JPH01125791A - Solid-state optical memory device - Google Patents

Solid-state optical memory device

Info

Publication number
JPH01125791A
JPH01125791A JP62260698A JP26069887A JPH01125791A JP H01125791 A JPH01125791 A JP H01125791A JP 62260698 A JP62260698 A JP 62260698A JP 26069887 A JP26069887 A JP 26069887A JP H01125791 A JPH01125791 A JP H01125791A
Authority
JP
Japan
Prior art keywords
solid
optical memory
image
state optical
memory device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62260698A
Other languages
Japanese (ja)
Inventor
Takashi Shibakuchi
芝口 孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP62260698A priority Critical patent/JPH01125791A/en
Publication of JPH01125791A publication Critical patent/JPH01125791A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To make an image into high resolution and high contrast by using a solid-state optical memory device and providing an optical means for recording and an optical means for reproduction for the solid-state optical memory device. CONSTITUTION:The solid-state optical memory device 1 is provided, and an image-forming lens 3 that is the optical means for recording to record the image of an original image 2 on the solid-state optical memory device 1 is provided oppositely to the solid-state optical memory device 1, and for the solid-state optical memory device 1, the optical means 4 for reproduction is also provided. And the image information of the original image 2 is recorded on the solid-state optical memory device 1 by the image-forming lens 3. In such a case, it is assumed that an optical image from the original image 2 is projected almost perpendicularly to the solid-state optical memory device 1. Meanwhile, the readout reproduction of the image recorded on the solid-state optical memory device 1 is performed in such a way that the image is reproduced by making incident readout light from an irradiation light source 5 at an angle theta for the normal of the solid-state optical memory device 1. In such a way, it is possible to obtain the image with high resolution and high contrast.

Description

【発明の詳細な説明】 技術分野 本発明は、強誘電体のメモリ効果を利用した二次元画像
の記録/再生用の固体光メモリ装置に関する。
TECHNICAL FIELD The present invention relates to a solid-state optical memory device for recording/reproducing two-dimensional images using the memory effect of ferroelectric materials.

従来技術 従来より結晶を用いた固体光メモリ素子としては、ポッ
ケルス効果形結晶素子(B i、、S i O,、)や
強誘電体結晶(Bi、Ti、O,、、PLZT)と光導
電膜を組合せた素子、及び2次電子増倍効果を持つMC
P(マイクロ・チャンネル・プレート)とLiNb0.
の組合せによるMSLMが知られている。
Prior Art Conventionally, solid-state optical memory devices using crystals include Pockels effect crystal elements (Bi, SiO,...), ferroelectric crystals (Bi, Ti, O,..., PLZT), and photoconductive films. and MC with secondary electron multiplication effect.
P (micro channel plate) and LiNb0.
An MSLM based on a combination of the following is known.

ところが、ポッケルス効果形結晶素子は大口径単結晶の
作成が困難であり、かつ、読出し光による像劣化を生ず
るので強い読出し光を使用する応用分野には利用できな
い。又、強誘電体結晶と光導電膜の組合せ素子は、分極
方向を制御してメモリ特性を持たせているものであり、
結晶の作成が難しい。特に、B 14 T 1301 
!結晶の大口径化は困難である。更には、デバイス化に
際して極薄化のための加工研磨が必要となるものである
。又、MSLMは装置の大型化、複雑化、高コスト化を
招き、実用的でない。
However, the Pockels effect crystal element cannot be used in applications that use strong readout light because it is difficult to produce a large-diameter single crystal and the readout light causes image deterioration. Furthermore, a combination element of a ferroelectric crystal and a photoconductive film has memory characteristics by controlling the polarization direction.
Difficult to create crystals. In particular, B 14 T 1301
! It is difficult to increase the diameter of the crystal. Furthermore, processing and polishing are required to make the device extremely thin. Furthermore, MSLM is not practical because it increases the size, complexity, and cost of the device.

目的 本発明は、このような点に鑑みなされたもので、二次元
画像を光学的に記録し、その記録画像を長時間にわたっ
て保持でき、かつ、読出し再生時に像劣化の生じない非
破壊読出しができる高解像・高コントラストで安価な固
体光メモリ装置を得ることを目的とする。
Purpose The present invention was made in view of the above points, and provides a method for optically recording a two-dimensional image, retaining the recorded image for a long time, and performing non-destructive readout without image deterioration during readout and reproduction. The objective is to obtain a high-resolution, high-contrast, and inexpensive solid-state optical memory device.

構成 本発明は、上記目的を達成するため、透明基板上に第1
透明導電膜と強誘電体膜と光導電膜と第2透明導電膜と
を順次積層形成してなる固体光メモリ素子と、この固体
光メモリ素子に対し画像を記録する記録用光学的手段と
、前記固体光メモリ素子に光を照射しこの固体光メモリ
に記録されている画像を読出す再生用光学的手段とから
なることを特徴とするものである。
Structure In order to achieve the above object, the present invention provides a first layer on a transparent substrate.
a solid-state optical memory element formed by sequentially laminating a transparent conductive film, a ferroelectric film, a photoconductive film, and a second transparent conductive film; a recording optical means for recording an image on the solid-state optical memory element; It is characterized by comprising a reproducing optical means for irradiating an optical memory element with light and reading an image recorded in the solid-state optical memory.

以下、本発明の第一の実施例を第1図ないし第5図に基
づいて説明する。まず、固体光メモリ素子lが設けられ
、原画2の画像をこの固体光メモリ素子lに対して記録
するための記録用光学的手段をなす結像レンズ3が固体
光メモリ素子1に対向させて設けられている。又、固体
光メモリ素子1に対しては再生用光学的手段4も設けら
れている。この再生用光学的手段4は照射光源5と照射
用レンズ6と偏光子7と検光子8と結像レンズ9とスク
リーン10とからなり、偏光子7・検光子8間に固体光
メモリ素子lを配置させてなる。
A first embodiment of the present invention will be described below with reference to FIGS. 1 to 5. First, a solid-state optical memory element 1 is provided, and an imaging lens 3 serving as a recording optical means for recording an image of an original image 2 on the solid-state optical memory element 1 is provided to face the solid-state optical memory element 1. There is. The solid-state optical memory device 1 is also provided with optical means 4 for reproduction. This reproducing optical means 4 consists of an irradiation light source 5, an irradiation lens 6, a polarizer 7, an analyzer 8, an imaging lens 9, and a screen 10, and a solid-state optical memory element l is placed between the polarizer 7 and the analyzer 8. I will arrange it.

ここに、原画2の画像情報は結像レンズ3により固体光
メモリ素子1に記録される。このように記録する際には
、固体光メモリ素子1に対してほぼ垂直に原画2からの
光像を照射するものとする。
Here, image information of the original image 2 is recorded in the solid-state optical memory element 1 by the imaging lens 3. When recording in this manner, it is assumed that the optical image from the original image 2 is irradiated onto the solid-state optical memory element 1 almost perpendicularly.

一方、固体光メモリ素子1に記録された画像の読出し再
生は、固体光メモリ素子1の法線に対して角度θにて照
射光源5からの読出し光を入射させて画像を再生する。
On the other hand, to read and reproduce an image recorded on the solid-state optical memory element 1, the image is reproduced by making the read-out light from the irradiation light source 5 incident at an angle θ with respect to the normal line of the solid-state optical memory element 1.

この時、偏光子7と検光子8とは互いに直交位なる関係
に設定しておく。
At this time, the polarizer 7 and the analyzer 8 are set to be orthogonal to each other.

ここに、前記固体光メモリ素子1の構造を第2図に示す
。この固体光メモリ素子1はガラス板等の透明基板10
をベースとし、まず、この透明基板10上にIn、O,
:Snからなる第1透明導電膜11が真空蒸着法により
形成されている。この第1透明導電膜ll上には強誘電
体膜12が形成されている。この強誘電体膜12は強誘
電体であるB 14Ti、O□の薄膜によるものであり
、透明基板10の温度を300℃とした条件下でイオン
ブレーティング法により形成される。このような強誘電
体膜12上には5e−Te (4wt%)を真空蒸着し
てなる光導電膜13が形成されている。
Here, the structure of the solid-state optical memory device 1 is shown in FIG. This solid-state optical memory element 1 has a transparent substrate 10 such as a glass plate.
First, on this transparent substrate 10, In, O,
: The first transparent conductive film 11 made of Sn is formed by vacuum evaporation. A ferroelectric film 12 is formed on this first transparent conductive film ll. This ferroelectric film 12 is a thin film of B 14Ti, O□ which is a ferroelectric material, and is formed by an ion blating method under the condition that the temperature of the transparent substrate 10 is 300°C. On the ferroelectric film 12, a photoconductive film 13 is formed by vacuum-depositing 5e-Te (4 wt%).

なお、光導電膜13はアモルファスシリコン、As、S
e、、OPC等を用いてもよい、更に、この光導電膜1
3上にIn、03:Snを蒸着してなる第2透明導電膜
14が形成されている。なお、強誘電体膜12を構成す
るB L 4 T l s C)+zの薄膜は、C軸が
成長面に垂直になるように成長するものであり、−メモ
リとして使用するのはa−b面である。
Note that the photoconductive film 13 is made of amorphous silicon, As, S.
e, OPC etc. may be used.Furthermore, this photoconductive film 1
A second transparent conductive film 14 is formed by vapor-depositing In and 03:Sn on the second transparent conductive film 14 . Note that the thin film B L 4 T l s C)+z constituting the ferroelectric film 12 is grown so that the C axis is perpendicular to the growth plane, and the one used as a memory is a-b. It is a surface.

ここに、前記透明導電膜11.14間には記録用電源1
5、消去用電源16による電圧が選択的に印加され得る
ようにスイッチング素子17が接続されている。なお、
再生時には電圧印加しないため、スイッチング素子17
には再生用の切換え端子も設けられている。
Here, a recording power supply 1 is connected between the transparent conductive films 11 and 14.
5. The switching element 17 is connected so that the voltage from the erasing power supply 16 can be selectively applied. In addition,
Since no voltage is applied during playback, the switching element 17
A switching terminal for playback is also provided.

このような構成において、本実施例の固体光メモリ素子
1の記録/再生/消去の動作について第3図を参照して
説明する。第3図中、(a)は書込み記録時、(b)は
読出し再生時、(C)は消去時を示す。
In such a configuration, the recording/reproducing/erasing operations of the solid-state optical memory device 1 of this embodiment will be explained with reference to FIG. 3. In FIG. 3, (a) shows the time of writing and recording, (b) shows the time of reading and reproducing, and (C) shows the time of erasing.

まず、書込み前には強誘電体膜12の分極方向を同図(
a)に示すように、記録用電源15による印加電界によ
って矢印Aで示す一定方向に揃えておく。このような状
態で原画2からの画像に対応する光像f8を光導電膜1
3に対して照射する。
First, before writing, the polarization direction of the ferroelectric film 12 is set as shown in the figure (
As shown in a), the electric field applied by the recording power source 15 aligns them in a certain direction as shown by arrow A. In this state, the optical image f8 corresponding to the image from the original image 2 is transferred to the photoconductive film 1.
3.

ユニに、光像18による光の照射された部分の光導電膜
13の抵抗値が低下し印加した殆どの電圧が強誘電体膜
12部分にかかるため、この領域12aの分極方向が回
転し、矢印Bで示す方向となる。しかるに、光の照射さ
れない部分では、これに対応する領域12bの分極方向
は回転せず初期の方向Aにある。つまり、強誘電体膜1
2における分極方向により画像情報が記録されることに
なる。ここに、このような状態は電界(記録用電源15
による印加電圧)を切っても分極方向が変化することが
なく、長時間保持され、メモリ機能が確保される。この
性質は、強誘電体に特有なヒステリシス特性によるもの
である。
At the same time, the resistance value of the photoconductive film 13 in the area irradiated with light by the optical image 18 decreases and most of the applied voltage is applied to the ferroelectric film 12, so the polarization direction of this area 12a rotates. The direction is indicated by arrow B. However, in a portion not irradiated with light, the polarization direction of the region 12b corresponding thereto remains in the initial direction A without rotation. In other words, ferroelectric film 1
Image information will be recorded according to the polarization direction in 2. Here, such a state is caused by an electric field (recording power supply 15
The polarization direction does not change even when the applied voltage (applied voltage) is turned off, and the polarization direction is maintained for a long time, ensuring memory function. This property is due to the hysteresis characteristic specific to ferroelectric materials.

次に、この固体光メモリ素子1に記録された画像を読出
し再生する際には、第3図(b)に示すように固体光メ
モリ素子1を直交位の偏光子7と検光子8との間に配置
し、照射光源5に基づく読出し光19を照射して画像を
再生する。この際、読出し光19を固体光メモリ素子1
に対して垂直に入射させると、強誘電体膜12における
分極方向の差異を読出すことができないので、読出し光
19はa−c面内において入射角θで入射するように設
定される(第4図参照)。又、スイッチング素子17は
透明導電gill、14間に電圧を印加しない状態に切
換えられる。なお、入射角0があまり小さいと読出し像
のコントラストが低くなるので、ある程度大きくする必
要がある。実際には、屈折の法則により強誘電体膜■2
に入射する角度は第2透明導電膜14に対する入射角θ
よりも更に小さくなるため、入射角θとしては20°以
上に設定するのが望ましい。又、読出し光19の入射偏
光方向は、第4図に示すようにb軸に対して456 と
する。
Next, when reading and reproducing the image recorded on the solid-state optical memory device 1, the solid-state optical memory device 1 is placed between the polarizer 7 and the analyzer 8 at orthogonal positions, as shown in FIG. 3(b). The image is reproduced by irradiating the readout light 19 based on the irradiation light source 5. At this time, the readout light 19 is transmitted to the solid-state optical memory element 1.
Since it is not possible to read out the difference in the polarization direction in the ferroelectric film 12 if the light is incident perpendicularly to (See Figure 4). Further, the switching element 17 is switched to a state in which no voltage is applied between the transparent conductive gills and 14. Note that if the incident angle 0 is too small, the contrast of the readout image will be low, so it is necessary to increase it to some extent. In reality, due to the law of refraction, ferroelectric film ■2
The angle of incidence on the second transparent conductive film 14 is the angle of incidence θ
Therefore, it is desirable to set the incident angle θ to 20° or more. Further, the incident polarization direction of the readout light 19 is set at 456 degrees with respect to the b-axis as shown in FIG.

ところで、実際に分極方向の異なる2つの領域12a、
12bの屈折率楕円体は第5図に示すようになる。この
第5図ではa−c面における屈折率楕円体を示すもので
ある。角度θで入射した読出し光19は、強誘電体膜1
2内に対しては角度βにて入射する。この時、各々の領
域12a、12bにおけるリターデーション(位相差)
rは、となる。ここに、Qは強誘電体膜12の膜厚、Δ
n1.Δn2は各々の領域12a、12bの複屈折差で
あり、角度βに依存した関数となる。そして、偏光子7
、検光子8が直交位の場合、光のオフ状態(暗状態)は
、 r、=Nλ 又は r、=’Nλ  ・・・・・・・・
・・・・(3)(但し、Nは整数) で与えられる。従って、読出し像の最大コントラストを
与える条件式は、 1 r’、−r、 1 =λ/2     ・・・・・
・・・・・・・(4)となる。ここに、このような式を
満足するようにβ、Qの値を設定することは容易である
By the way, there are actually two regions 12a with different polarization directions,
The refractive index ellipsoid 12b is as shown in FIG. FIG. 5 shows a refractive index ellipsoid in the a-c plane. The readout light 19 incident at an angle θ is transmitted to the ferroelectric film 1
2 is incident at an angle β. At this time, retardation (phase difference) in each region 12a, 12b
r becomes. Here, Q is the thickness of the ferroelectric film 12, and Δ
n1. Δn2 is the birefringence difference between the respective regions 12a and 12b, and is a function dependent on the angle β. And polarizer 7
, when the analyzer 8 is in the orthogonal position, the light off state (dark state) is r,=Nλ or r,='Nλ...
It is given by (3) (where N is an integer). Therefore, the conditional expression that gives the maximum contrast of the readout image is: 1 r', -r, 1 = λ/2...
......(4). Here, it is easy to set the values of β and Q so as to satisfy such a formula.

更に、固体光メモリ素子1に記録された画像を消去する
際には、第3図(c)に示すようにスイッチング素子1
7を消去用電源16側に切換え、記録時とは逆の電圧を
固体光メモリ素子1に印加する。このような状態で、固
体光メモリ素子lの全面に消去用の光20を一様に照射
する。これにより、強誘電体膜12の分極方向が矢印A
で示す一定方向に揃い、記録像が消去される。再び、画
像を記録する場合には、第3図(a)のように印加電圧
を反転させ画像対応の光像18を入射させればよい。
Furthermore, when erasing the image recorded on the solid-state optical memory element 1, the switching element 1 is activated as shown in FIG. 3(c).
7 is switched to the erasing power supply 16 side, and a voltage opposite to that during recording is applied to the solid-state optical memory element 1. In this state, the entire surface of the solid-state optical memory element 1 is uniformly irradiated with erasing light 20. As a result, the polarization direction of the ferroelectric film 12 is changed to arrow A.
The images are aligned in a certain direction as shown by and the recorded image is erased. If an image is to be recorded again, the applied voltage may be reversed and a light image 18 corresponding to the image may be made incident as shown in FIG. 3(a).

このように、本実施例によれば、まず、固体光メモリ素
子1の薄膜化により結晶の作成が不要となる。又、結晶
の場°合であれば、極薄に加工研磨することが必要であ
るが、本実施例のように薄膜の場合には加工・研磨工程
を省略でき、メモリ素子の作成が容易となる。更には、
このような薄膜化により高解像力、高コントラストの固
体メモリ装置を実現できるものとなる。又、強誘電体膜
12の分極方向をスイッチングしているので、どんなに
強い光で画像読出しを行なってもメモリが砿壊されるこ
とのない非破壊読出しが可能となり、広範囲への応用が
期待できる。更には、高価な結晶を使用する必要がなく
、低コスト化を図れる。
As described above, according to this embodiment, first, by making the solid-state optical memory element 1 thinner, it becomes unnecessary to create a crystal. In addition, in the case of a crystal, it is necessary to process and polish it into an extremely thin film, but in the case of a thin film as in this example, the processing and polishing steps can be omitted, making it easier to create a memory element. Become. Furthermore,
Such a thin film makes it possible to realize a solid-state memory device with high resolution and high contrast. Furthermore, since the polarization direction of the ferroelectric film 12 is switched, it is possible to perform non-destructive reading without destroying the memory no matter how strong the image is read out, and it is expected to be widely applicable. Furthermore, there is no need to use expensive crystals, and costs can be reduced.

なお、第1図に示した配置の場合、固体光メモリ素子1
か再生光学手段4の光軸に対して角度θだけ傾いている
ので、読出し再生像は多少歪んだ像として再生される。
In addition, in the case of the arrangement shown in FIG. 1, the solid-state optical memory element 1
Since the optical axis of the reproducing optical means 4 is tilted at an angle θ, the read and reproduced image is reproduced as a somewhat distorted image.

このような歪みを補正するためには、例えば第6図に示
すように書込み系である結像レンズ3の光軸を固体光メ
モリ素子1に対して垂直状態から角度θ′だけ傾け、原
画2を角度θ“だけ傾けた状態で固体光メモリ素子1へ
の書込み記録を行ない、これを再生するようにすれば、
原画を歪みのない状態で忠実に再現することができる。
In order to correct such distortion, for example, as shown in FIG. 6, the optical axis of the imaging lens 3, which is the writing system, is tilted by an angle θ' from the perpendicular state with respect to the solid-state optical memory element 1, and the original image 2 is If writing and recording is performed on the solid-state optical memory element 1 while tilted by an angle θ", and this is reproduced,
The original painting can be faithfully reproduced without distortion.

つづいて、本発明の第二の実施例を第7図により説明す
る。本実施例は、第1透明導電膜11と強誘電体膜12
との間に透明な結晶軸配向膜21を形成してなる固体光
メモリ素子1としたものである。この結晶軸配向膜21
はC軸配向性を持つZnOからなるものであり、ZnO
焼結ターゲットを用いたRFスパッタリングにより形成
される。
Next, a second embodiment of the present invention will be described with reference to FIG. In this embodiment, the first transparent conductive film 11 and the ferroelectric film 12 are
A solid-state optical memory element 1 is formed by forming a transparent crystal axis alignment film 21 between the two. This crystal axis orientation film 21
is made of ZnO with C-axis orientation, and ZnO
It is formed by RF sputtering using a sintered target.

ZnO薄膜はそのC軸か基板に対して垂直に配向し、強
誘電体膜12の形成を容易にする。つまり、強誘電体膜
12のC軸がこの結晶軸配向膜21のC軸にならい透明
基板10に垂直になり、この結果、強誘電体膜12の結
晶性が良好となる利点がある。
The ZnO thin film is oriented with its C axis perpendicular to the substrate, facilitating the formation of the ferroelectric film 12. That is, the C-axis of the ferroelectric film 12 follows the C-axis of the crystal axis orientation film 21 and is perpendicular to the transparent substrate 10, resulting in an advantage that the crystallinity of the ferroelectric film 12 is improved.

更に、本発明の第三の実施例を第8図により説明する。Furthermore, a third embodiment of the present invention will be explained with reference to FIG.

本実施例は、Ingos: Snからなる第1透明導電
膜11に代えて、ZnO:AQからなる結晶軸配向性の
第1透明導電膜22を備えた固体光メモリ素子1とした
ものである。ここに、この第1透明導電膜22は結晶軸
配向性の膜であり、C軸が透明基板10に垂直に向いて
いる。この膜はZnOに数モル%のAQを含有させた焼
結ターゲットを用い、RFスパッタリングにより透明基
板10上に形成してなる。この膜上に前述の如く、強誘
電体膜12が形成される。本実施例によれば、透明電極
と結晶軸配向膜の機能を同時にこのような第1透明導電
膜22に持たせることにより、透明導電膜単独の作成工
程を省略することができる。
In this example, the solid-state optical memory element 1 is provided with a crystal axis-oriented first transparent conductive film 22 made of ZnO:AQ in place of the first transparent conductive film 11 made of Ingos:Sn. Here, this first transparent conductive film 22 is a film with crystal axis orientation, and the C axis is oriented perpendicularly to the transparent substrate 10. This film is formed on the transparent substrate 10 by RF sputtering using a sintered target containing ZnO containing several mol% of AQ. As described above, the ferroelectric film 12 is formed on this film. According to this embodiment, by providing the first transparent conductive film 22 with the functions of a transparent electrode and a crystal axis alignment film at the same time, it is possible to omit the step of forming a separate transparent conductive film.

効果 本発明は、上述したように透明基板上に第1透明導電膜
と強誘電体膜と光導電膜と第2透明導電膜とを順次積層
形成してなる固体光メモリ素子を用い、この固体光メモ
リ素子に対し記録用光学的手段と再生用光学的手段とを
備えてなるので、固体光メモリ素子自体はその薄膜化に
より結晶の作成を不要とし、極薄のための加工・研磨工
程も不要としてメモリ素子の作成を容易化・低コスト化
することができ、このような薄膜化により高解像力・高
コントラスト化も図ることができ、又、強誘電体膜の分
極方向のスイッチングを利用するため、二次元画像を光
学的に記録し、その記録画像を長時間にわたって保持で
き、かつ、読出し再生時にその再生光の強度に関係なく
像劣化の生じない非破壊読出しができるものであり、広
範囲に応用することができるものである。
Effects As described above, the present invention uses a solid-state optical memory element in which a first transparent conductive film, a ferroelectric film, a photoconductive film, and a second transparent conductive film are sequentially laminated on a transparent substrate. Since the element is equipped with an optical means for recording and an optical means for reproducing, the solid-state optical memory element itself does not require the creation of crystals by making it a thin film, and it also eliminates the need for processing and polishing processes to make it ultra-thin. The device can be manufactured easily and at low cost, and by making the film thinner, higher resolution and higher contrast can be achieved.Also, since switching of the polarization direction of the ferroelectric film is used, two A device that optically records a dimensional image, can retain the recorded image for a long time, and can perform non-destructive readout without image deterioration regardless of the intensity of the playback light during readout and playback, and has a wide range of applications. It is something that can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第一の実施例を示す概略側面図、第2
図は固体光メモリ素子の構造図、第3図は記録/再生/
消去動作の説明図、第4図は再生系の概略斜視図、第5
図は再生原理の説明図、第6図は変形例を示す概略側面
図、第7図は本発明の第二の実施例を示す構造図、第8
図は本発明の第三の実施例を示す構造図である。 1・・・固体光メモリ素子、3・・・結像レンズ(記録
用光学的手段)、4・・・再生用光学的手段、10・・
・透明基板、11・・・第1透明導電膜、12・・・強
誘電体膜、13・・・光導電膜、14・・・第2透明導
電膜、22・・・第1透明導電膜 出 願 人   株式会社   リ コ −Ju図 、%6 図 、、%7図 」 30国 」
FIG. 1 is a schematic side view showing a first embodiment of the present invention, and FIG.
The figure is a structural diagram of a solid-state optical memory element, and Figure 3 is a recording/reproducing/
An explanatory diagram of the erasing operation, FIG. 4 is a schematic perspective view of the reproduction system, and FIG.
6 is a schematic side view showing a modified example, FIG. 7 is a structural diagram showing a second embodiment of the present invention, and FIG.
The figure is a structural diagram showing a third embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Solid-state optical memory element, 3... Imaging lens (optical means for recording), 4... Optical means for reproduction, 10...
・Transparent substrate, 11... First transparent conductive film, 12... Ferroelectric film, 13... Photoconductive film, 14... Second transparent conductive film, 22... First transparent conductive film Applicant Ricoh Co., Ltd. - Ju Figure, %6 Figure, %7 Figure 30 Countries''

Claims (1)

【特許請求の範囲】[Claims] 透明基板上に第1透明導電膜と強誘電体膜と光導電膜と
第2透明導電膜とを順次積層形成してなる固体光メモリ
素子と、この固体光メモリ素子に対し画像を記録する記
録用光学的手段と、前記固体光メモリ素子に光を照射し
この固体光メモリに記録されている画像を読出す再生用
光学的手段とからなることを特徴とする固体光メモリ装
置。
A solid-state optical memory element formed by successively laminating a first transparent conductive film, a ferroelectric film, a photoconductive film, and a second transparent conductive film on a transparent substrate, and recording optics for recording an image on the solid-state optical memory element. 1. A solid-state optical memory device comprising: optical means for irradiating the solid-state optical memory element with light and reading an image recorded in the solid-state optical memory element.
JP62260698A 1987-10-15 1987-10-15 Solid-state optical memory device Pending JPH01125791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62260698A JPH01125791A (en) 1987-10-15 1987-10-15 Solid-state optical memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62260698A JPH01125791A (en) 1987-10-15 1987-10-15 Solid-state optical memory device

Publications (1)

Publication Number Publication Date
JPH01125791A true JPH01125791A (en) 1989-05-18

Family

ID=17351531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62260698A Pending JPH01125791A (en) 1987-10-15 1987-10-15 Solid-state optical memory device

Country Status (1)

Country Link
JP (1) JPH01125791A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278487A (en) * 2005-03-28 2006-10-12 Iwate Univ Ultraviolet sensor element and its manufacturing method
JP2013008998A (en) * 2012-09-10 2013-01-10 Iwate Univ Ultraviolet sensor element and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278487A (en) * 2005-03-28 2006-10-12 Iwate Univ Ultraviolet sensor element and its manufacturing method
JP2013008998A (en) * 2012-09-10 2013-01-10 Iwate Univ Ultraviolet sensor element and manufacturing method thereof

Similar Documents

Publication Publication Date Title
Casasent Spatial light modulators
US5093874A (en) Integrated electro-optical scanner with photoconductive substrate
US3838906A (en) Optical switch
US4731754A (en) Erasable optical memory material from a ferroelectric polymer
Land Optical information storage and spatial light modulation in PLZT ceramics
US4221471A (en) Liquid crystal memory device and method of utilizing same
JP3010392B2 (en) Spatial light modulator and driving method thereof
Knight Interface devices and memory materials
GB2177228A (en) Optical disc memory
Cummins et al. A new method of optically reading domains in bismuth titanate for display and memory applications
US3820088A (en) Ferroelectric memories,and method of activating the same
JPH01125791A (en) Solid-state optical memory device
Aagard et al. Advanced optical storage techniques for computers
Redfield et al. Data storage in photorefractives revisited
US3835459A (en) BIREFRINGENCE READ Bi{11 Ti{11 O{11 {11 DISPLAY AND MEMORY DEVICE
US4984198A (en) Liquid crystal electrooptic memory device
Maldonado et al. Strain-biased ferroelectric-photoconductor image storage and display devices operated in a reflection mode
US3807830A (en) Birefringence read {11 {11 {11 {11 display and memory device
US3659270A (en) Strain-biased fine grain ferroelectric ceramic devices for optical image storage and display systems
Keneman et al. Ferroelectric-photoconductor optical storage medium utilizing bismuth titanate
Anderson Ferroelectrics in optical memories and displays: A critical appraisal
EP1659439A1 (en) Optical controlling device
JPH0634994A (en) Driving method for space optical modulator
JPH0318824A (en) Charge image recording medium
US3625583A (en) Erasable hologram