JPS63311645A - Magneto-optical recording system - Google Patents

Magneto-optical recording system

Info

Publication number
JPS63311645A
JPS63311645A JP14531487A JP14531487A JPS63311645A JP S63311645 A JPS63311645 A JP S63311645A JP 14531487 A JP14531487 A JP 14531487A JP 14531487 A JP14531487 A JP 14531487A JP S63311645 A JPS63311645 A JP S63311645A
Authority
JP
Japan
Prior art keywords
layer
recording
magnetization
auxiliary layer
recording layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14531487A
Other languages
Japanese (ja)
Inventor
Osamu Ishii
修 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP14531487A priority Critical patent/JPS63311645A/en
Publication of JPS63311645A publication Critical patent/JPS63311645A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing

Abstract

PURPOSE:To eliminate a bias magnetic field by applying a processing magnetizing the entire medium in a direction in advance. CONSTITUTION:A magnetic thin film of two-layer structure composed of a recording layer 3 and an auxiliary layer 2 is used as a magneto-optical recording medium. The Curie temperature of each layer is lower in the order of the auxiliary layer 2 and the recording layer 3, the auxiliary layer and the recording layer are made of perpendicular magnetization film and the perpendicular magnetic anisotropy is smaller in the order of the recording layer 3 and the auxiliary layer 2. The medium is magnetized uniformly in perpendicular direction to the film face in advance (the processing is called as the initial magnetization and the magnetized direction is referred to as positive direction as the convenience of explanation). Then when a light beam 5 irradiates a recording area to heat the corresponding part and to record the information, the light beam intensity is changed into two levels of strong/weak levels in response to the information signal. Thus, no bias magnetic field is required, the device is simplified, and the miniaturization of the device and the reduction of the weight are attained.

Description

【発明の詳細な説明】 〈産業上の利用分骨〉 本発明は光ビーム強度を変化させることで新しい情報を
既に記録されている領域上に順次書き換える事ができる
所謂重ね書き機能のある光磁気記録の方式に関するもの
である。
[Detailed Description of the Invention] <Industrial Application> The present invention is a magneto-optical device with a so-called overwrite function that allows new information to be sequentially rewritten on an already recorded area by changing the intensity of a light beam. This concerns the recording method.

〈従来の技術〉 従来、光磁気ディスクへの記録(情報の書き込み)は、
一様に磁化した光記録媒体(Th −Fer4膜等の垂
直磁化薄膜)に対し異方性磁界以下のバイアス磁場を磁
化と逆向きに加えつつレーザービームを照射して照射領
域の温度をキュリー温度以上に上げた後、媒体が冷却す
る過程でバイアス磁場Hbの方向に磁化が反転すること
を利用しており、レーザービームをオン・オフする事で
磁化反転の列として情報を記録していた。この方式では
一旦記録された領域に再度新しい情報を記録する場合に
は逆向きのバイアス磁場中で連続レーザービームを照射
して媒体を加熱し磁化を全て一種な方向にそろえる事(
これを消去過程という)が必要であった。即ち、消去し
て後に再度記録を行う必要があり、通常の磁気記録にお
ける情報の書き込みのように予め記録されていた領域の
上に別の情報を記録することで前の情報は自動的に消え
ろいわゆる重ね書き機能はなく、アクセス速度の高速化
や従来の磁気記録装置との互換性上の障害となっていた
<Conventional technology> Conventionally, recording (writing information) on a magneto-optical disk was done by
A uniformly magnetized optical recording medium (perpendicularly magnetized thin film such as Th-Fer4 film) is irradiated with a laser beam while applying a bias magnetic field below the anisotropy field in the opposite direction to the magnetization, and the temperature of the irradiated area is brought to the Curie temperature. After the above temperature is increased, the magnetization is reversed in the direction of the bias magnetic field Hb during the cooling process of the medium, and information is recorded as a sequence of magnetization reversals by turning the laser beam on and off. In this method, when new information is to be recorded again in an area that has been previously recorded, a continuous laser beam is irradiated in an opposite bias magnetic field to heat the medium and align all the magnetization in one direction (
This is called an elimination process). In other words, it is necessary to erase and then record again, and just like writing information in normal magnetic recording, recording new information over the previously recorded area automatically erases the previous information. There is no so-called overwriting function, which has been an obstacle to increasing access speed and compatibility with conventional magnetic recording devices.

最近2NJ薄膜を用い重ね書きの出来る光磁気ディスク
が提案された。息下に、その動作メカニズムを述べる。
Recently, a magneto-optical disk using a 2NJ thin film and capable of overwriting has been proposed. Below, I will explain its operating mechanism.

第2図に光磁気ディスクの概略を示す。1は光磁気ディ
スク用基板、2は補助層(低異方性磁場、高キュリー温
度)、3は記録層(高異方性磁場、低キユリ一温度)、
4は 光ヘッド、5はレーザー光(光ビーム)である。
FIG. 2 shows an outline of a magneto-optical disk. 1 is a magneto-optical disk substrate, 2 is an auxiliary layer (low anisotropic magnetic field, high Curie temperature), 3 is a recording layer (high anisotropic magnetic field, low Curie temperature),
4 is an optical head, and 5 is a laser beam (light beam).

ディスク1が矢印方向へと回転している時、先ずディス
ク面に対して永久磁石6で強い垂直磁場Hiniを印加
し補助層2のみを磁場方向に完全に磁化しておく (こ
れをイニシャライズという。)。次ぎに、この媒体は光
ヘッド4の下に移動して強弱2水準の光パワーをもつ光
ビーム5で加熱される。ここでは、イニシャライズ用の
磁場Hiniとは逆向きに弱いバイアス磁場Hbが印加
されている。
When the disk 1 is rotating in the direction of the arrow, first a strong perpendicular magnetic field Hini is applied to the disk surface by the permanent magnet 6 to completely magnetize only the auxiliary layer 2 in the direction of the magnetic field (this is called initialization). ). Next, this medium is moved under the optical head 4 and heated by a light beam 5 having two levels of optical power: strong and weak. Here, a weak bias magnetic field Hb is applied in the opposite direction to the initializing magnetic field Hini.

光ビーム5のパワーが小さい時には、照射部分のaXa
度は記録層3のキュリー温度以上となるが補助1′!t
2のキュリー温度以下であるように設定する。この場合
には、記録層3のみが非磁性になり、補助層2の磁化は
失われずに残っている。媒体が移動してレーザービーム
5で照射された領域の温度が低下する時に、記録Nj3
の磁化はスピン相互作用によって補助層2の磁化と同一
方向に揃う。一方、レーザーパワーが大きい時には媒体
の温度は補助F!!2のキュリー温度よりも高くなる様
に設定する。この冷却過程では先ず補助層2の磁化が外
部バイアス磁場Hbの方向に揃い、この磁化にならって
記録層3の磁化もバイアス磁場Hbの方向に揃うことで
記録が完了する。以上の記録のプロセスは記録層3の磁
化状態に依存しないので、光ビーム5のパワーの強弱に
応じた記録がいつでもできる、即ち重ね書きが出来る事
を示している。記録1’5i3に書き込まれた情報はレ
ーザービームの反射光の偏光面の傾きの差として読み出
すことができる。再生時のレーザーパワーは、媒体温度
がTb−Fe1膜のキュリー温度よりも充分低い温度に
なるように設定する必要がある。
When the power of the light beam 5 is small, the aXa of the irradiated area
The temperature is higher than the Curie temperature of recording layer 3, but it is auxiliary 1'! t
The temperature is set to be below the Curie temperature of 2. In this case, only the recording layer 3 becomes nonmagnetic, and the magnetization of the auxiliary layer 2 remains without being lost. When the medium moves and the temperature of the area irradiated with the laser beam 5 decreases, the recording Nj3
The magnetization of is aligned in the same direction as the magnetization of the auxiliary layer 2 due to spin interaction. On the other hand, when the laser power is large, the temperature of the medium is auxiliary F! ! Set it so that it is higher than the Curie temperature of 2. In this cooling process, the magnetization of the auxiliary layer 2 is first aligned in the direction of the external bias magnetic field Hb, and following this magnetization, the magnetization of the recording layer 3 is also aligned in the direction of the bias magnetic field Hb, thereby completing recording. Since the above recording process does not depend on the magnetization state of the recording layer 3, this shows that recording can be performed at any time depending on the strength of the power of the light beam 5, that is, overwriting can be performed. Information written in the recording 1'5i3 can be read out as a difference in the slope of the polarization plane of the reflected light of the laser beam. The laser power during reproduction must be set so that the medium temperature is sufficiently lower than the Curie temperature of the Tb-Fe1 film.

〈発明が解決しようとする問題点〉 しかしながら、補助層2としてT b −F e −C
<Problems to be solved by the invention> However, as the auxiliary layer 2, T b -F e -C
.

薄膜を、記録Fi3としてTb−Fe薄膜を用いた例で
はイニシャライズ用磁場Hi旧として6000Gaus
sという高磁場が必要である(応用物理学会全国大会、
昭和62年3月28日発表の講演;佐藤正聡、斉藤旬、
松本広行、赤坂秀機「多層光磁気記録媒体を用いた単一
ビームオーバーライト方式」講演番号28 p −z 
l −3)。
In an example where a Tb-Fe thin film is used as the recording Fi3, the initializing magnetic field Hi is 6000 Gauss.
A high magnetic field of s is required (National Conference of Japan Society of Applied Physics,
Lecture presented on March 28, 1986; Masatoshi Sato, Shun Saito,
Hiroyuki Matsumoto, Hideki Akasaka "Single beam overwriting method using multilayer magneto-optical recording media" Lecture number 28 p-z
l-3).

このため光磁気ディスクは一般にカセットに収納されて
おり媒体と磁石との間隔が数醜以上であることを考慮す
ると、このような高い磁場Hiniを得るためには永久
磁石或いは電磁石の寸法がかなり大きくなるため、装置
の小型軽量化がしにくい等の問題を内在するといえる。
For this reason, considering that magneto-optical disks are generally housed in cassettes and the distance between the medium and the magnet is several inches, in order to obtain such a high magnetic field Hini, the size of the permanent magnet or electromagnet must be quite large. Therefore, it can be said that there are inherent problems such as difficulty in reducing the size and weight of the device.

又、HiniとHbという正負2方向の磁場を発生する
必要があり、装置構成を複雑にしている。
Furthermore, it is necessary to generate magnetic fields Hini and Hb in two directions, positive and negative, which complicates the device configuration.

本発明の目的は、光磁気記録方式においてバイアス磁場
を必要としない重ね書きの方法を提供することにある。
An object of the present invention is to provide an overwriting method that does not require a bias magnetic field in a magneto-optical recording system.

従来の重ね書き方法とは、バイアス磁場が不要なこと以
外に媒体全体を予め一方向に磁化する処理即ち、初期磁
化を施す点が異なる。
This differs from the conventional overwriting method in that, in addition to not requiring a bias magnetic field, the entire medium is previously magnetized in one direction, that is, initial magnetization is performed.

く本発明の原理〉 第1図に本発明の詳細な説明図を示す。光磁気記録媒体
として記録NJ3、補助W!J2の2ps構造の磁性薄
膜を用いろ。各層のキュリー温度は補助NJ2、記録層
3の順に低く、補助層、記録層は垂直磁化膜でありその
垂直磁気異方性は記録層3、補助PJ2の順に小さい。
Principle of the Present Invention> FIG. 1 shows a detailed explanatory diagram of the present invention. Recorded as a magneto-optical recording medium NJ3, auxiliary W! Use a J2 2ps structure magnetic thin film. The Curie temperature of each layer is lower in the order of auxiliary NJ2 and recording layer 3, and the auxiliary layer and recording layer are perpendicularly magnetized films, and the perpendicular magnetic anisotropy thereof is lower in the order of recording layer 3 and auxiliary PJ2.

媒体は予め膜面に対して垂直方向に一様に磁化しておく
 (この処理を初期m化と呼び、磁化されろ方向を便宜
的にプラス方向とする)。
The medium is uniformly magnetized in advance in a direction perpendicular to the film surface (this process is called initial mization, and the direction of magnetization is conveniently referred to as the positive direction).

次ぎに光ビーム5を記録領域に照射し該当部分を加熱し
て情報を記録する際に、光ビーム強度は情報信号に応じ
強弱2水準変化させる。
Next, when the light beam 5 is irradiated onto the recording area to heat the corresponding area and record information, the light beam intensity is changed in two levels depending on the information signal.

光ビーム強度が強いハイレベル時は補助層2のキュリー
温度付近まで記録/W3と補助層2は一緒に加熱される
ため、冷却時にその磁化は記録トラックの両側の記録I
I3と補助層2の磁化から発生する磁場によって初期磁
化方向とは逆方向(マイナス方向)に揃えられる。この
際、同一のトラック上の前後のビットから発生する磁場
の寄与は、そこに書き込まれている情報に応じて幾通り
かの可能性がある。最も書き込み難い状態は、前後のビ
ットの磁化がマイナス方向を向く場合であり、この時に
は光ビーム照射部分には前後のビットからはプラス方向
に反磁場が加わる。しかし、前後のビットから発生する
磁場は、後に述べるように記録層3と補助II2の磁化
が対抗しているためにトラックの両側から発生する磁場
に比較し相対的に小さく、その影響は無視できる。
When the light beam intensity is at a high level, recording is performed to near the Curie temperature of the auxiliary layer 2. Since W3 and the auxiliary layer 2 are heated together, their magnetization changes to the recording I on both sides of the recording track when cooled.
The magnetic field generated from I3 and the magnetization of the auxiliary layer 2 aligns the initial magnetization direction in the opposite direction (minus direction). At this time, there are several possibilities for the contribution of the magnetic fields generated from the previous and subsequent bits on the same track depending on the information written there. The state in which writing is most difficult is when the magnetization of the front and rear bits is in the negative direction, and in this case, a demagnetizing field is applied to the light beam irradiated area from the front and rear bits in the positive direction. However, the magnetic field generated from the front and rear bits is relatively small compared to the magnetic field generated from both sides of the track because the magnetization of the recording layer 3 and the auxiliary II 2 are opposed, as will be described later, and its influence can be ignored. .

一方、光ビーム強度が弱いローレベルには記録層3のキ
ュリー温度付近まで加熱するようにし、補助!52はそ
のキュリー温度よりも十分低温に保てる様にすると、冷
却過程で記録層3の磁化は補助I!!2とのスピン相互
作用のために補助層2の磁化と同一方向(即ちプラス方
向)に揃う。従って、光ビーム強度を変化することで、
情報に対応してプラス、或いはマイナスのどちらかの磁
化を記録N3に書き込む事ができる。
On the other hand, at a low level where the light beam intensity is weak, the recording layer 3 is heated to around its Curie temperature to provide additional support! 52 is maintained at a temperature sufficiently lower than its Curie temperature, the magnetization of the recording layer 3 is reduced to auxiliary I! during the cooling process. ! Due to the spin interaction with the auxiliary layer 2, the magnetization is aligned in the same direction as the auxiliary layer 2 (ie, in the positive direction). Therefore, by changing the light beam intensity,
Either positive or negative magnetization can be written in the recording N3 depending on the information.

一旦記録された部分に再び新しい情報を記録する前に次
の換作を行う。媒体が光ビーム5から遠ざかり常温まで
冷却後、外部から補助R2が磁化反転するためには必要
な以上の強度であり、同時に記録F!53が磁化反転す
るのには不十分な強度の磁場をプラス方向に加え補助I
!!2のみをプラス方向に揃え、媒体をイニシャライズ
する。即ち、垂直磁気異方性は記録層3が補助IW2よ
りも大いため記録層3の磁化状態の如何に関係なく、イ
ニシャライズ後は補助層2の磁化の方向のみをプラス方
向に一致させられる。この様な状態の媒体に再度強弱2
水準の光ビーム5を照射することで、上記の磁化反転挙
動が繰り返され、次々と新しい情報を記録し直す事がで
きる。もし記録層3に磁化がマイナス方向を向いたビッ
トが書き込まれている場合には、イニシャライズ後は記
録NJ3と補助層2の磁化が対向するために光ビーム照
射領域に及ぼす反磁場は相殺される。この結果、光ビー
ム強度を強(してマイナス方向のビットを書き込む場合
、先に述べた前後のビットから発生する磁場の影響は少
なくなる。
The next conversion is performed before new information is recorded again in the previously recorded portion. After the medium moves away from the light beam 5 and cools down to room temperature, the intensity is more than necessary for externally reversing the magnetization of the auxiliary R2, and at the same time the recording F! Auxiliary I adds a magnetic field of insufficient strength in the positive direction to reverse the magnetization of 53.
! ! Align only 2 in the positive direction and initialize the medium. That is, since the perpendicular magnetic anisotropy of the recording layer 3 is larger than that of the auxiliary IW2, regardless of the magnetization state of the recording layer 3, only the direction of magnetization of the auxiliary layer 2 can be made to coincide with the positive direction after initialization. Apply strength 2 again to the medium in this state.
By irradiating with the light beam 5 of the same level, the above-mentioned magnetization reversal behavior is repeated, and new information can be re-recorded one after another. If a bit with magnetization in the negative direction is written in the recording layer 3, the demagnetizing field exerted on the light beam irradiation area is canceled out because the magnetization of the recording NJ3 and the auxiliary layer 2 are opposite after initialization. . As a result, when writing bits in the negative direction by increasing the light beam intensity, the influence of the magnetic field generated from the preceding and succeeding bits described above is reduced.

記録信号を磁気光学効果を用いて検出する際には光ビー
ム強度は記録層のキュリー温度よりも充分低く設定し、
媒体の磁化状態が変化しない様にする。
When detecting recorded signals using the magneto-optic effect, the light beam intensity is set sufficiently lower than the Curie temperature of the recording layer.
Make sure that the magnetization state of the medium does not change.

く実 施 例〉 第1図と同様の構成の媒体を作製して、本発明の効果を
検証した。基板1はガラス円板である。この基板1上に
スパッタリング法を用い記録層として21%Tb−79
%Fe薄膜3を500人厚形成した後、補助層として2
3%Tb−65%Fe−12%co薄膜2ヲso。
EXAMPLE A medium having the same configuration as that shown in FIG. 1 was prepared to verify the effects of the present invention. Substrate 1 is a glass disk. A recording layer of 21% Tb-79 was formed on this substrate 1 by sputtering.
After forming the 500% Fe thin film 3, 2 was added as an auxiliary layer.
3%Tb-65%Fe-12%co thin film 2so.

人厚形成した。この媒体は予め20 KO@の外部磁場
を薄膜面に垂直に加えることで記録層3と補助層2の磁
化を一方向(便宜的にプラス方向とする)へ揃えておく
処理、いわゆる初期磁化処理を施しておく。記録層3及
び補助層2の保磁力は各々15KOe、5KOaなので
、20KOeの磁場は初期磁化用には充分な強度である
The people were thick. This medium is manufactured using a so-called initial magnetization process in which the magnetization of the recording layer 3 and the auxiliary layer 2 are aligned in one direction (for convenience, in the positive direction) by applying an external magnetic field of 20 KO@ perpendicularly to the thin film surface. Apply. Since the coercive forces of the recording layer 3 and the auxiliary layer 2 are 15 KOe and 5 KOa, respectively, a magnetic field of 20 KOe is strong enough for initial magnetization.

次ぎに、ガラス基板側から、光ビームを媒体に集光して
記録層3と補助層2を加熱した。
Next, a light beam was focused on the medium from the glass substrate side to heat the recording layer 3 and the auxiliary layer 2.

媒体の移動速度は8m/minであ咋、光ビーム径は1
μmである。光ビーム強度が11 mWす上では記録層
3と補助層2の磁化が反転してマイナス向きに揃った事
が傷光頚徴II!観察で認められた。5 mW以下では
、磁化の反転は起こらない。次ぎに、外部からプラス方
向に6KOeの磁場を加え、補助F!12の磁化のみを
プラス方向に反転させた後媒体全体を徐々に加熱した。
The moving speed of the medium is 8 m/min, and the optical beam diameter is 1.
It is μm. When the light beam intensity is 11 mW, the magnetization of the recording layer 3 and the auxiliary layer 2 are reversed and aligned in the negative direction, which is a sign of light damage II! It was confirmed by observation. Below 5 mW, no reversal of magnetization occurs. Next, a magnetic field of 6 KOe is applied from the outside in the positive direction, and the auxiliary F! After only the magnetization of No. 12 was reversed to the positive direction, the entire medium was gradually heated.

先に記録されたマイナス方向の磁化反転領域は、媒体温
度が120℃までは安定に存在するが、120℃以上に
なった時点では消えてしまう。
The previously recorded magnetization reversal region in the negative direction stably exists until the medium temperature reaches 120° C., but disappears when the temperature reaches 120° C. or higher.

以上の実験は、次のように解釈できる。光ビーム強度が
11 mW以上の場合には補助層2のキュリー温度(2
00℃)付近まで記録層3、補助層2共に加熱されるた
めその後の冷却過程では光ビーム加熱領域は、その周囲
から発生する反磁場のためにマイナス方向に磁化される
。次ぎに、外部から6 KOsの外部磁場を加えた処理
はイニシャライズの工程である。イニシャライズによっ
て光ビーム照射領域の補助@2の磁化のみがプラス方向
に反転したことは、次ぎに全体を加熱したときに記録層
3のキュリー温度までの加熱で記録層3の磁化反転領域
が消えてしまうことで証明テキる。即ち、記録層3の磁
化は補助層2どのスピン相互作用によりプラス方向に向
いたものである。
The above experiment can be interpreted as follows. When the light beam intensity is 11 mW or more, the Curie temperature of the auxiliary layer 2 (2
Since both the recording layer 3 and the auxiliary layer 2 are heated to around 00° C., in the subsequent cooling process, the light beam heated region is magnetized in the negative direction due to the demagnetizing field generated from its surroundings. Next, the process of applying an external magnetic field of 6 KOs from the outside is an initialization process. The fact that only the magnetization of the auxiliary @2 in the light beam irradiation area was reversed in the positive direction by initialization means that when the whole is heated next, the magnetization reversal region of the recording layer 3 disappears when it is heated to the Curie temperature of the recording layer 3. You can prove it by putting it away. That is, the magnetization of the recording layer 3 is directed in the positive direction due to the spin interaction with the auxiliary layer 2.

本実施例では試料全体を炉中で加熱する方法ニ依っての
加熱を行ったが、この時の加熱も光ビーム照射によって
行えば光ビーム強度を強弱2段階に変調することで、照
射領域の記録FJ3の磁化の向きをプラス或いはマイナ
スの任意方向に向けることができることと等価である事
は明らかである。また、記録層3の磁化状態は鵠光顕黴
続で観察したが、これも加熱と同一の光ビームの偏光面
の磁気光学効果による傾きを検出する様にすれば、光磁
気記録の重ね書きプロセスと、再生プロセスが完了する
こととなる。
In this example, the entire sample was heated in a furnace, but if this heating was also done by light beam irradiation, the light beam intensity could be modulated into two levels of strength and weakness, allowing the irradiation area to be heated. It is clear that this is equivalent to being able to direct the direction of magnetization of the recording FJ3 in any positive or negative direction. In addition, the magnetization state of the recording layer 3 was observed using an optical microscope, but if the inclination due to the magneto-optic effect of the polarization plane of the same light beam as that used for heating is detected, the overwriting process of magneto-optical recording can be achieved. Then, the regeneration process is completed.

〈発明の効果〉 以上に述べた様に、本発明の方式を用いれば、従来の重
ね書き記録方式では必要であったバイアス磁場が不用と
なり装置の構成の藺易化、小型化、軽量化が図れる事が
特長である。
<Effects of the Invention> As described above, by using the method of the present invention, the bias magnetic field required in the conventional overwrite recording method is no longer required, and the device configuration can be made simpler, smaller, and lighter. The feature is that it is possible to

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理図、第2図は従来技術にかかり、
同図(alはイニシャライズの説明図、同図[b)は光
パワーの小さい時の記録状態の説明図、同図(C)は光
パワーの大きい時の記録状態の説明図である。 図 面 中、 1は基板、 2は補助層、 3は記録層、 4は光ヘッド、 5は光ビーム、 6は永久磁石、 Hiniはイニシャライズ用磁場、 Hbはバイアス磁場である。 第 /111\\Hini 2図
Fig. 1 shows the principle of the present invention, Fig. 2 shows the conventional technology,
The same figure (al is an explanatory diagram of initialization, the same figure [b] is an explanatory diagram of the recording state when the optical power is low, and the same figure (C) is an explanatory diagram of the recording state when the optical power is high. In the drawing, 1 is a substrate, 2 is an auxiliary layer, 3 is a recording layer, 4 is an optical head, 5 is a light beam, 6 is a permanent magnet, Hini is an initializing magnetic field, and Hb is a bias magnetic field. No./111\\Hini Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)光磁気記録媒体として記録層、補助層の2層構造
の磁性薄膜を用い、予め前記記録層及び補助層を薄膜面
に対して垂直方向に一様に磁化する初期磁化を行い、し
かるのちに光ビームを記録領域に照射し該当部分を加熱
して情報を記録する際に、光ビーム強度として強弱2水
準を用い、光ビーム強度が強いハイレベル時には前記補
助層及び記録層の磁化は記録トラックの両側の記録層と
補助層の磁化から発生する磁場によって初期磁化方向と
は逆方向に揃う温度以上に加熱されるように設定し、一
方、光ビーム強度が弱いローレベル時には前記記録層の
磁化は前記補助層とのスピン相互作用のために補助層の
磁化と同一方向の初期磁化方向に揃うが前記補助層の磁
化は変化しない温度に加熱されるように設定することで
、情報に対応していずれかの方向の磁化を前記記録層に
書き込み、次ぎに前記媒体に対して新しい情報を記録す
る前に外部から前記補助層が磁化反転するためには必要
な以上の強度であり、同時に前記記録層が磁化反転する
のには不十分な強度の磁場を初期磁化方向に加え前記補
助層のみを初期磁化方向に揃えるイニシャライズを行い
、及び前記記録層の磁化の方向を磁気光学効果を用いて
検出するさいには光ビーム強度は前記記録層のキュリー
温度よりも充分低く前記媒体の磁化状態が変化しない強
度とすることを特徴とする光磁気記録方式。
(1) A magnetic thin film with a two-layer structure of a recording layer and an auxiliary layer is used as a magneto-optical recording medium, and initial magnetization is performed in advance to uniformly magnetize the recording layer and the auxiliary layer in the direction perpendicular to the thin film surface. Later, when recording information by irradiating the recording area with a light beam and heating the corresponding area, two levels of light beam intensity, strong and weak, are used, and when the light beam intensity is at a high level, the magnetization of the auxiliary layer and recording layer is The magnetic field generated by the magnetization of the recording layer and the auxiliary layer on both sides of the recording track is set to heat the recording layer to a temperature higher than that aligned in the direction opposite to the initial magnetization direction.On the other hand, when the light beam intensity is at a low level, the recording layer The magnetization of the auxiliary layer is aligned with the initial magnetization direction in the same direction as that of the auxiliary layer due to the spin interaction with the auxiliary layer, but the magnetization of the auxiliary layer is heated to a temperature that does not change. Correspondingly, the magnetization in either direction is written to the recording layer, and the intensity is greater than that required for externally reversing the magnetization of the auxiliary layer before recording new information on the medium; At the same time, a magnetic field with insufficient strength to reverse the magnetization of the recording layer is applied to the initial magnetization direction, and initialization is performed to align only the auxiliary layer with the initial magnetization direction, and the direction of the magnetization of the recording layer is controlled by the magneto-optic effect. 1. A magneto-optical recording method, characterized in that the light beam intensity is sufficiently lower than the Curie temperature of the recording layer and does not change the magnetization state of the medium during detection using the magneto-optical recording method.
(2)請求範囲第1項において前記媒体のキュリー温度
は補助層、記録層の順に低く、補助層、記録層は垂直磁
化膜であり、その垂直磁気異方性は記録層、補助層の順
に小さい媒体を用いる事を特徴とする光磁気記録方式。
(2) In claim 1, the Curie temperature of the medium is lower in the order of the auxiliary layer and the recording layer, the auxiliary layer and the recording layer are perpendicularly magnetized films, and the perpendicular magnetic anisotropy is lower in the order of the recording layer and the auxiliary layer. A magneto-optical recording method characterized by the use of small media.
JP14531487A 1987-06-12 1987-06-12 Magneto-optical recording system Pending JPS63311645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14531487A JPS63311645A (en) 1987-06-12 1987-06-12 Magneto-optical recording system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14531487A JPS63311645A (en) 1987-06-12 1987-06-12 Magneto-optical recording system

Publications (1)

Publication Number Publication Date
JPS63311645A true JPS63311645A (en) 1988-12-20

Family

ID=15382292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14531487A Pending JPS63311645A (en) 1987-06-12 1987-06-12 Magneto-optical recording system

Country Status (1)

Country Link
JP (1) JPS63311645A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04222942A (en) * 1990-12-25 1992-08-12 Nec Corp Magneto-optical recording medium
US5239504A (en) * 1991-04-12 1993-08-24 International Business Machines Corporation Magnetostrictive/electrostrictive thin film memory
US5440531A (en) * 1985-06-11 1995-08-08 Nikon Corporation Magneto-optical reproducing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5440531A (en) * 1985-06-11 1995-08-08 Nikon Corporation Magneto-optical reproducing method
JPH04222942A (en) * 1990-12-25 1992-08-12 Nec Corp Magneto-optical recording medium
US5239504A (en) * 1991-04-12 1993-08-24 International Business Machines Corporation Magnetostrictive/electrostrictive thin film memory

Similar Documents

Publication Publication Date Title
JPS60236137A (en) Simultaneously erasing-recording type photomagnetic recording system and recording device and medium used for this system
US5430696A (en) Magneto-optical recording medium
US5142513A (en) Magneto-optical storage medium and magneto-optical overwrite system with magnetic characteristic change by variation of thermal condition for recording information
JPH0721894B2 (en) Magneto-optical recording method
JP3538727B2 (en) Magneto-optical recording medium
JPS63311645A (en) Magneto-optical recording system
JPH0721892B2 (en) Magneto-optical recording method
JPH0721895B2 (en) Magneto-optical recording method
JPS63316344A (en) Magneto-optical recording system
WO1990001769A1 (en) Overwrite type magnetooptical recording apparatus
JP2910082B2 (en) Magneto-optical recording / reproducing method
JP3227281B2 (en) Magneto-optical disk and magneto-optical disk reproducing device
JP2604700B2 (en) Magneto-optical recording / reproduction / erasing method and apparatus
JPS5816276B2 (en) Hikarijikikikirokuhoushiki
JP2591729B2 (en) Magneto-optical recording / reproduction / erasing method and apparatus
JPS63304448A (en) Magneto-optical recording medium
JP2604702B2 (en) Magneto-optical recording / reproduction / erasing method and apparatus
JPH0721893B2 (en) Magneto-optical recording method
JP2573601B2 (en) Information recording method for magneto-optical medium
JP2746313B2 (en) Information recording method
JP2578115B2 (en) Magneto-optical recording method
JPS63179436A (en) Magneto-optical recording medium
JP3146614B2 (en) Recording method and recording apparatus for magneto-optical recording medium
JPS62219203A (en) Optical modulation overwriting system for photomagnetic recording device
JPH0242664A (en) Thermo-magneto-optical recording medium, recording device thereof and thermomagneto-optical recording system using them