JP2591729B2 - Magneto-optical recording / reproduction / erasing method and apparatus - Google Patents

Magneto-optical recording / reproduction / erasing method and apparatus

Info

Publication number
JP2591729B2
JP2591729B2 JP59171094A JP17109484A JP2591729B2 JP 2591729 B2 JP2591729 B2 JP 2591729B2 JP 59171094 A JP59171094 A JP 59171094A JP 17109484 A JP17109484 A JP 17109484A JP 2591729 B2 JP2591729 B2 JP 2591729B2
Authority
JP
Japan
Prior art keywords
recording
erasing
thin film
recording medium
magnetic thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59171094A
Other languages
Japanese (ja)
Other versions
JPS6150235A (en
Inventor
満哉 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP59171094A priority Critical patent/JP2591729B2/en
Publication of JPS6150235A publication Critical patent/JPS6150235A/en
Application granted granted Critical
Publication of JP2591729B2 publication Critical patent/JP2591729B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B13/00Recording simultaneously or selectively by methods covered by different main groups among G11B3/00, G11B5/00, G11B7/00 and G11B9/00; Record carriers therefor not otherwise provided for; Reproducing therefrom not otherwise provided for
    • G11B13/04Recording simultaneously or selectively by methods covered by different main groups among G11B3/00, G11B5/00, G11B7/00 and G11B9/00; Record carriers therefor not otherwise provided for; Reproducing therefrom not otherwise provided for magnetically or by magnetisation and optically or by radiation, for changing or sensing optical properties
    • G11B13/045Recording simultaneously or selectively by methods covered by different main groups among G11B3/00, G11B5/00, G11B7/00 and G11B9/00; Record carriers therefor not otherwise provided for; Reproducing therefrom not otherwise provided for magnetically or by magnetisation and optically or by radiation, for changing or sensing optical properties combined recording by magnetic and optic means

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はレーザ光を用いて光磁気記録再生消去をおこ
なう光磁気記録再生消去方式及びその装置に関する。
Description: TECHNICAL FIELD The present invention relates to a magneto-optical recording / reproducing and erasing system for performing magneto-optical recording / reproducing / erasing using a laser beam, and an apparatus therefor.

(従来技術とその問題点) 光記録方式、特に光デイスクメモリ方式は、高密度・
大容量記録が可能であり、かつ非接触・高速アクセスも
できるという点から大容量ファイルメモリの一つとして
近年注目を集めている。その中でも記録媒体としてMnB
i,MnCuBi,MnTiBi,MnAlGeなどの結晶性磁性薄膜あるいは
Tb,Gd,Dy,Hoなどの希土類金属とFe,Co,Niなどの遷移金
属との組み合わせによって作成される非晶質磁性薄膜を
用いて光磁気デイスクメモリは、記録情報の書き替えが
可能であるという利点を持っていることから、各所で盛
んに研究されている。
(Prior art and its problems) The optical recording method, especially the optical disk
In recent years, it has attracted attention as one of large-capacity file memories because it can perform large-capacity recording and can also perform non-contact and high-speed access. Among them, MnB as a recording medium
crystalline magnetic thin films such as i, MnCuBi, MnTiBi, MnAlGe or
Magneto-optical disk memory uses an amorphous magnetic thin film made of a combination of rare earth metals such as Tb, Gd, Dy, and Ho and transition metals such as Fe, Co, and Ni. Due to its advantages, it is being actively studied in various places.

従来、公知の光磁気記録再生消去方式及び装置におい
ては、情報の記録・再生・消去に対してそれぞれ次のよ
うに動作がとられる。
2. Description of the Related Art Conventionally, in a known magneto-optical recording / reproducing / erasing method and apparatus, the following operations are performed for recording, reproducing, and erasing information.

記録には、レーザ光により発生する熱を利用する。レ
ーザ光ビームを1〜2μmψの微小スポットに絞り、記
録媒体に照射し、媒体温度に上昇させる。キューリ温度
記録をおこなう場合には、記録媒体をキューリ温度以上
に上昇させ、外部印加磁界あるいは記録媒体の反磁界に
よって反転磁区を形成する。補償温度記録をおこなう場
合には記録媒体の補償温度を室温付近に設定し、レーザ
光ビーム照射によってある温度まで昇温させ、媒体の保
磁力低下を利用し、外部印加磁界によって反転磁区を形
成する。前記手段により記録2値信号「1」「0」を記
録媒体の反転磁区の有無に対応した形で記録できる。
For recording, heat generated by a laser beam is used. The laser light beam is narrowed down to a minute spot of 1 to 2 μmψ and irradiated on the recording medium to increase the medium temperature. When performing Curie temperature recording, the recording medium is raised to a Curie temperature or higher, and a reversal magnetic domain is formed by an externally applied magnetic field or a demagnetizing field of the recording medium. When performing compensation temperature recording, set the compensation temperature of the recording medium to around room temperature, raise the temperature to a certain temperature by irradiating a laser light beam, and form a reversal magnetic domain by an externally applied magnetic field using the decrease in the coercive force of the medium. . By the means described above, the recording binary signals "1" and "0" can be recorded in a form corresponding to the presence or absence of the reversal magnetic domain of the recording medium.

再生は磁気光学効果(Kerr効果あるいはFaraday効
果)を用いておこなわれる。すなわち記録媒体の反転磁
区の有無に対応して媒体からの反射光あるいは透過光の
偏光面が回転することを利用し、記録媒体から情報を読
み出す。記録媒体には記録時にくらべ低パワレベルのレ
ーザ光が照射され、その反射光または透過光から信号を
再生する。
Reproduction is performed using a magneto-optical effect (Kerr effect or Faraday effect). That is, information is read from the recording medium by utilizing the fact that the polarization plane of reflected light or transmitted light from the medium is rotated according to the presence or absence of the reversal magnetic domain of the recording medium. The recording medium is irradiated with a laser beam having a lower power level than during recording, and a signal is reproduced from the reflected light or transmitted light.

ここで、再生に用いるレーザ光の強度レベルは記録媒
体の磁化状態に変化を与えないレベルに設定される。
Here, the intensity level of the laser beam used for reproduction is set to a level that does not change the magnetization state of the recording medium.

記録情報を消去する場合には、外部磁界を記録時とは
逆極性に印加し、レーザ光ビームを記録時と同等の強度
で記録媒体に一様に照射する。外部磁界印加により記録
媒体の磁化状態は記録前の初期状態に戻る。
When erasing recorded information, an external magnetic field is applied with a polarity opposite to that during recording, and the recording medium is uniformly irradiated with a laser beam at the same intensity as during recording. By applying an external magnetic field, the magnetization state of the recording medium returns to the initial state before recording.

前記従来の光磁気記録再生消去方式及び装置におい
て、記録情報の書き替えをおこなうには、まず、既記録
情報を前記消去動作に従って消去し、次に新しい記録情
報を前記記録動作に従って記録するという二段階の操作
をおこなう。このとき、消去時と、記録時では記録媒体
に印加する外部磁界の方向が逆であるために、消去時、
記録時では外部印加磁界の方向を切り替える手段を設け
なければならない。
In the above-described conventional magneto-optical recording / reproduction / erasing method and apparatus, rewriting of recorded information is performed by first erasing recorded information according to the erasing operation, and then recording new recorded information according to the recording operation. Perform the step operations. At this time, since the direction of the external magnetic field applied to the recording medium during erasing and during recording is opposite, during erasing,
At the time of recording, means for switching the direction of the externally applied magnetic field must be provided.

たとえば、コイルによって外部磁界を印加する場合、
第4図に示すように、光磁気デイスク1に対して記録、
消去を行なうには光ヘッド5からのレーザ光の記録動作
と消去動作に同期させて、コイル21に流す電流の向きを
コイル電流極性切替手段22によって切り替える方式が知
られている。
For example, when applying an external magnetic field with a coil,
As shown in FIG. 4, recording is performed on the magneto-optical disc 1,
In order to perform erasing, a method is known in which the direction of the current flowing through the coil 21 is switched by the coil current polarity switching means 22 in synchronization with the recording operation and the erasing operation of the laser beam from the optical head 5.

また、第5図に示すように永久磁石23によって外部磁
界を印加する場合には、磁石駆動機構を用いる方式及び
装置が知られている(特開昭57−24046,特開昭57−2404
7)。前記両方式及び装置においては第6図(a),
(b)の動作モード図に示したように外部磁界の印加方
向は逆転する。いずれの方式及び装置においても装置構
成が複雑になるという欠点がある。
When an external magnetic field is applied by the permanent magnet 23 as shown in FIG. 5, a system and a device using a magnet drive mechanism are known (Japanese Patent Laid-Open Nos. 57-24046 and 57-2404).
7). 6 (a),
The application direction of the external magnetic field is reversed as shown in the operation mode diagram of FIG. Each of the systems and apparatuses has a disadvantage that the apparatus configuration is complicated.

(発明の目的) 本発明の目的は、前記従来の光磁気記録再生消去方式
及び装置の欠点を解決し、外部磁界の印加方向を切り替
えることなく、簡単な装置構成により、記録情報の書き
替えが可能な新規な光磁気記録再生消去方式及び装置を
提供することにある。
(Object of the Invention) An object of the present invention is to solve the drawbacks of the conventional magneto-optical recording / reproducing and erasing method and apparatus, and to rewrite recorded information by a simple apparatus configuration without switching the application direction of an external magnetic field. An object of the present invention is to provide a novel magneto-optical recording / reproducing and erasing method and apparatus which are possible.

(発明の構成) 本発明によれば、垂直磁気異方性を有する磁性薄膜を
記録媒体とし、レーザ光によって記録・再生・消去する
光磁気記録再生消去方法であって、前記記録媒体に照射
するレーザ光の強度をを変化させて情報を記録する過程
と、前記記録媒体に一定の強度のレーザ光を照射して記
録情報を再生する再生過程と、一定の強度のレーザ光を
照射して記録情報を消去する消去過程を通して一定の磁
界を外部から記録媒体に印加する光域記録再生消去方法
において、前記記録媒体の磁性薄膜が希土類一遷移金属
合金薄膜であり、前記再生過程における再生レーザパワ
が前記記録媒体の磁性薄膜の磁化状態に変化を与えない
レベルに設定され、前記消去過程における消去レーザパ
ワが記録媒体の磁性薄膜を前記磁性薄膜のキューリ温度
以上に昇温するレベルであって、かつ、前記消去過程に
よって形成される記録媒体の磁性薄膜の消去部分の磁化
状態が、前記照射レーザ光のビームスポット径に比べて
小さい微小磁区の集合体となるレベルであり、前記記録
過程における記録レーザパワが記録媒体の磁性薄膜を前
記磁性薄膜のキューリ温度以上に昇温するレベルであっ
て、かつ、前記記録過程によって形成される記録媒体の
磁性薄膜の磁化状態が、前記消去部分の磁化状態と異な
る微小磁区の集合体となるレベルであり、前記記録過程
によって形成された情報記録部分を前記再生レーザ光で
観察したときの磁気光学回転角が、前記消去部分を前記
再生レーザ光で観察したときの磁気光学回転角と異なる
レベルであり、前記記録再生消去過程における外部印加
磁界強度は、レーザ照射された記録膜にかかる反磁界と
は逆方向であり、かつ、前記外部印加磁界強度と消去時
反磁界の和である消去時実効的印加磁界は、消去過程に
おける磁化状態を初期の消去部磁化状態と同じとするレ
ベルに設定されたことを特徴とする光磁気記録再生消去
方法が得られ、さらには、記録媒体と、該記録媒体に一
定の磁界を印加する磁界発生手段と、記録媒体にレーザ
光を照射する光ヘッドと記録時、再生時、消去時に対応
してレーザ光源の発振レーザ光強度を変化させるレーザ
光源変調回路とを具備し、前記再生時の再生レーザパワ
レベルが前記記録媒体の磁性薄膜の磁化状態に変化を与
えない一定レベルであり、前記消去時における消去レー
ザパワレベルは一定であり、記録媒体の磁性薄膜を前記
磁性薄膜のキューリ温度以上に昇温するレベルであり、
前記記録時における記録レーザパワレベルは一定であ
り、記録情報に対応してパルス変調されるとともに、記
録媒体の磁性薄膜を前記磁性薄膜のキューリ温度以上に
昇温するレベルであり、前記記録再生消去過程における
外部印加磁界強度が、レーザ照射された記録膜にかかる
反磁界とは逆方向であり、かつ、前記外部印加磁界強度
と消去時反磁界の和である消去時実効的印加磁界は、消
去過程における磁化状態を初期の消去部磁化状態と同じ
とするレベルに設定されたことを特徴とする光磁気記録
再生消去装置が得られる。
(Constitution of the Invention) According to the present invention, there is provided a magneto-optical recording / reproducing / erasing method in which a magnetic thin film having perpendicular magnetic anisotropy is used as a recording medium, and recording / reproducing / erasing is performed by a laser beam. Recording information by changing the intensity of the laser light, reproducing the recording information by irradiating the recording medium with laser light of a constant intensity, and recording by irradiating the laser light of a constant intensity. In an optical recording / reproducing / erasing method in which a constant magnetic field is applied to a recording medium from the outside through an erasing process for erasing information, the magnetic thin film of the recording medium is a rare earth-transition metal alloy thin film, and the reproducing laser power in the reproducing process is as described above. It is set to a level that does not change the magnetization state of the magnetic thin film of the recording medium, and the erasing laser power in the erasing process causes the magnetic thin film of the recording medium to be higher than the Curie temperature of the magnetic thin film. And the magnetization state of the erasing portion of the magnetic thin film of the recording medium formed by the erasing process becomes an aggregate of small magnetic domains smaller than the beam spot diameter of the irradiation laser light. A level at which the recording laser power in the recording process raises the temperature of the magnetic thin film of the recording medium above the Curie temperature of the magnetic thin film, and a magnetization state of the magnetic thin film of the recording medium formed by the recording process. Is a level that is an aggregate of minute magnetic domains different from the magnetization state of the erased portion, and the magneto-optical rotation angle when the information recording portion formed by the recording process is observed with the reproduction laser beam is the erased portion. At a level different from the magneto-optical rotation angle when observing with the reproduction laser light. The effective applied magnetic field at the time of erasing, which is the direction opposite to the demagnetizing field applied to the recorded recording film and is the sum of the externally applied magnetic field strength and the demagnetizing field at the time of erasing, changes the magnetization state in the erasing process to the initial erasing portion magnetization. A magneto-optical recording / reproducing / erasing method characterized by being set to the same level as the state is obtained, further comprising: a recording medium; a magnetic field generating means for applying a constant magnetic field to the recording medium; An optical head for irradiating a laser beam; and a laser light source modulation circuit for changing an oscillation laser light intensity of a laser light source in response to recording, reproducing, and erasing, wherein a reproducing laser power level during the reproducing is the recording medium. And the erasing laser power level at the time of erasing is constant, and the temperature of the magnetic thin film of the recording medium rises above the Curie temperature of the magnetic thin film. A bell,
The recording laser power level at the time of recording is constant, and is pulse-modulated in accordance with recording information, and is a level at which the magnetic thin film of the recording medium is heated to a temperature higher than the Curie temperature of the magnetic thin film. The externally applied magnetic field strength in the process is in the opposite direction to the demagnetizing field applied to the laser-irradiated recording film, and the effective applied magnetic field at the time of erasing is the sum of the externally applied magnetic field strength and the demagnetizing field at the time of erasing. A magneto-optical recording / reproducing / erasing apparatus characterized in that the magnetization state in the process is set to the same level as the initial magnetization state of the erasure portion.

(構成の詳細な説明) 本発明は上述の構成をとることにより、従来技術の問
題点を解決した。
(Detailed Description of Configuration) The present invention has solved the problems of the prior art by adopting the above configuration.

以下、本発明の詳細について図面を用いて説明する。
第1図は、本発明が適用された光磁気記録再生消去装置
の構成例を示したものである。第1図において光磁気デ
イスク1は有機物樹脂基板あるいはガラス基板あるいは
金属基板より成る円板2の一方もしくは両面に、基板面
の垂直方向に磁化容易軸を有する磁性薄膜3を作成した
ものである。
Hereinafter, details of the present invention will be described with reference to the drawings.
FIG. 1 shows a configuration example of a magneto-optical recording / reproducing / erasing apparatus to which the present invention is applied. In FIG. 1, a magneto-optical disk 1 has a magnetic thin film 3 having an easy axis of magnetization in a direction perpendicular to the substrate surface formed on one or both surfaces of a disk 2 made of an organic resin substrate, a glass substrate, or a metal substrate.

前記磁性薄膜3は、結晶性あるいは非晶質磁性薄膜で
あり、たとえば、MnBi,MnCuBi,MnTiBi,MnAlGeなどの結
晶性磁性薄膜、あるいはSm,Tb,Gd,Dy,Hoなどの希土類金
属とFe,Co,Niなどの遷移金属との組み合わせによって作
成される非晶質磁性薄膜である。前記光磁気デイスク1
はデイスク駆動用モータ4によって所定の速度で回転さ
れる。光ヘッド5は光磁気記録再生消去用の光学系、光
検出機構を具備している。光ヘッド5自体は、図中に矢
印で示したように光磁気デイスク1の半径方向に所定の
速度により移動可能である。
The magnetic thin film 3 is a crystalline or amorphous magnetic thin film, for example, a crystalline magnetic thin film such as MnBi, MnCuBi, MnTiBi, MnAlGe, or a rare earth metal such as Sm, Tb, Gd, Dy, Ho and Fe, An amorphous magnetic thin film formed by a combination with a transition metal such as Co or Ni. The magneto-optical disk 1
Is rotated at a predetermined speed by a disk drive motor 4. The optical head 5 has an optical system for magneto-optical recording / reproduction and erasing, and a light detecting mechanism. The optical head 5 itself is movable at a predetermined speed in the radial direction of the magneto-optical disc 1 as indicated by an arrow in the figure.

前記光ヘッド5において、6は直線偏光のレーザ光源
であり、たとえば半導体レーザが使用される。7,8,9は
ビームスプリッタである。
In the optical head 5, reference numeral 6 denotes a linearly polarized laser light source, for example, a semiconductor laser. 7, 8, and 9 are beam splitters.

レーザ光ビーム集光用レンズ10はアクチュエータ11に
より支持されている。磁界発生手段12は光磁気デイスク
を介してレーザ光ビーム集光用レンズと反対側もしくは
同じ側に設置され、永久磁石あるいはコイルと直流電源
の組み合わせが用いられる。フォーカスエラーならびに
トラッキングエラー信号はそれぞれフォーカスエラー検
出用受光素子13、トラッキングエラー検出用受光素子14
によって検出されサーボ制御回路15,16に入力され、サ
ーボ信号となり、前記アクチュエータ11にフィードバッ
クされる。再生信号は偏光フイルタ17を通過後、再生信
号検出用受光素子18によって検出され、再生信号増幅回
路19によって増幅される。偏光フイルタとしてはたとえ
ばグラントムソンプリズムが用いられる。再生信号検出
用受光素子としてはたとえばPINフォトダイオード、ア
バランシェ・フォトダイオードが使用される。レーザ光
源6の変調にはレーザ光源変調用回路20が使用され、記
録時,消去時,再生時に合わせてレーザ光源6のパワー
を変調する。
The laser light beam focusing lens 10 is supported by an actuator 11. The magnetic field generating means 12 is provided on the opposite side or the same side as the laser light beam focusing lens via the magneto-optical disk, and uses a permanent magnet or a combination of a coil and a DC power supply. The focus error and tracking error signals are received by the light receiving element 13 for detecting the focus error and the light receiving element 14 for detecting the tracking error, respectively.
Is detected and input to the servo control circuits 15 and 16 to become a servo signal, which is fed back to the actuator 11. After passing through the polarization filter 17, the reproduction signal is detected by the reproduction signal detecting light-receiving element 18 and amplified by the reproduction signal amplifier circuit 19. For example, a Glan-Thompson prism is used as the polarizing filter. For example, a PIN photodiode or an avalanche photodiode is used as the light-receiving element for detecting a reproduction signal. A laser light source modulation circuit 20 is used to modulate the laser light source 6, and modulates the power of the laser light source 6 at the time of recording, erasing, and reproducing.

次に上記構成の光磁気記録再生消去装置の動作方式、
特に従来方式と異なる消去方式について第2図により説
明する。
Next, the operation method of the magneto-optical recording / reproducing / erasing apparatus having the above configuration,
In particular, an erasing method different from the conventional method will be described with reference to FIG.

前記光磁気デイスク1上にはすでに第2図(a)に示
す2値信号情報がデイスクトラックに沿って記録されて
いる。このとき光磁気デイスク1の磁性薄膜3の磁化状
態は第2図(b)中に斜線にて表示した部分は「1」信
号に対応して磁化方向が周囲に対して反転している。
The binary signal information shown in FIG. 2A is already recorded on the magneto-optical disk 1 along the disk track. At this time, the magnetization state of the magnetic thin film 3 of the magneto-optical disk 1 is indicated by hatching in FIG. 2 (b), and the magnetization direction is inverted with respect to the surroundings in response to the "1" signal.

次に記録情報を消去したい場合、磁性薄膜3に照射す
るレーザ光のパワーレベルを第2図(c)のように一定
パワーレベルPEに調整する。これはレーザ光源変調用回
路20にて調整可能である。
If the next want to erase the recorded information, for adjusting the power level of the laser light irradiated on the magnetic thin film 3 at a constant power level P E as in the second diagram (c). This can be adjusted by the laser light source modulation circuit 20.

PEは、既記録部分の磁化状態(すなわち磁化反転の有
無)にかかわらず、磁化方向が初期状態(「0」信号レ
ベル)に戻るレーザ光パワーである。第2図(c)に示
したレーザ光パワー照射によって磁性薄膜3の磁化は第
2図(d)の状態になり、既記録情報は消去される。
PE is the laser beam power whose magnetization direction returns to the initial state (“0” signal level) regardless of the magnetization state of the recorded portion (that is, whether or not there is magnetization reversal). The magnetization of the magnetic thin film 3 is brought into the state shown in FIG. 2D by the irradiation of the laser beam power shown in FIG. 2C, and the recorded information is erased.

続いて、新規の2値信号情報たとえば第2図(e)に
示したように信号情報を記録する場合には、磁性薄膜3
に吸収されるレーザ光パワーが第2図(f)に示すレベ
ルになるようにレーザ光源変調用回路20を調整する。第
2図(f)においてレーザ光パワーレベルPwは磁化反転
部分(「1」信号)を形成するに十分なレーザ光パワー
を示している。
Subsequently, when recording new binary signal information, for example, signal information as shown in FIG.
The laser light source modulation circuit 20 is adjusted so that the laser light power absorbed by the laser light source reaches the level shown in FIG. In FIG. 2 (f), the laser light power level Pw indicates a laser light power sufficient to form a magnetization reversal portion ("1" signal).

PRは記録時のフォーカスエラー、トラッキングエラー
を検出するために必要なレーザ光パワーを示している。
PRは再生時のレーザ光パワーと同レベルである。
P R denotes the laser beam power required to detect a focus error, tracking error at the time of recording.
P R is the laser light power at the same level at the time of reproduction.

第2図(f)に示したレーザ光パワーによって記録を
おこなうと、その結果磁性薄膜3の磁化状態は第2図
(g)になる。
When recording is performed with the laser beam power shown in FIG. 2 (f), the magnetization state of the magnetic thin film 3 is changed to FIG. 2 (g).

以上、一連の消去過程、記録過程においては、磁性薄
膜3には磁界印加用コイルあるいは永久磁石から成る磁
界発生手段12により一定の磁界Haが印加されており、記
録再生消去を通して変える必要がない。すなわち、既記
録情報を印加磁界を変えることなく、レーザ光パワーを
調整することにより消去でき、また新規な情報を記録で
きる。
As described above, in a series of erasing and recording processes, a constant magnetic field Ha is applied to the magnetic thin film 3 by the magnetic field generating means 12 composed of a magnetic field applying coil or a permanent magnet, and does not need to be changed through recording / reproducing / erasing. . That is, the recorded information can be erased by changing the laser beam power without changing the applied magnetic field, and new information can be recorded.

光磁気記録においては、記録時には、記録マークの磁
化方向に磁界を印加し、レーザ光を照射する。このと
き、磁性薄膜の記録マーク部分には、外部からの印加磁
界以外に磁性薄膜の磁化成分からの磁界、いわゆる「反
磁界」が印加される。この反磁界成分は、おおむね磁性
薄膜の磁化の大きさによって変わり、磁性薄膜の磁化が
大きいと「反磁界」も大きくなる。よって、反磁界が大
きい場合には、外部からの印加磁界が小さくても、ある
いは印加磁界の磁界方向が記録マークの磁化方向と逆で
あっても、記録マークが形成されることがある。また、
反磁界が小さい場合は、記録マークの磁化方向に沿った
ある程度の外部磁界印加が必要となる。
In magneto-optical recording, at the time of recording, a magnetic field is applied in the magnetization direction of a recording mark, and a laser beam is irradiated. At this time, in addition to an externally applied magnetic field, a magnetic field from a magnetization component of the magnetic thin film, that is, a so-called “demagnetizing field” is applied to the recording mark portion of the magnetic thin film. This demagnetizing field component varies substantially depending on the magnitude of the magnetization of the magnetic thin film. When the magnetization of the magnetic thin film is large, the "diamagnetic field" also increases. Therefore, when the demagnetizing field is large, a recording mark may be formed even if the externally applied magnetic field is small or the direction of the applied magnetic field is opposite to the magnetization direction of the recording mark. Also,
When the demagnetizing field is small, it is necessary to apply an external magnetic field to some extent along the magnetization direction of the recording mark.

本発明では、ここでいう外部印加磁界のレベルをうま
く選ぶと、外部印加磁界を一定にしたままで、パルス状
の記録パワ照射により記録マーク形成ができ、一定レベ
ルの消去パワ照射で消去が可能である。我々は、この新
規な現象を詳細に分析した結果、次のことが明確となっ
た。消去時には、消去用レーザ照射によって、磁性薄膜
の磁化状態がレーザ光のスポットサイズに比べて、はる
かに小さいサブミクロン以下の磁区を持つ磁化状態にな
る。これは、レーザ加熱領域が冷却時に受ける外部磁界
成分(反磁界+印加磁界)が小さい場合に発生する。こ
の場合レーザ光通過直後の領域は、まだ薄膜自体の温度
がキューリ温度以上であり、磁化が出現していない。こ
のため、この領域からの反磁界成分はなく、レーザ照射
部分に加わる外部磁界はその分小さくなる。このとき、
消去動作前のビットは完全に消去する。ここで形成され
た微小磁区は、レーザスポット径に比べて小さいため
に、信号としては検出されない。
In the present invention, if the level of the externally applied magnetic field is properly selected, a recording mark can be formed by pulse-like recording power irradiation while the externally applied magnetic field is kept constant, and erasing can be performed by irradiating a fixed level of erasing power. It is. As a result of detailed analysis of this new phenomenon, the following became clear. At the time of erasing, the irradiation of the erasing laser changes the magnetization state of the magnetic thin film into a magnetization state having a magnetic domain of submicron or less, which is much smaller than the spot size of the laser beam. This occurs when the external magnetic field component (demagnetizing field + applied magnetic field) received by the laser heating region during cooling is small. In this case, in the region immediately after the passage of the laser beam, the temperature of the thin film itself is still higher than the Curie temperature, and no magnetization has appeared. Therefore, there is no demagnetizing field component from this region, and the external magnetic field applied to the laser-irradiated portion is reduced accordingly. At this time,
Bits before the erase operation are completely erased. The small magnetic domain formed here is not detected as a signal because it is smaller than the laser spot diameter.

次に、この状態から記録を行うと、レーザ加熱領域が
受ける外部磁界は、外部印加磁界分と、レーザ照射部分
の回り全てからの反磁界分の和となる。よって、このと
きの外部磁界は、前述の消去時の外部磁界に比べて、よ
り多く磁化反転に寄与することになる。よって、この場
合には、印加磁界をうまく設定することにより、記録マ
ーク形成が可能となる。
Next, when recording is performed from this state, the external magnetic field received by the laser heating area is the sum of the externally applied magnetic field and the demagnetizing field from all around the laser irradiation part. Therefore, the external magnetic field at this time contributes to the magnetization reversal more than the external magnetic field at the time of erasing described above. Therefore, in this case, a recording mark can be formed by appropriately setting the applied magnetic field.

通常使用される光磁気記録媒体では、印加磁界強度に
応じて、レーザ記録後の記録膜の磁化状態が変化する。
第7図に示すように、記録膜の上から下方向に一定レベ
ル以上の磁界を印加して記録した場合、記録部分の磁化
状態は全面下方向に揃う。記録時の印加磁界強度をゼロ
に近づけていくと、記録後の磁化状態は徐々に上方向に
磁化した微小磁区領域が増加し、印加磁界強度ゼロで
は、上下の磁化状態が均等に配置された消磁状態とな
る。この後、印加磁界方向を逆転させ、印加磁界を上方
向に増していくと、上方向に磁化した微小磁区領域が一
層増加し、最終的には全て上方向に揃った磁化状態とな
る。
In a commonly used magneto-optical recording medium, the magnetization state of the recording film after laser recording changes according to the applied magnetic field strength.
As shown in FIG. 7, when recording is performed by applying a magnetic field of a certain level or more downward from above the recording film, the magnetization state of the recording portion is aligned downward in the entire surface. When the applied magnetic field strength at the time of recording approached zero, the magnetization state after recording gradually increased in the upwardly magnetized microdomain region, and at zero applied magnetic field strength, the upper and lower magnetization states were arranged uniformly. It becomes demagnetized. Thereafter, when the direction of the applied magnetic field is reversed and the applied magnetic field is increased in the upward direction, the fine magnetic domain region magnetized in the upward direction further increases, and finally, the magnetized state is all aligned in the upward direction.

次に本発明にかかる記録動作ならびに消去動作を第8
図以降の図面を用いて説明する。
Next, the recording operation and the erasing operation according to the present invention will be described in the eighth.
This will be described with reference to the drawings after the figure.

第8図(a)は、記録消去をおこなう前の初期状態で
ある。記録膜は一方向に磁化が揃った状態ではなく、微
小磁区を有する状態にある。
FIG. 8A shows an initial state before recording and erasing. The recording film is not in a state in which the magnetizations are aligned in one direction, but in a state having minute magnetic domains.

この状態の記録膜に対して消去をおこなう際は、一定
パワに設定されたレーザ光を照射する。このとき記録膜
上では、レーザ照射部分より後方に昇温領域が伸びるた
め、磁化消失領域は横長に伸びる。つまり、レーザ通過
後の領域も加熱された状態であるため、第8図(b)に
あるように、やや後方に延びた横長の領域がレーザ照射
によって昇温され磁化が消失する。
When erasing the recording film in this state, a laser beam set to a constant power is irradiated. At this time, on the recording film, the temperature rising region extends behind the laser irradiation portion, so that the magnetization disappearing region extends horizontally. That is, since the region after passing the laser is also in a heated state, as shown in FIG. 8 (b), the horizontally elongated region extending slightly backward is heated by the laser irradiation and the magnetization disappears.

これに対して、記録時にはパルス的にレーザパワを照
射するので、レーザ照射時の昇温領域はほぼレーザビー
ムの形状に近い円形となり、この領域の磁化が消失す
る。
On the other hand, since the laser power is radiated in a pulsed manner during recording, the temperature rising region during the laser irradiation becomes a circular shape substantially similar to the shape of the laser beam, and the magnetization in this region disappears.

第9図は、本発明にかかる記録時ならびに消去時の記
録膜にかかる反磁界成分を模式的に示したものである。
ここで、斜線で示した領域は、レーザ照射によって昇温
し磁化が消失している領域である。
FIG. 9 schematically shows the demagnetizing field component applied to the recording film at the time of recording and erasing according to the present invention.
Here, the region indicated by oblique lines is a region where the temperature has been raised by laser irradiation and the magnetization has disappeared.

第9図(a)は消去時の反磁界成分を求めたもので、
領域5がレーザ照射されている領域であると仮定する
と、領域4はレーザ通過後領域ではあるが、レーザが一
定パワで照射されているために依然として昇温量が大き
く磁化が消失している。よって、この時点で領域5に働
く反磁界Hdeは、領域5の周囲にある領域1,2,3,6,7,8,9
からの反磁界の和となり、 Hde=Hde1+Hde2+Hde3+Hde6 +Hde7+Hde8+Hde9 となる。ここで、Hdeiは領域iから領域6への反磁界で
ある。
FIG. 9 (a) shows the demagnetizing component at the time of erasing.
Assuming that the region 5 is a region irradiated with the laser, the region 4 is a region after passing the laser. However, since the laser is irradiated with a constant power, the amount of temperature rise is still large and the magnetization is lost. Therefore, the demagnetizing field Hde acting on the region 5 at this time is equal to the regions 1, 2, 3, 6, 7, 8, 9 surrounding the region 5.
And Hde = Hde1 + Hde2 + Hde3 + Hde6 + Hde7 + Hde8 + Hde9. Here, Hdei is a demagnetizing field from the region i to the region 6.

同様にして、第9図(b)は記録時の反磁界成分を求
めたもので、領域5がレーザ照射されている領域である
と仮定する。この場合、領域4はレーザ通過後領域では
あるが、レーザ照射がパルス的であるため磁化は消失し
ていない。よって、この時点で領域5に働く反磁界Hdw
は、領域5の周囲にある領域1,2,3,4,6,7,8,9からの反
磁界の和となり、 Hdw=Hdw1+Hdw2+Hdw3+Hdw4 +Hdw6+Hdw7+Hdw8+Hdw9 となる。ここで、Hdwiは領域iから領域5への反磁界で
ある。
Similarly, FIG. 9 (b) shows the demagnetizing component at the time of recording, and it is assumed that the region 5 is a region irradiated with the laser. In this case, the region 4 is a region after passing the laser, but the magnetization is not lost because the laser irradiation is pulse-like. Therefore, at this point, the demagnetizing field Hdw acting on the region 5
Is the sum of the demagnetizing fields from the areas 1, 2, 3, 4, 6, 7, 8, 9 surrounding the area 5, and Hdw = Hdw1 + Hdw2 + Hdw3 + Hdw4 + Hdw6 + Hdw7 + Hdw8 + Hdw9. Here, Hdwi is a demagnetizing field from the region i to the region 5.

第10図は、本発明にかかる記録消去時の反磁界Hdとレ
ーザ照射部への実効的印加磁界Hafならびに前記実効的
印加磁界Hafを記録膜に印加したときの磁化状態の関係
をまとめたものである。消去時の反磁界成分(Hde)
は、第9図を用いて説明したように、第9図(a)の領
域4からの反磁界がなくなるために、記録時の反磁界
(Hdw)より絶対値として小さくなる。つまり、 |Hdw|>|Hde| なる関係が成立する。ただし、Hdw=0では、Hde=0で
ある。
FIG. 10 summarizes the relationship between the demagnetizing field Hd at the time of recording and erasing according to the present invention, the effective applied magnetic field Haf to the laser irradiation part, and the magnetization state when the effective applied magnetic field Haf is applied to the recording film. It is. Demagnetizing field component at erasing (Hde)
As described with reference to FIG. 9, since the demagnetizing field from the region 4 in FIG. 9A disappears, the absolute value becomes smaller than the demagnetizing field (Hdw) at the time of recording. That is, the relationship | Hdw |> | Hde | holds. However, when Hdw = 0, Hde = 0.

第10図の横軸は、外部印加磁界Haと反磁界Hdの合成か
ら成る実効的印加磁界Hafであり、Haf=0のとき、記録
膜はレーザ加熱と冷却の過程で消磁状態となる。HafがH
a+よりも大きい場合には、記録膜はレーザ加熱と冷却
の過程で一様の磁化状態となる。また、HafがHa−より
も小さい場合には、記録膜はレーザ加熱と冷却の過程
で、HafがHa+よりも大きい場合とは逆方向に一様の磁
化状態となる。
The horizontal axis in FIG. 10 is the effective applied magnetic field Haf formed by combining the externally applied magnetic field Ha and the demagnetizing field Hd. When Haf = 0, the recording film is demagnetized in the course of laser heating and cooling. Haf is H
When it is larger than a +, the recording film becomes a uniform magnetized state in the process of laser heating and cooling. When Haf is smaller than Ha−, the recording film is in a uniform magnetization state in the direction opposite to the case where Haf is larger than Ha + during laser heating and cooling.

本発明では、消去後の磁化状態は、初期の磁化状態と
同じとなる。第11図において、初期の磁化状態としてA
点を選ぶと、このとき、記録時の反磁界HdwはHdwAとな
り、消去時の反磁界HdeはHdeAとなる。よって、消去過
程を経て、磁化状態がA点に戻るためには、外部印加磁
界Haとして第11図中に示したHaAより大きさの磁界を印
加しておけばよい。このとき、記録マークの磁化状態は
B点となり、A点とは異なる磁化状態を持つ。第11図
(a)は記録膜の飽和磁化が小さいために、比較的反磁
界が小さい場合であり、このときには、B点はA点よ
り、より消磁状態に近づく。第11図(b)は記録膜の飽
和磁化が比較的大きいために、比較的反磁界が大きい場
合であり、このときには、B点とA点は、消磁状態をは
さんで異なった磁化状態となる。
In the present invention, the magnetization state after erasing is the same as the initial magnetization state. In FIG. 11, the initial magnetization state is A
When a point is selected, the demagnetizing field Hdw at the time of recording is HdwA, and the demagnetizing field Hde at the time of erasing is HdeA. Therefore, in order to return the magnetization state to point A through the erasing process, a magnetic field having a magnitude larger than HaA shown in FIG. 11 should be applied as the externally applied magnetic field Ha. At this time, the magnetization state of the recording mark is point B, and has a different magnetization state from point A. FIG. 11A shows a case where the demagnetizing field is relatively small because the saturation magnetization of the recording film is small. At this time, the point B is closer to the demagnetized state than the point A. FIG. 11B shows a case where the demagnetizing field is relatively large because the saturation magnetization of the recording film is relatively large. At this time, the points B and A have different magnetization states with the demagnetization state therebetween. Become.

(実施例1) 第1図に示した光磁気記録再生消去装置を用いて、光
磁気ディスクへの情報記録、再生、消去をおこなった。
光磁気ディスクとして、120mmφのポリカーボネート樹
脂基板上にスパッタ法によりTbFe膜を700Å厚に形成し
たディスクを使用した。基板はあらかじめ幅0.8μm、
ピッチ2.5μm、深さ700Åの溝が形成されているいわゆ
るプリグループ基板を用いた。
Example 1 Using the magneto-optical recording / reproducing / erasing apparatus shown in FIG. 1, information was recorded, reproduced, and erased on the magneto-optical disk.
As the magneto-optical disk, a disk having a TbFe film formed to a thickness of 700 mm on a 120 mmφ polycarbonate resin substrate by a sputtering method was used. The substrate is 0.8 μm wide in advance,
A so-called pre-group substrate having a pitch of 2.5 μm and a depth of 700 ° was formed.

TbFe膜上には保護膜としてSiO2が真空蒸着法により12
00Å形成されている。
As a protective film on the TbFe film SiO 2 is by vacuum evaporation 12
00Å is formed.

第3図は、消去特性の測定結果である。デイスクの後
方に置かれたコイルによって光磁気デイスクにTbFeの磁
化と同方向に175Oeの一定磁界を印加し、線速9m/secの
条件で1MHzの信号をレーザ光パワーPwにて記録したの
ち、消去用の一定レーザ光パワーPEを既記録トラックに
照射したときの結果である。Aの領域では既記録信号す
なわち1MHzの信号は完全に消去される。一方Bの領域で
は消去用レーザパワーPEでは完全消生はされなかった。
また、Cの領域はPwが記録しきい値以下であるため信号
記録ができない領域である。再生パワーは記録膜の磁化
状態に変化を与えないパワで、この時ディスク上での温
度キューリ温度より十分低ければ良い。線速5〜20m/s
の範囲では、通常は1〜1.5mWが用いられる。
FIG. 3 shows the measurement results of the erasing characteristics. After applying a constant magnetic field of 175 Oe to the magneto-optical disk in the same direction as the magnetization of TbFe by a coil placed behind the disk, and recording a 1 MHz signal at a laser beam power Pw at a linear velocity of 9 m / sec, it is the result when irradiated with predetermined laser beam power P E for erasing the recorded tracks. In the area A, the recorded signal, that is, the 1 MHz signal is completely erased. Meanwhile complete the erasing laser power P E is in the region of B Shonama was not.
The area C is an area where signal recording cannot be performed because Pw is equal to or smaller than the recording threshold. The reproducing power is a power that does not change the magnetization state of the recording film, and it is sufficient that the reproducing power is sufficiently lower than the temperature Curie temperature on the disk. Linear speed 5-20m / s
In the range, 1 to 1.5 mW is usually used.

記録パワと消去パワは、記録膜の温度をキューリ温度
以上にする必要があるため、再生パワより高く設定され
る。本発明では、既に知られている光磁気記録における
記録しきい値パワより、高く設定される。本実施例で
は、記録しきい値パワは3mWである。記録パワと消去パ
ワの関係は、本発明の第3図に示したように、完全消去
が実現できる範囲であれば、例えば、6mWと5mW、あるい
は7mWと7mWのように、任意に設定可能である。
The recording power and the erasing power are set higher than the reproducing power because the temperature of the recording film needs to be higher than the Curie temperature. In the present invention, the recording threshold power is set higher than the known recording threshold power in magneto-optical recording. In this embodiment, the recording threshold power is 3 mW. As shown in FIG. 3 of the present invention, the relationship between the recording power and the erasing power can be arbitrarily set, for example, 6 mW and 5 mW, or 7 mW and 7 mW as long as complete erasure can be realized. is there.

本発明が実現される外部印加磁界強度は、使用される
記録膜によって異なるが、本実施例では、磁化と同方向
に175Oeの印加磁界で実現される。外部印加磁界範囲
は、通常の光磁気記録における記録が始まる印加磁界で
ある「記録しきい値磁界」と記録時の信号レベルが飽和
する「飽和記録磁界」の間の印加磁界の範囲であれば、
任意の磁界強度に設定できる。
The externally applied magnetic field strength at which the present invention is realized differs depending on the recording film used, but in the present embodiment, it is realized with an applied magnetic field of 175 Oe in the same direction as the magnetization. The externally applied magnetic field range is an applied magnetic field between a "recording threshold magnetic field" which is an applied magnetic field at which recording in normal magneto-optical recording starts and a "saturated recording magnetic field" at which a signal level at the time of recording is saturated. ,
It can be set to any magnetic field strength.

記録媒体の磁性薄膜の特性との関係については、前述
した各パラメータ(記録パワ、消去パワ、再生パワ、印
加磁界)が磁性薄膜の特性によって変わるので、一意的
に決められないが、通常使用される光磁気記録媒体、す
なわち、希土類−遷移金属合金薄膜であれば、本発明の
対象となる磁性薄膜として使用できる。なお、本発明の
実施例に示したTbFe記録膜の磁化特性は、保磁力2.9KO
e、キューリ温度130℃である。
The relationship with the characteristics of the magnetic thin film of the recording medium cannot be uniquely determined because the above-described parameters (recording power, erasing power, reproducing power, applied magnetic field) vary depending on the characteristics of the magnetic thin film. Any magneto-optical recording medium, that is, a rare earth-transition metal alloy thin film, can be used as a magnetic thin film that is an object of the present invention. Note that the magnetization characteristics of the TbFe recording film shown in the examples of the present invention have a coercive force of 2.9 KO.
e, Curie temperature is 130 ° C.

(実施例2) 実施例1に示した光磁気記録再生消去装置と光磁気デ
イスクを用い、Pw=9.5mW、PE=9.5mW PR=1.0mW、線速
9m/sec、磁界をTbFeの磁化と同方向に175Oe印加した条
件で、1MHzの信号の記録、消去を繰り返した。記録消去
を105回繰り返しても記録消去特性には変化がみられな
かった。
(Example 2) using a magneto-optical recording and reproducing erasing device and the magneto-optical disc shown in Example 1, Pw = 9.5 mW, P E = 9.5 mW P R = 1.0 mW, linear velocity
Recording and erasing of a 1 MHz signal were repeated under the condition that a magnetic field of 9 m / sec and 175 Oe were applied in the same direction as the magnetization of TbFe. Change the recording and erasing to the recording and erasing characteristics be repeated 10 5 times was observed.

(発明の効果) 以上、説明したように本発明によれば、従来例と比較
して次のような効果がある。
(Effects of the Invention) As described above, according to the present invention, the following effects are obtained as compared with the conventional example.

すなわち、外部磁界の印加方向を切り替えることな
く、一定の外部磁界印加状態で、記録・消去が達成でき
るので、光磁気記録再生消去装置の構成を簡単化でき
る。また、本発明は、光磁気デイスクとして実施例で示
したTbFe膜に限られるものではなく、光磁気記録用結晶
性磁性薄膜、非晶質磁性薄膜に広く適用できる。
That is, recording and erasing can be achieved in a constant external magnetic field application state without switching the application direction of the external magnetic field, so that the configuration of the magneto-optical recording / reproducing / erasing apparatus can be simplified. The present invention is not limited to the TbFe film shown in the embodiment as a magneto-optical disk, but can be widely applied to a crystalline magnetic thin film for magneto-optical recording and an amorphous magnetic thin film.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の適用された光磁気記録再生消去装置の
構成例を示す図、第2図(a)〜(g)は消去、記録時
の各部の動作モードならびに記録状態を示す模式図であ
る。また、第3図は本発明の一実施例の測定結果を示す
図である。第4図、第5図は従来の光磁気記録再生消去
装置の構成図、第6図(a),(b)は従来の光磁気記
録再生消去方式の各部の動作モードを示す模式図であ
る。第7図は、印加磁界強度と記録膜の磁化状態の関係
を示した図、第8図は、記録消去をおこなう記録膜の磁
化状態とレーザ光照射時の昇温状態を示す図、第9図
は、本発明にかかる記録時ならびに消去時の記録膜にか
かる反磁界成分を模式的に示した図、第10図は、本発明
にかかる記録消去時の反磁界Hdとレーザ照射部への実効
的印加磁界Hafならびに前記実効的印加磁界Hafを記録膜
に印加したときの磁化状態の関係をまとめた図、第11図
は、記録ならびに消去動作時の反磁界と実効的印加磁界
ならびに記録膜の磁化状態の関係を示す図である。 図において、1は光磁気デイスク、2は円板、3は磁性
薄膜、4はデイスク駆動用モータ、5は光ヘッド、6は
レーザ光源、7,8,9はビームスプリッタ、10はレーザ光
ビーム集光ビーム集光用レンズ、11はアクチュエータ、
12は磁界発生手段、13はフォーカスエラー検出用受光素
子、14はトラッキングエラー検出用受光素子、15,16は
サーボ制御回路、17は偏光フイルタ、18は再生信号検出
用受光素子、19は再生信号増幅回路、20はレーザ光源変
調用回路、21はコイル、22はコイル用電源及びコイル電
流極性切替手段、23は永久磁石による磁界発生手段であ
る。
FIG. 1 is a diagram showing a configuration example of a magneto-optical recording / reproducing / erasing apparatus to which the present invention is applied, and FIGS. 2 (a) to 2 (g) are schematic diagrams showing operation modes and recording states of respective parts during erasing and recording. It is. FIG. 3 is a view showing a measurement result of one embodiment of the present invention. FIGS. 4 and 5 are configuration diagrams of a conventional magneto-optical recording / reproducing / erasing apparatus, and FIGS. 6 (a) and 6 (b) are schematic diagrams showing operation modes of respective parts of a conventional magneto-optical recording / reproducing / erasing system. . FIG. 7 is a diagram showing the relationship between the applied magnetic field intensity and the magnetization state of the recording film, FIG. 8 is a diagram showing the magnetization state of the recording film for performing recording and erasing, and the temperature rising state during laser beam irradiation. FIG. 10 is a diagram schematically showing a demagnetizing field component applied to a recording film at the time of recording and erasing according to the present invention, and FIG. 10 is a diagram showing a demagnetizing field Hd and a laser irradiating unit at the time of recording and erasing according to the present invention. FIG. 11 summarizes the relationship between the effective applied magnetic field Haf and the magnetization state when the effective applied magnetic field Haf is applied to the recording film, and FIG. 11 shows the demagnetizing field and the effective applied magnetic field and the recording film during recording and erasing operations. FIG. 4 is a diagram showing the relationship between the magnetization states of FIG. In the figure, 1 is a magneto-optical disk, 2 is a disk, 3 is a magnetic thin film, 4 is a disk drive motor, 5 is an optical head, 6 is a laser light source, 7, 8, and 9 are beam splitters, and 10 is a laser light beam. Focusing beam focusing lens, 11 is actuator,
12 is a magnetic field generating means, 13 is a light receiving element for focus error detection, 14 is a light receiving element for tracking error detection, 15 and 16 are servo control circuits, 17 is a polarization filter, 18 is a light receiving element for detecting a reproduction signal, and 19 is a reproduction signal. An amplification circuit, 20 is a laser light source modulation circuit, 21 is a coil, 22 is a coil power supply and coil current polarity switching means, and 23 is a magnetic field generating means using a permanent magnet.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】垂直磁気異方性を有する磁性薄膜を記録媒
体とし、レーザ光によって情報を記録・再生・消去する
光磁気記録再生消去方法であって、 前記記録媒体に照射するレーザ光の強度を変化させて情
報を記録する過程と、前記記録媒体に一定の強度のレー
ザ光を照射して記録情報を再生する再生過程と、一定の
強度のレーザ光を照射して記録情報を消去する消去過程
を通して一定の磁界を外部から記録媒体に印加する光磁
気記録再生消去方法において、 前記記録媒体の磁性薄膜が希土類一遷移金属合金薄膜で
あり、 前記再生過程における再生レーザパワが前記記録媒体の
磁性薄膜の磁化状態に変化を与えないレベルに設定さ
れ、 前記消去過程における消去レーザパワが前記記録媒体の
磁性薄膜を前記磁性薄膜のキュリー温度以上に昇温する
レベルであって、かつ、前記消去過程によって形成され
る記録媒体の磁性薄膜の消去部分の磁化状態が、前記照
射レーザ光のビームスポット径に比べて小さい微小磁区
の集合体となるレベルであり、 前記記録過程における記録レーザパワが記録媒体の磁性
薄膜を前記磁性薄膜のキュリー温度以上に昇温するレベ
ルであって、かつ、前記記録過程によって形成される記
録媒体の磁性薄膜の磁化状態が、前記消去部分の磁化状
態と異なる微小磁区の集合体となるレベルであり、 前記記録過程によって形成された情報記録部分を前記再
生レーザ光で観察したときの磁気光学回転角が、前記消
去部分を前記再生レーザ光で観察したときの磁気光学回
転角と異なるレベルであり、 前記記録再生消去過程における外部印加磁界強度は、レ
ーザ照射された記録膜にかかる反磁界とは逆方向であ
り、かつ、前記外部印加磁界強度と消去時反磁界の和で
ある消去時実効的印加磁界は、消去過程における磁化状
態を初期の消去部磁化状態と同じとするレベルに設定さ
れたことを特徴とする光磁気記録再生消去方法。
1. A magneto-optical recording / reproducing / erasing method for recording / reproducing / erasing information by a laser beam using a magnetic thin film having perpendicular magnetic anisotropy as a recording medium, the intensity of the laser beam applied to the recording medium. Changing the information, recording the information, irradiating the recording medium with a constant intensity laser beam to reproduce the recorded information, and irradiating the constant intensity laser beam to erase the recorded information. A magneto-optical recording / reproducing / erasing method for applying a constant magnetic field to a recording medium from outside through a process, wherein the magnetic thin film of the recording medium is a rare earth-transition metal alloy thin film, and the reproducing laser power in the reproducing process is a magnetic thin film of the recording medium. The erasing laser power in the erasing process raises the temperature of the magnetic thin film of the recording medium to a temperature higher than the Curie temperature of the magnetic thin film. And the level of magnetization of the erased portion of the magnetic thin film of the recording medium formed by the erasing process is a level at which small magnetic domains are aggregated compared to the beam spot diameter of the irradiation laser light. The recording laser power in the recording process is at a level where the magnetic thin film of the recording medium is heated to a temperature higher than the Curie temperature of the magnetic thin film, and the magnetization state of the magnetic thin film of the recording medium formed in the recording process is This is a level that forms an aggregate of small magnetic domains different from the magnetization state of the erased portion, and the magneto-optical rotation angle when the information recording portion formed by the recording process is observed with the reproduction laser beam, The level is different from the magneto-optical rotation angle when observed with a laser beam. The effective applied magnetic field at the time of erasing, which is the direction opposite to the demagnetizing field applied to the recording film and is the sum of the externally applied magnetic field strength and the demagnetizing field at the time of erasing, changes the magnetization state in the erasing process to the initial erasing part magnetization state. A magneto-optical recording / reproducing / erasing method set to the same level as that of the above.
【請求項2】記録媒体と、該記録媒体に一定の磁界を印
加する磁界発生手段と、記録媒体にレーザ光を照射する
光ヘッドと、記録時、再生時、消去時に対応してレーザ
光源の発振レーザ光強度を変化させるレーザ光源変調回
路とを具備し、 前記再生時の再生レーザパワレベルが前記記録媒体の磁
性薄膜の磁化状態に変化を与えない一定レベルであり、 前記消去時における消去レーザパワレベルは一定であ
り、記録媒体の磁性薄膜を前記磁性薄膜のキューリ温度
以上に昇温するレベルであり、 前記記録時における記録レーザパワレベルは一定であ
り、記録情報に対応してパルス変調されるとともに、記
録媒体の磁性薄膜を前記磁性薄膜のキューリ温度以上に
昇温するレベルであり、 前記記録再生消去過程における外部印加磁界強度が、レ
ーザ照射された記録膜にかかる反磁界とは逆方向であ
り、かつ、前記外部印加磁界強度と消去時反磁界の和で
ある消去時実効的印加磁界は、消去過程における磁化状
態を初期の消去部磁化状態と同じとするレベルに設定さ
れたことを特徴とする光磁気記録再生消去装置。
2. A recording medium, a magnetic field generating means for applying a constant magnetic field to the recording medium, an optical head for irradiating the recording medium with laser light, and a laser light source corresponding to recording, reproduction and erasing. A laser light source modulation circuit for changing the intensity of the oscillating laser light, wherein the reproducing laser power level during the reproduction is a constant level that does not change the magnetization state of the magnetic thin film of the recording medium, and the erasing laser during the erasing. The power level is constant, and is a level at which the magnetic thin film of the recording medium is heated to a temperature higher than the Curie temperature of the magnetic thin film. The recording laser power level at the time of recording is constant, and pulse modulation is performed in accordance with recording information. And a temperature at which the magnetic thin film of the recording medium is heated to a temperature higher than the Curie temperature of the magnetic thin film. The effective applied magnetic field at the time of erasing, which is the direction opposite to the demagnetizing field applied to the irradiated recording film and is the sum of the externally applied magnetic field strength and the demagnetizing field at the time of erasing, changes the magnetization state in the erasing process to the initial erasing portion. A magneto-optical recording / reproducing / erasing apparatus, wherein the level is set to be the same as the magnetization state.
JP59171094A 1984-08-17 1984-08-17 Magneto-optical recording / reproduction / erasing method and apparatus Expired - Lifetime JP2591729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59171094A JP2591729B2 (en) 1984-08-17 1984-08-17 Magneto-optical recording / reproduction / erasing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59171094A JP2591729B2 (en) 1984-08-17 1984-08-17 Magneto-optical recording / reproduction / erasing method and apparatus

Publications (2)

Publication Number Publication Date
JPS6150235A JPS6150235A (en) 1986-03-12
JP2591729B2 true JP2591729B2 (en) 1997-03-19

Family

ID=15916873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59171094A Expired - Lifetime JP2591729B2 (en) 1984-08-17 1984-08-17 Magneto-optical recording / reproduction / erasing method and apparatus

Country Status (1)

Country Link
JP (1) JP2591729B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5528564A (en) * 1986-03-07 1996-06-18 Movid Information Technology, Inc. Direct overwrite magneto-optic system for strip erasing and recording elongated domains
US5184335A (en) * 1986-03-07 1993-02-02 Movid Information Technology, Inc. Method and system for erasing previously recorded domains in a magneto-optic recording medium

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59113507A (en) * 1982-12-21 1984-06-30 Nec Corp System and device for photomagnetic recording, reproducing, and erasing
JPS59113506A (en) * 1982-12-21 1984-06-30 Nec Corp System and device for photomagnetic recording, reproducing, and erasing

Also Published As

Publication number Publication date
JPS6150235A (en) 1986-03-12

Similar Documents

Publication Publication Date Title
KR920010029B1 (en) Magneto-optical recording system
US4862437A (en) Magneto-optical recording reproducing, and erasing apparatus having two independent magnetic field applying devices
JPS60236137A (en) Simultaneously erasing-recording type photomagnetic recording system and recording device and medium used for this system
JPS61192048A (en) System and device for optical/magnetic recording, reproducing and erasing
JPH0721894B2 (en) Magneto-optical recording method
JPS59113506A (en) System and device for photomagnetic recording, reproducing, and erasing
JPH01251357A (en) Direct writing type magnetooptical system for strip erasion and slender magnetic domain recording and directly writing method and apparatus for digital data recorded on magnetooptical recording medium containing single head directly writing type magnetooptical system
JPH0721892B2 (en) Magneto-optical recording method
JP2591729B2 (en) Magneto-optical recording / reproduction / erasing method and apparatus
US4972395A (en) Opto-magnetic recording apparatus for sequentially driving optical head drive means and biasing magnetic field generation means
JPH0721895B2 (en) Magneto-optical recording method
JPH0551975B2 (en)
JPH0341906B2 (en)
JP2604700B2 (en) Magneto-optical recording / reproduction / erasing method and apparatus
JP2604702B2 (en) Magneto-optical recording / reproduction / erasing method and apparatus
JPH0721893B2 (en) Magneto-optical recording method
JPH0325854B2 (en)
JPH0721896B2 (en) Magneto-optical recording method
JPH0568763B2 (en)
JP2705598B2 (en) Magneto-optical storage method and apparatus
JP3458234B2 (en) Magneto-optical recording method
JP3146614B2 (en) Recording method and recording apparatus for magneto-optical recording medium
JPS6258441A (en) Photomagnetic recording and reproducing device
JPS6113461A (en) Photomagnetic disk device
JP2855918B2 (en) Optical information recording method and device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term