタル温度計(26
)よりの出力をデジタルコントローラ(28)に入力し
、ベルチェ素子(22)電h(231)及び(23x)
への印加電圧、極性を制御し、試料載置部(12)の温
度制御が行われるようにする。このベルチェ素子(22
)によれば、試料(11) (7)M置部(12)(7
)温度ヲ−15℃〜+80℃の範囲で可変制御すること
ができる。
In addition, as shown in FIG. 4, in the sample placement section (12), for example, a temperature detection element (27) such as a thermocouple of a digital thermometer (26) is placed as close as possible to or in contact with the magnetic domain observation sample (11). do. And a digital thermometer (26
) is input to the digital controller (28), and the output from the Bertier element (22) is input to the electric circuit (231) and (23x).
The voltage and polarity applied to the sample mounting section (12) are controlled to control the temperature of the sample mounting section (12). This Bertier element (22
), sample (11) (7) M-placement part (12) (7
) The temperature can be variably controlled in the range of -15°C to +80°C.

一方、第1図に示すように、磁区観察試料配置部(12
)に対向して偏光顕微鏡(29)を設ける。
On the other hand, as shown in Fig. 1, the magnetic domain observation sample arrangement section (12
) is provided with a polarizing microscope (29).

検光子(17)は、この偏光顕微鏡(29)の中間鏡筒
内検光子によって構成し得る。
The analyzer (17) may be constituted by an analyzer in the intermediate tube of this polarizing microscope (29).

(31)は対物レンズで、この対物レンズ(31)は、
例えば倍率が80倍、100倍等のレンズを用い得るが
、その開口@N、A、は、比較的小さい0.8の例えば
ニコン超長作動距離プランアクロアートCFMPLan
 ELInD (製品名)を用い得る。更に成る場合は
、対物レンズ(31)として上述した倍率100倍のN
、A、= 0.8のレンズで、ガラスの補正環(0,9
mm 〜1.5mm厚のガラスの屈折率補正)のついた
レンズを用いる。
(31) is an objective lens, and this objective lens (31) is
For example, a lens with a magnification of 80x, 100x, etc. can be used, but its aperture @N, A is relatively small, 0.8, for example, Nikon Ultra Long Working Distance Plan Acroart CFMP Lan.
ELInD (product name) can be used. In addition, the objective lens (31) is N with a magnification of 100 times as described above.
, A, = 0.8, and a glass correction ring (0,9
A lens with a refractive index correction of glass with a thickness of 1.5 mm to 1.5 mm is used.

(32)は、反射照明装置を示す。(32) indicates a reflective lighting device.

撮像カメラ(18)は、例えば倍率が17倍のCCD固
体撮像カメラを用い得る。
The imaging camera (18) may be, for example, a CCD solid-state imaging camera with a magnification of 17 times.

画像処理装置(19)は、分解能640 X 480 
X 60ビツトで、演算機能を有し、積分最大256フ
レームの高速画像処理装置とし得る。
The image processing device (19) has a resolution of 640 x 480
It can be a high-speed image processing device with x60 bits, arithmetic functions, and a maximum integration of 256 frames.

モニター用画像映出装置(20)は、陰極線管型のテレ
ビジョン受像管によって構成し得る。
The monitor image display device (20) may be configured with a cathode ray tube type television picture tube.

また、ビデオプリンタ(33)が設けられ、画像映出装
置(20)が映出した画像を必要に応じいわゆるハード
コピーとしてプリントできるようにされる。
A video printer (33) is also provided, so that the image projected by the image projection device (20) can be printed as a so-called hard copy if necessary.

上述した構成による磁区観察装置の光源部(1)。A light source section (1) of a magnetic domain observation device having the above-described configuration.

外部磁場印加手段(16) 、検光子(17)を含めた
偏光顕微鏡(29) 、撮像カメラ(18)等は防振台
(34)上に互いに所定の位置関係を保持して配置され
る。
The external magnetic field applying means (16), the polarizing microscope (29) including the analyzer (17), the imaging camera (18), etc. are arranged on the vibration isolation table (34) while maintaining a predetermined positional relationship with each other.

上述の本発明装置を用いた磁区観察例を説明する。An example of magnetic domain observation using the above-described apparatus of the present invention will be explained.

観察例1 この場合、磁区観察試料(11)は、第7図に示すよう
にガラス基板(41)上に、厚さ800人のシリコン系
より成る保護膜(42)を介して厚さ500人のGdT
bFe系磁性薄膜(43)が被着され、これの上に更に
厚さ1500人でシリコン系より成る保護膜(44)が
被着された構成を有する光磁気ディスクごあり、情報ビ
ット、すなわちバブル磁区が形成されていて、これを観
察しようとするものである。
Observation Example 1 In this case, as shown in FIG. GdT of
There is a magneto-optical disk having a structure in which a bFe-based magnetic thin film (43) is deposited, and a silicon-based protective film (44) with a thickness of 1,500 mm is further deposited on top of this. Magnetic domains are formed, and this is what we are trying to observe.

この場合、対物レンズ(31)は、倍率100倍。In this case, the objective lens (31) has a magnification of 100x.

N、A、 = 0.8を用いた。N, A, = 0.8 was used.

その観察は、外部磁場を印加しない状態で光源部(1)
からの偏光を保護膜(44)から照射し、第2図及び第
3図で説明した手順をとって磁区の観察を行った。この
場合鮮明な磁区観察を行うことができた。
The observation was performed using the light source section (1) without applying an external magnetic field.
irradiated with polarized light from the protective film (44), and the magnetic domains were observed using the procedure explained in FIGS. 2 and 3. In this case, we were able to clearly observe the magnetic domains.

観察例2 光磁気ディスクの基板(41)としてガラス基板(複屈
折の2重バスが10nm)を用い、信号を記録し、その
記録情報ビットを観察例2と同様の方法によるも、その
観察を基板(4)側から行った。また、この場合、対物
レンズ(31)は倍率40倍、 N、A、=0.5で、
θ〜21厚のガラスの屈折率補正する補正環を有するレ
ンズを用いた。この場合、鮮明な磁区観察を行うことが
できた。
Observation Example 2 A glass substrate (birefringence double bus of 10 nm) was used as the substrate (41) of the magneto-optical disk, a signal was recorded, and the recorded information bits were observed using the same method as Observation Example 2. This was done from the substrate (4) side. Also, in this case, the objective lens (31) has a magnification of 40x, N, A, = 0.5,
A lens having a correction ring for correcting the refractive index of glass having a thickness of θ˜21 was used. In this case, we were able to clearly observe the magnetic domains.

比較例1 光磁気ディスクの基板(41)としてポリカーボネート
基板(複屈折の2重バスが20nmを超える)を用い、
信号を記録し、その記録情報ビットを観察例4と同様の
方法によって行った。この場合、観察像の歪みが大きく
画像処理磁区観察を行うことができなかった。
Comparative Example 1 A polycarbonate substrate (birefringence double bus exceeds 20 nm) was used as the substrate (41) of the magneto-optical disk,
The signal was recorded and the recorded information bits were recorded in the same manner as in Observation Example 4. In this case, the observed image was so distorted that image processing magnetic domain observation could not be performed.

観察例3 観察例1における同様の試料(11)に対して同様の方
法によって基板(41)側から磁区観察を行ったが、こ
の観察例では、対物レンズ(31)とし′ζ倍率が10
0倍、N、Δ、=0.8で、ガラスの補正環(0,9m
m = 1.5mm厚のガラスの屈折率を補正する)か
ついたレンズを用いた。この場合においても明瞭な観察
が行われた。
Observation Example 3 The same sample (11) as in Observation Example 1 was subjected to magnetic domain observation from the substrate (41) side using the same method, but in this observation example, the objective lens (31) was
0 times, N, Δ, = 0.8, glass correction ring (0.9 m
A lens with a thickness of m = 1.5 mm (correcting the refractive index of glass) was used. Clear observations were made in this case as well.

比較例2 対物レンズ(31)として、倍率が100倍で、N、八
、=0.9のレンズにコン肝βan too:製品名)
を用いて観察例2と同様の観察を行った。この場合、磁
区の観察は不鮮明であった。
Comparative Example 2 As the objective lens (31), a lens with a magnification of 100 times and N=0.9 was used.
Observations similar to those in Observation Example 2 were conducted using the following. In this case, observation of magnetic domains was unclear.

比較例2におけるようにN、A、が0.9の場合は、観
察画像が不鮮明となるが、観察例2及び3におけるよう
にN、A、=0.8である場合は、倍率が100倍の対
物レンズで鮮明な磁区観察が可能になった。
When N, A, is 0.9 as in Comparative Example 2, the observed image becomes unclear, but when N, A, = 0.8 as in Observation Examples 2 and 3, the magnification is 100. Clear magnetic domain observation is now possible with a 2x objective lens.

これは、直線偏光によるものであることで、レンズのひ
ずみが大きく影響してくるが、N、A、= 0.8のレ
ンズであれば、ひずみが出にくくなることに因る。しか
しながらN3^、=0.8で充分観察に支障λ N、A、が0.8未満のものを用いる必要はない。
This is due to linearly polarized light, which is greatly affected by lens distortion, but with a lens of N, A, = 0.8, distortion is less likely to occur. However, N3^, = 0.8 is sufficient to hinder observation, so there is no need to use a device with λ N,A of less than 0.8.

上述したl観察例1では、基板(41)とは反対側から
磁区観察を行った場合であるが、一般の光磁気ディスク
においては、磁性薄膜(43)の基1反(41)とは反
対側にΔ1映等による反射膜が設りられ、基1反(41
)側から記録情報ビットの読み出しがなされるものであ
り、磁区観察においても基It(41)側から観察する
ことが望ましい。この場合基板(41)としては、基F
i(41)における複屈折によって磁区観察が阻害され
ることがないように複屈折の小さい具体的には2重バス
が20nm以下の材料の例えばガラス基板によって構成
する。
In observation example 1 described above, the magnetic domain was observed from the side opposite to the substrate (41), but in a general magneto-optical disk, the magnetic domain is observed from the side opposite to the base (41) of the magnetic thin film (43). A reflective film such as Δ1 reflection is provided on the side, and the base 1 (41
) side, and it is desirable to observe from the base It(41) side in magnetic domain observation as well. In this case, the substrate (41) is a group F.
In order to prevent magnetic domain observation from being obstructed by birefringence in i(41), it is made of a material with small birefringence, specifically, a double bus of 20 nm or less, such as a glass substrate.

観察例4 面分子フィルム上にDCマグネトロンスパッタ法により
、膜厚0.2μmのCo−Cr磁性膜が被着された乗置
磁気記録媒体に波長が10μmの記録信号により、固定
磁気ヘッドによってトランク幅26μmの磁気記録を行
った。この磁気記録媒体に、外部磁場を印加しない状態
でそのCo−Cr vL性膜側から、光源部(11から
の偏光を照射して第2図及び第3図で説明した1111
Nをとって磁区の観察を行った。この場合、対物レンズ
(31)は倍率100 、 N、^、=0.8とした。
Observation Example 4 A recording signal with a wavelength of 10 μm was applied to a mounted magnetic recording medium on which a Co-Cr magnetic film with a thickness of 0.2 μm was deposited on a surface molecular film by DC magnetron sputtering, and the trunk width was measured by a fixed magnetic head. Magnetic recording was performed at 26 μm. This magnetic recording medium was irradiated with polarized light from the light source section (11) from the Co-Cr vL film side without applying an external magnetic field.
N was removed to observe the magnetic domains. In this case, the objective lens (31) had a magnification of 100 and N,^,=0.8.

この場合、鮮明な磁区観察を行うことができた。In this case, we were able to clearly observe the magnetic domains.

比較例3 観察例4における試料に対して検光子(17)を第1の
回転位置において固定し、画像処理を行わなかった。こ
の場合、磁区は全く観察できなかった。これはCo−C
r磁性膜のカー回転角が小さ過ぎるため、明暗差が小さ
く人間の視覚では磁区の反転部分の見分けができないた
めである。
Comparative Example 3 The analyzer (17) was fixed at the first rotational position for the sample in Observation Example 4, and no image processing was performed. In this case, no magnetic domains could be observed. This is Co-C
This is because the Kerr rotation angle of the r-magnetic film is too small, resulting in a small difference in brightness and the human eye being unable to distinguish the inverted portions of the magnetic domains.

面、上述した例では、試料(11)からの反射光、すな
わちカー回転を利用して磁区観察を行った場合であるが
、透過光、すなわちファラデー回転を利用して同様の磁
区観察を行うこともできる。
In the above example, magnetic domains are observed using reflected light from the sample (11), that is, Kerr rotation, but similar magnetic domain observation can be performed using transmitted light, that is, Faraday rotation. You can also do it.

また、上述の例では外部磁場印加手段(16)による試
料(11)に対する外部印加磁場の選定及びベルチェ素
子(22)よる試料(11)に対する温度設定を行うこ
とができるようにしたので、上述した各磁区観察を希望
する外部磁場印加及び温度下で行うことができる。
Furthermore, in the above example, the external magnetic field applying means (16) can select the externally applied magnetic field to the sample (11), and the Vertier element (22) can set the temperature of the sample (11). Observation of each magnetic domain can be performed under desired external magnetic field application and temperature.

〔発明の効果〕〔Effect of the invention〕

上述したように、本発明装置によれば、確実にバンクグ
ラウンドノイズの排除操作を実現することができるので
、これに伴ってカー回転角ないしはファラデー回転角の
小さい材料による試料(11)に対しても確実な磁区観
察を行うことができ、その実用上の利益は極めて大きい
ものである。
As described above, according to the apparatus of the present invention, it is possible to reliably eliminate bank ground noise, and accordingly, for the sample (11) made of a material with a small Kerr rotation angle or Faraday rotation angle, It is also possible to perform reliable magnetic domain observation, and its practical benefits are extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の一例の構成図、第2図は磁区観察
の原理の説明図、第3図A−Cは磁区観察の一例におけ
る撮像光学像の説明図、第4図は磁場印加手段の上面図
、第5図は第4図のA −A線の断面図、第6図はベル
チェ素子の配置部の一例の断面図、第7図は磁区観察試
料の一例の断面図である。 (1)は直線偏光光源部、(2)は光源、(4)は偏光
子、(11)は磁区観察試料、(12)は磁区観察試料
配置部、(13)はセンターボール、(14)は線輪、
(15)は置型コア、(16)は外部磁場印加手段、(
17)は検光子、(18)は撮像カメラ、(19)は画
像処理装置、(20)はモニター用画像映出装置である
Fig. 1 is a configuration diagram of an example of the device of the present invention, Fig. 2 is an explanatory diagram of the principle of magnetic domain observation, Fig. 3 A-C is an explanatory diagram of captured optical images in an example of magnetic domain observation, and Fig. 4 is an illustration of magnetic field application. A top view of the means, FIG. 5 is a cross-sectional view taken along line A-A in FIG. 4, FIG. 6 is a cross-sectional view of an example of a portion where a Vertier element is arranged, and FIG. 7 is a cross-sectional view of an example of a magnetic domain observation sample. . (1) is a linearly polarized light source section, (2) is a light source, (4) is a polarizer, (11) is a magnetic domain observation sample, (12) is a magnetic domain observation sample placement section, (13) is a center ball, (14) is a wire ring,
(15) is a stationary core, (16) is an external magnetic field applying means, (
17) is an analyzer, (18) is an imaging camera, (19) is an image processing device, and (20) is a monitor image projection device.

Claims (1)

【特許請求の範囲】 1、直線偏光光源部と、 磁区観察試料配置部と、 検光子と、 撮像カメラと、 画像処理装置と、 モニター用画像映出装置とを具備し、 上記検光子は、その光通過軸が回転できるようにされ、 上記検光子の第1の回転位置において、上記光源部から
の直線偏光を上記磁区観察試料に照射し、該磁区観察試
料の磁化状態に応じて光−磁気相互作用を受けた透過光
もしくは反射光の上記検光子を通過して後の第1の光学
像を上記撮像カメラによって撮像し、該第1の撮像出力
を上記画像処理装置に入力してこれをメモリし、上記検
光子の第2の回転位置で上記第1の光学像と明暗が反転
した第2の光学像を上記検光子を通過後の光学像として
得て該第2の光学像を上記撮像カメラによって撮像し、
該第2の撮像出力を上記画像処理装置に入力して上記メ
モリされた上記第1の光学像に基く入力との差の信号を
得、該信号による光学像を上記画像映出装置に映出する
ことにより磁区観察を行うようにしたことを特徴とする
磁区観察装置。 2、偏光子を有する直線偏光光源部と、 磁区観察試料配置部と、 検光子と、 撮像カメラと、 画像処理装置と、 モニター用画像映出装置とを具備し、 上記偏光子は、その光通過軸が回転できるようにされ、 上記偏光子の第1の回転位置において、直線偏光を上記
磁区観察試料に照射し、該磁区観察試料の磁化状態に応
じて光−磁気相互作用を受けた透過光もしくは反射光の
上記検光子を通過して後の第1の光学像を上記撮像カメ
ラによって撮像し、該第1の撮像出力を上記画像処理装
置に入力してこれをメモリし、上記偏光子の第2の回転
位置で上記第1の光学像と明暗が反転した第2の光学像
を上記検光子を通過後の光学像として得て該第2の光学
像を上記撮像カメラによって撮像し、該第2の撮像出力
を上記画像処理装置に入力して上記メモリされた上記第
1の光学像に基く入力との差の信号を得、該信号による
光学像を上記画像映出装置に映出することにより磁区観
察を行うようにしたことを特徴とする磁区観察装置。
[Claims] 1. A linearly polarized light source section, a magnetic domain observation sample arrangement section, an analyzer, an imaging camera, an image processing device, and a monitor image projection device, the analyzer comprising: The light passing axis is rotatable, and at the first rotational position of the analyzer, the linearly polarized light from the light source section is irradiated onto the magnetic domain observation sample, and the light A first optical image of the transmitted light or reflected light that has undergone magnetic interaction after passing through the analyzer is captured by the imaging camera, and the first imaging output is input to the image processing device. is stored in memory, and at a second rotational position of the analyzer, a second optical image whose brightness and darkness are reversed from that of the first optical image is obtained as an optical image after passing through the analyzer, and the second optical image is obtained. imaged by the above-mentioned imaging camera,
The second imaging output is input to the image processing device to obtain a difference signal from the input based on the first optical image stored in the memory, and an optical image based on the signal is displayed on the image projection device. A magnetic domain observation device characterized in that magnetic domain observation is performed by performing magnetic domain observation. 2. Equipped with a linearly polarized light source section having a polarizer, a magnetic domain observation sample placement section, an analyzer, an imaging camera, an image processing device, and a monitor image projection device, and the polarizer The transmission axis is rotatable, and at the first rotational position of the polarizer, linearly polarized light is irradiated onto the magnetic domain observation sample, and the transmitted light undergoes optical-magnetic interaction according to the magnetization state of the magnetic domain observation sample. A first optical image of the light or reflected light after passing through the analyzer is captured by the imaging camera, the first imaging output is input to the image processing device to store it in memory, and the polarizer is Obtaining a second optical image whose brightness and darkness are reversed from the first optical image at a second rotational position as an optical image after passing through the analyzer, and capturing the second optical image with the imaging camera; The second imaging output is input to the image processing device to obtain a difference signal from the input based on the first optical image stored in the memory, and an optical image based on the signal is displayed on the image projection device. A magnetic domain observation device characterized in that magnetic domain observation is performed by performing magnetic domain observation.
JP19169588A 1988-07-30 1988-07-30 Observing apparatus of domain Pending JPH0240580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19169588A JPH0240580A (en) 1988-07-30 1988-07-30 Observing apparatus of domain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19169588A JPH0240580A (en) 1988-07-30 1988-07-30 Observing apparatus of domain

Publications (1)

Publication Number Publication Date
JPH0240580A true JPH0240580A (en) 1990-02-09

Family

ID=16278931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19169588A Pending JPH0240580A (en) 1988-07-30 1988-07-30 Observing apparatus of domain

Country Status (1)

Country Link
JP (1) JPH0240580A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02156180A (en) * 1988-12-09 1990-06-15 Nippon Telegr & Teleph Corp <Ntt> Magnetization observing apparatus
WO2018207569A1 (en) * 2017-05-12 2018-11-15 ソニー株式会社 Imaging device and imaging method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02156180A (en) * 1988-12-09 1990-06-15 Nippon Telegr & Teleph Corp <Ntt> Magnetization observing apparatus
WO2018207569A1 (en) * 2017-05-12 2018-11-15 ソニー株式会社 Imaging device and imaging method

Similar Documents

Publication Publication Date Title
JPH0240580A (en) Observing apparatus of domain
JPH0240579A (en) Observing apparatus of domain
US3512866A (en) Magneto-optical hand viewer
JPS594670B2 (en) Magnetic field distribution measuring device
EP1505404B1 (en) Magnetic sensor
JP2731039B2 (en) Flaw detector
JPH01477A (en) Magnetization state observation device for magnetic materials
JPH01125791A (en) Solid-state optical memory device
Jimenez Implementation of Magneto Optical Kerr Effect Microscopy for the Observation of Magnetic Domain Structure in Thin Films
SU1748203A1 (en) Method of thermomagnetic recording for multi-layer structure
JPH0329781Y2 (en)
RU2022365C1 (en) Method and device for recording and reading out coded information
JPH0449551A (en) Magneto-optical display device
KR100371600B1 (en) Magnetooptical Microscope Magnetometer
JP2716988B2 (en) Magnetic field modulation overwrite type magneto-optical disk drive
JP2546481B2 (en) Thermal shutter and recording medium
JPS63311645A (en) Magneto-optical recording system
JP2573601B2 (en) Information recording method for magneto-optical medium
JPH0216420Y2 (en)
JPS62219203A (en) Optical modulation overwriting system for photomagnetic recording device
JPS63104015A (en) Observing device for minute area magnetic domain structure
JPS5819753A (en) Vertical magnetic recording medium and reproducing method of vertical magnetizing signal using said recording medium
KR101042798B1 (en) Magneto Optical Indicator Film System for magnetic domain observation
JPH0772747B2 (en) Device for observing magnetized state of magnetic material
Hsieh et al. Image contrast in polarization microscopy of magneto-optical media through plastic substrates