JPH0240374B2 - - Google Patents

Info

Publication number
JPH0240374B2
JPH0240374B2 JP57167655A JP16765582A JPH0240374B2 JP H0240374 B2 JPH0240374 B2 JP H0240374B2 JP 57167655 A JP57167655 A JP 57167655A JP 16765582 A JP16765582 A JP 16765582A JP H0240374 B2 JPH0240374 B2 JP H0240374B2
Authority
JP
Japan
Prior art keywords
catalyst
water
sulfate
vanadium
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57167655A
Other languages
Japanese (ja)
Other versions
JPS5959249A (en
Inventor
Ryozo Kito
Yasutaka Arima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP57167655A priority Critical patent/JPS5959249A/en
Publication of JPS5959249A publication Critical patent/JPS5959249A/en
Publication of JPH0240374B2 publication Critical patent/JPH0240374B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、チタン化合物、硫酸バリウムおよび
水に不溶性の硫酸バナジルからなる窒素酸化物還
元浄化用触媒の製法に関するものである。 ボイラー、発電所、製鉄所などをはじめ、各種
工場の固定燃焼装置から排出される一酸化窒素
(NO)、二酸化窒素(NO2)などの窒素酸化物
(NOx)、さらにはNOxとともに二酸化硫黄
(SO2)、三酸化硫黄(SO3)などの硫黄酸化物
(SOx)やダストを含有した排ガス中のNOxを、
アンモニアの如き還元性物質の存在下に還元して
浄化する方法およびその際に使用する窒素酸化物
還元浄化用触媒については、すでに多数知られて
いる。 例えば、本出願人の出願に係る特公昭56−
32020号公報には、硫酸バリウムと水に不溶性の
硫酸バナジルとからなる触媒が記載されている。
該公報に記載の触媒は、耐水性および耐SOx性に
すぐれ、SO2をSO3に酸化する活性が小さく、比
較的低温でNOx除去率が高いという特長を有し
ている。 しかしながら本発明者らの研究によると、硫酸
バリウムと水に不溶性の硫酸バナジルとからなる
触媒は、アンモニアを排ガス中のNOに対して等
モル以上使用した場合は300℃前後の比較的低温
でも高いNOx除去率を示すが、アンモニアの使
用量を少なくすると、例えば排ガス中のNH3
NO=0.8(モル比)程度におさえると、低温での
NOx除去活性が低下し、また脱硝(浄化)後の
排ガス中に残留する未反応のアンモニア量が多く
なるという問題点があることがわかつた。 また本出願人の出願に係る特公昭56−30067号
公報には、水に不溶性の硫酸バナジルと二酸化チ
タンとからなる触媒が記載されているが、この触
媒もアンモニアの使用量を少なくして長期間使用
すると初期に有していたNOx除去活性が次第に
低下し、また排ガス中のSO3がSO3に酸化されや
すいという問題点があることがわかつた。 また排ガスの温度は固定燃焼装置の運転条件に
よつて大きく変化するのでこれらの条件変化に耐
えて安定したNOx除去活性を維持するためには、
また脱硝後の排ガス中のアンモニア濃度を低くす
るためには、アンモニアの使用量が少なくても広
い温度範囲にわたつて高いNOx除去活性を有す
るような触媒が要求されるが、前述したように特
公昭56−32020号公報、特公昭56−30067号公報な
どに記載の触媒にはいまだ改良すべき点が残され
ている。 本発明者らは、硫酸バリウムと水に不溶性の硫
酸バナジルとからなる触媒が有するすぐれた性質
をそこなうことなく、前述した問題点を改良する
ことを目的として鋭意研究を行なつた結果、第3
成分として水酸化チタンを使用して触媒を製造す
ると、目的を達成できる触媒が得られることを知
り、本発明に到つた。 本発明は、バナジウムの原子価が5価のバナジ
ウム化合物に水の存在下で還元性物質を加えてバ
ナジウムの原子価を5価より小さい原子価に還元
したバナジウム化合物の溶液、硫酸または硫酸の
アンモニウム塩、硫酸バリウム、および水酸化チ
タンを混合した後、焼成することを特徴とするチ
タン化合物、硫酸バリウムおよび水に不溶性の硫
酸バナジルからなる窒素酸化物還元浄化用触媒の
製法に関するものである。 本発明で得られる触媒は、特公昭56−32020号
に記載された触媒と比較して、NH3/NO(モル
比)を1以下にし、比較的低温で使用した場合の
NOx除去活性が高く、また脱硝後の排ガス中に
残留するアンモニアも少ないという特長があり、
特公昭56−30067号公報に記載された触媒と比較
して、NH3/NOを1より小さくして使用した場
合のNOx除去活性の低下を防止でき、またSO2
酸化活性が低いという特長がある。 本発明においてバナジウムの原子価が5価のバ
ナジウム化合物としては、メタバナジン酸アンモ
ニウム、メタバナジン酸、五酸化バナジウムなど
を挙げることができ、なかでもメタバナジン酸ア
ンモニウムが好適である。また還元性物質として
は5価のバナジウム化合物を5価より小さい原子
価一般には4価に還元することができるものであ
ればよく、例えばシユウ酸、クエン酸、酒石酸な
どの有機カルボンを挙げることができ、なかでも
シユウ酸が好適である。 バナジウムの原子価が5価のバナジウム化合物
に水の存在下で還元性物質を加えてバナジウムの
原子価を5価より小さい原子価に還元したバナジ
ウム化合物の溶液を調製するにあたつては、例え
ば水にメタバナジン酸アンモニウムの如き5価の
バナジウム化合物を溶解させ、これにシユウ酸の
如き還元性物質を加えて5価のバナジウム化合物
を還元する方法で行つても、また還元性物質を溶
解させた水に5価のバナジウム化合物を加えて還
元する方法で行つてもよい。 また本発明で使用する硫酸または硫酸のアンモ
ニウム塩としては、濃硫酸、硫酸アンモニウム、
酸性硫酸アンモニウム、亜硫酸アンモニウム、過
硫酸アンモニウムなどを挙げることができ、なか
でも硫酸アンモニウムが安価であり、目的とする
触媒の再現性もよいので好適である。硫酸または
硫酸のアンモニウム塩は水に不溶性の硫酸バナジ
ルを形成させるうえで必要なものであるが、その
使用量は、使用する5価のバナジウム化合物のバ
ナジウム1グラム原子に対して、硫黄が1〜2グ
ラム原子になるような量が好適であり、2グラム
原子より多くなる量で使用しても多く使用したこ
とによる利点は特にない。 本発明において、バナジウムの原子価を5価よ
り小さい原子価に還元したバナジウム化合物の溶
液、硫酸または硫酸アンモニウム塩、硫酸バリウ
ムおよび水酸化チタンの混合順序は特に制限され
ず、混合順序が相違しても触媒性能に大きな差が
生じることはない。バナジウム化合物の溶液、硫
酸バリウムおよび水酸化チタンの混合割合は、触
媒中に水に不溶性の硫酸バナジル(β−VOSO4
が1〜35重量%、好ましくは5〜30重量%、硫酸
バリウムが65〜95重量%、好ましくは70〜95重量
%、チタン化合物が二酸化チタン(TiO2)換算
で1〜15重量%、好ましくは2〜10重量%の範囲
内になるようにするのが適当である。 混合することによつて得られるペースト状ない
し懸濁液状の混合物は、これを必要に応じて乾
燥、成形した後、焼成する。乾燥は一般には空気
雰囲気下に90〜200℃の温度で行うのが適当であ
る。 混合物の焼成は、200〜450℃、好ましくは250
〜400℃の温度で行うのが適当であり、焼成時間
は一般には1〜24時間、好ましくは3〜16時間程
度が適当である。また焼成雰囲気は特に制限され
ず、例えば亜硫酸ガス、アンモニア、水蒸気、窒
素、酸素などいずれを含む雰囲気でもよいが、空
気の如き酸素含有ガス雰囲気が経済的でもあり、
また好適でもある。 焼成することによつて原料として使用したバナ
ジウム化合物は、水に不溶性の硫酸バナジル(β
−VOSO4)になるので、触媒中には水に不溶性
の硫酸バナジル以外に他のバナジウム化合物はほ
とんど含まれていないが、少量(全バナジウム化
合物の5重量%以下程度)であれば他のバナジウ
ム化合物が含まれていても差支えない。なお水に
不溶性の硫酸バナジルは赤外線吸収スペクトルに
よると、水溶性硫酸バナジル(α−VOSO4)に
は見られない940-1cmおよび510-1cmに特徴的な吸
収ピークを示す。また原料として使用した水酸化
チタンは、触媒中でどのようなチタン化合物にな
つているかX線回折スペクトルなどでは十分明ら
かではないが、水酸化チタンと二酸化チタンを含
む複雑なチタン化合物になつているのではないか
と推定される。焼成することに得られた触媒は青
みがかつた緑色をしている。 本発明の方法による触媒は、前述したように、
また後期の実験結果からも明らかであるように、
従来公知の触媒と比較して多くのすぐれた効果が
あり、NOxを含有する排ガス、なかでもNOx
ともにSOxやダストを含有する排ガスの浄化に適
している。 次に実施例および比較例を示す。 各例において、NOx除去活性の試験は、触媒
20mlを30mmφのステンレス製U字型反応管に充填
し、これを塩浴中で300℃、320℃および340℃の
温度に保持し、反応管にNO300ppm、
NH3240ppm、SO2700ppm、SO350ppm、H2O10
%、O25%および残りN2からなるモデルガス
(NH3/NO=0.8、モル比)を、空間速度
5000hr-1の流量で流し、24時間後、反応管入口お
よび反応管出口におけるガス中のNOx含有量を
化学発光式NOx分析計で測定し、次式に従つて
NOx除去率(%)を求めた。 NOx除去率(%)=X1−X2/X1×100 X1=反応管入口におけるガス中のNOx濃度 X2=反応管出口におけるガス中のNOx濃度 また各例において触媒中の水に不溶性の硫酸バ
ナジルの確認は、バナジウムの原子価の測定、赤
外線吸収スペクトルおよびX線回折スペクトルな
どによつて行つたが、このなかには少量(全バナ
ジウム化合物の2〜4重量%)の5価のバナジウ
ム化合物が混在していた。 実施例 1 メタバナジン酸アンモニウム10.8gを150mlの
水に加えて約70℃に加温し、撹拌下にシユウ酸15
gを徐々に加えてバナジウムを還元し、このバナ
ジウム化合物の溶液に硫酸アンモニウム18gを加
え、次いで硫酸バリウム175gおよび水酸化チタ
ンを二酸化チタン換算で10gを加えて混練し、ペ
ースト状にした後、150℃で乾燥して5mmφ×4
mmHのペレツトに成形し、空気雰囲気下、380℃
で4時間焼成して触媒を得た。触媒は青みがかつ
た緑色をしていた。この触媒は水に不溶性の硫酸
バナジル(β−VOSO4)7.5重量%、硫酸バリウ
ム(BaSO4)87.5重量%およびチタン化合物(二
酸化チタン換算)5重量%からなる。 NOx除去活性試験の結果は第1表に示す。 実施例 2 硫酸バリウム、水酸化チタンおよび硫酸アンモ
ニウムを少量の水とともに混練し、次いでメタバ
ナジン酸アンモニウムをシユウ酸で還元したバナ
ジウム化合物の溶液を加えて混合し、また焼成温
度を400℃にしたほかは、実施例1と同様にして
水に不溶性の硫酸バナジル、硫酸バリウムおよび
チタン化合物からなる触媒を製造し、NOx除去
活性式試験を行つた。その結果は第1表に示す。 実施例 3 メタバナジン酸アンモニウムをシユウ酸で還元
したバナジウム化合物の溶液と硫酸バリウムとを
混合し、次いで硫酸アンモニウムを加え、最後に
水酸化チタンを加え、また焼成温度を400℃にか
えたほかは、実施例1と同様にして水に不溶性の
硫酸バナジル、硫酸バリウムおよびチタン化合物
からなる触媒を製造し、NOx除去活性試験を行
つた。その結果は第1表に示す。 実施例 4 硫酸アンモニウムのかわりに、濃硫酸(98%)
13.6gを使用し、焼成雰囲気を空気からNH32%
O21%および残りN2からなるガスにかえたほか
は、実施例1と同様にして水に不溶性の硫酸バナ
ジル、硫酸バリウムおよびチタン化合物からなる
触媒を製造し、NOx除去活性試験を行つた。そ
の結果は第1表に示す。 実施例 5 硫酸アンモニウムのかわりに、酸性硫酸アンモ
ニウム(NH4HSO4)15.7gを使用し、焼成雰囲
気を空気からNH31%およびN299%からなるガス
にかえたほかは、実施例1と同様にして水に不溶
性の硫酸バナジル、硫酸バリウムおよびチタン化
合物からなる触媒を製造し、NOx除去活性試験
を行つた。その結果は第1表に示す。 実施例 6および7 触媒の組成が第1表に記載の組成になるように
出発原料の使用量をかえたほかは、実施例1と同
様にして水に不溶性の硫酸バナジル、硫酸バリウ
ムおよびチタン化合物からなる触媒を製造し、
NOx除去活性試験を行つた。その結果は第1表
に示す。 実施例 8 硫酸アンモニウムの使用量を24gにかえたほか
は、実施例1と同様にして触媒を製造し、NOx
除去活性試験を行つた。その結果は第1表に示
す。 比較例 1 水酸化チタンを使用せず、硫酸バリウムの使用
量を85gにしたほかは、実施例1と同様にして水
に不溶性の硫酸バナジルと硫酸バリウムとからな
る触媒を製造し、NOx除去活性試験を行つた。
その結果は第1表に示す。 比較例 2 水酸化チタンのかわりに二酸化チタン(アナタ
ーゼ型)10gを使用したほかは、実施例1と同様
にして水に不溶性の硫酸バナジル、硫酸バリウム
および二酸化チタンからなる触媒を製造し、
NOx除去活性試験を行つた。その結果は第1表
に示す。
The present invention relates to a method for producing a nitrogen oxide reduction and purification catalyst comprising a titanium compound, barium sulfate, and water-insoluble vanadyl sulfate. Nitrogen oxides (NO x ), such as nitrogen monoxide (NO) and nitrogen dioxide (NO 2 ), are emitted from fixed combustion equipment in various factories, including boilers, power plants, and steel mills, as well as carbon dioxide along with NO x . NO x in exhaust gas containing sulfur oxides (SO x ) such as sulfur (SO 2 ) and sulfur trioxide (SO 3 ) and dust,
Many methods of reducing and purifying nitrogen oxides in the presence of reducing substances such as ammonia and catalysts for reducing and purifying nitrogen oxides used in this process are already known. For example, the Japanese Patent Publication No. 56-1981, which is filed by the present applicant,
Publication No. 32020 describes a catalyst consisting of barium sulfate and vanadyl sulfate which is insoluble in water.
The catalyst described in this publication has excellent water resistance and SO x resistance, low activity for oxidizing SO 2 to SO 3 , and a high NO x removal rate at relatively low temperatures. However, according to the research of the present inventors, a catalyst consisting of barium sulfate and water-insoluble vanadyl sulfate has a high temperature even at a relatively low temperature of around 300°C when ammonia is used in an amount equal to or more than the amount of NO in the exhaust gas. This shows the NO x removal rate, but if the amount of ammonia used is reduced, for example, NH 3 /
If NO is kept at around 0.8 (molar ratio),
It was found that there were problems in that the NO x removal activity decreased and the amount of unreacted ammonia remaining in the exhaust gas after denitrification (purification) increased. Furthermore, Japanese Patent Publication No. 56-30067 filed by the present applicant describes a catalyst consisting of water-insoluble vanadyl sulfate and titanium dioxide, but this catalyst can also be used for a long time by reducing the amount of ammonia used. It was found that after a period of use, the initial NO x removal activity gradually decreased, and there were also problems in that SO 3 in the exhaust gas was easily oxidized to SO 3 . In addition, the temperature of the exhaust gas varies greatly depending on the operating conditions of the fixed combustion equipment, so in order to withstand these changes in conditions and maintain stable NO x removal activity,
In addition, in order to lower the ammonia concentration in the exhaust gas after denitrification, a catalyst is required that has high NO x removal activity over a wide temperature range even if the amount of ammonia used is small. There are still points to be improved in the catalysts described in Japanese Patent Publications No. 56-32020, Japanese Patent Publication No. 56-30067, etc. The present inventors have conducted intensive research with the aim of improving the above-mentioned problems without impairing the excellent properties of a catalyst composed of barium sulfate and water-insoluble vanadyl sulfate.
The inventors have discovered that a catalyst capable of achieving the objective can be obtained by manufacturing a catalyst using titanium hydroxide as a component, leading to the present invention. The present invention relates to a solution of a vanadium compound in which the valence of vanadium is reduced to a valence lower than 5 by adding a reducing substance to a vanadium compound in the presence of water, sulfuric acid or ammonium sulfuric acid. The present invention relates to a method for producing a nitrogen oxide reduction and purification catalyst consisting of a titanium compound, barium sulfate, and water-insoluble vanadyl sulfate, which comprises mixing a salt, barium sulfate, and titanium hydroxide, and then calcining the mixture. Compared to the catalyst described in Japanese Patent Publication No. 56-32020, the catalyst obtained by the present invention has a NH 3 /NO (molar ratio) of 1 or less and has a high performance when used at relatively low temperatures.
It has a high NO x removal activity and has the characteristics of low ammonia remaining in the exhaust gas after denitrification.
Compared to the catalyst described in Japanese Patent Publication No. 56-30067, it is possible to prevent a decrease in NO x removal activity when using NH 3 /NO less than 1, and also has a low SO 2 oxidation activity. It has its features. In the present invention, examples of the vanadium compound having a pentavalent vanadium include ammonium metavanadate, metavanadate, vanadium pentoxide, and the like, with ammonium metavanadate being particularly preferred. In addition, the reducing substance may be any substance that can reduce a pentavalent vanadium compound to a valence smaller than pentavalent, generally tetravalent, and examples thereof include organic carboxylic acids such as oxalic acid, citric acid, and tartaric acid. Of these, oxalic acid is preferred. When preparing a solution of a vanadium compound in which the valence of vanadium is 5 by adding a reducing substance in the presence of water to reduce the valence of vanadium to a valence lower than 5, for example, A method of dissolving a pentavalent vanadium compound such as ammonium metavanadate in water and adding a reducing substance such as oxalic acid to reduce the pentavalent vanadium compound also dissolves the reducing substance. The reduction may be carried out by adding a pentavalent vanadium compound to water for reduction. In addition, the sulfuric acid or ammonium salt of sulfuric acid used in the present invention includes concentrated sulfuric acid, ammonium sulfate,
Examples include acidic ammonium sulfate, ammonium sulfite, ammonium persulfate, etc. Among them, ammonium sulfate is preferred because it is inexpensive and has good reproducibility of the intended catalyst. Sulfuric acid or an ammonium salt of sulfuric acid is necessary to form vanadyl sulfate, which is insoluble in water.The amount of sulfur used is 1 to 1 gram atom of vanadium in the pentavalent vanadium compound used. An amount of 2 gram atoms is preferred, and there is no particular advantage to using more than 2 gram atoms. In the present invention, the mixing order of the solution of a vanadium compound obtained by reducing the valence of vanadium to a valence lower than 5, sulfuric acid or ammonium sulfate salt, barium sulfate, and titanium hydroxide is not particularly limited, and even if the mixing order is different. There is no significant difference in catalyst performance. The mixing ratio of the vanadium compound solution, barium sulfate and titanium hydroxide is such that water-insoluble vanadyl sulfate (β-VOSO 4 ) is present in the catalyst.
is 1 to 35% by weight, preferably 5 to 30% by weight, barium sulfate is 65 to 95% by weight, preferably 70 to 95% by weight, and titanium compound is 1 to 15% by weight in terms of titanium dioxide (TiO 2 ), preferably It is appropriate that the amount is within the range of 2 to 10% by weight. The paste-like or suspension-like mixture obtained by mixing is dried and shaped as required, and then fired. Drying is generally suitably carried out in an air atmosphere at a temperature of 90 to 200°C. Calcination of the mixture is carried out at 200-450℃, preferably at 250℃
It is appropriate to carry out the firing at a temperature of -400°C, and the firing time is generally about 1 to 24 hours, preferably about 3 to 16 hours. Further, the firing atmosphere is not particularly limited, and may be an atmosphere containing any of sulfur dioxide gas, ammonia, water vapor, nitrogen, oxygen, etc., but an oxygen-containing gas atmosphere such as air is economical.
It is also suitable. The vanadium compound used as a raw material by calcination is converted into water-insoluble vanadyl sulfate (β
-VOSO 4 ), so the catalyst contains almost no other vanadium compounds other than vanadyl sulfate, which is insoluble in water, but if a small amount (about 5% by weight or less of the total vanadium compounds) There is no problem even if a compound is included. According to an infrared absorption spectrum, vanadyl sulfate, which is insoluble in water, exhibits characteristic absorption peaks at 940 -1 cm and 510 -1 cm, which are not observed in water-soluble vanadyl sulfate (α-VOSO 4 ). In addition, the titanium hydroxide used as a raw material is a complex titanium compound containing titanium hydroxide and titanium dioxide, although it is not clear from X-ray diffraction spectra what kind of titanium compound it is in the catalyst. It is presumed that this is the case. The catalyst obtained by calcination has a bluish green color. As mentioned above, the catalyst according to the method of the present invention is
Also, as is clear from the experimental results in the later stages,
It has many superior effects compared to conventionally known catalysts, and is suitable for purifying exhaust gas containing NOx , especially exhaust gas containing SOx and dust along with NOx . Next, Examples and Comparative Examples will be shown. In each example, testing for NO x removal activity
Fill 20ml into a 30mmφ stainless steel U-shaped reaction tube, maintain it at temperatures of 300℃, 320℃ and 340℃ in a salt bath, and add 300ppm of NO to the reaction tube.
NH3 240ppm, SO2 700ppm, SO3 50ppm, H2O10
%, O 2 5% and the remaining N 2 (NH 3 /NO = 0.8, molar ratio), space velocity
After 24 hours, the NO x content in the gas at the inlet and outlet of the reaction tube was measured using a chemiluminescent NO x analyzer, and calculated according to the following formula:
The NO x removal rate (%) was determined. NO x removal rate ( % ) = X 1 - X 2 / X 1 × 100 X 1 = NO x concentration in the gas at the inlet of the reaction tube The water-insoluble vanadyl sulfate was confirmed by measuring the valence of vanadium, infrared absorption spectrum, and X-ray diffraction spectrum. Vanadium compounds of high valence were mixed in. Example 1 10.8 g of ammonium metavanadate was added to 150 ml of water, heated to about 70°C, and mixed with 15 oxalic acid while stirring.
18 g of ammonium sulfate was added to the vanadium compound solution, and then 175 g of barium sulfate and 10 g of titanium hydroxide (calculated as titanium dioxide) were added and kneaded to make a paste, and then heated at 150°C. 5mmφ×4
Formed into mmH pellets at 380°C in an air atmosphere.
The mixture was calcined for 4 hours to obtain a catalyst. The catalyst had a bluish green color. This catalyst consists of 7.5% by weight of water-insoluble vanadyl sulfate (β-VOSO 4 ), 87.5% by weight of barium sulfate (BaSO 4 ), and 5% by weight of a titanium compound (calculated as titanium dioxide). The results of the NO x removal activity test are shown in Table 1. Example 2 Barium sulfate, titanium hydroxide and ammonium sulfate were kneaded with a small amount of water, and then a solution of a vanadium compound obtained by reducing ammonium metavanadate with oxalic acid was added and mixed, and the firing temperature was 400°C. A catalyst consisting of water-insoluble vanadyl sulfate, barium sulfate, and a titanium compound was produced in the same manner as in Example 1, and an NO x removal activity test was conducted. The results are shown in Table 1. Example 3 A solution of a vanadium compound obtained by reducing ammonium metavanadate with oxalic acid was mixed with barium sulfate, then ammonium sulfate was added, and finally titanium hydroxide was added, and the firing temperature was changed to 400°C. A catalyst consisting of water-insoluble vanadyl sulfate, barium sulfate, and a titanium compound was produced in the same manner as in Example 1, and tested for NO x removal activity. The results are shown in Table 1. Example 4 Concentrated sulfuric acid (98%) instead of ammonium sulfate
13.6g was used, and the firing atmosphere was changed from air to NH 3 2%.
A catalyst consisting of water-insoluble vanadyl sulfate, barium sulfate, and a titanium compound was produced in the same manner as in Example 1, except that the gas was changed to a gas consisting of 1 % O 2 and the remainder N 2, and an NO x removal activity test was conducted. Ivy. The results are shown in Table 1. Example 5 Same as Example 1 except that 15.7 g of acidic ammonium sulfate (NH 4 HSO 4 ) was used instead of ammonium sulfate and the firing atmosphere was changed from air to a gas consisting of 1% NH 3 and 99% N 2 A catalyst consisting of water-insoluble vanadyl sulfate, barium sulfate, and a titanium compound was prepared and tested for NO x removal activity. The results are shown in Table 1. Examples 6 and 7 Water-insoluble vanadyl sulfate, barium sulfate, and titanium compounds were prepared in the same manner as in Example 1, except that the amounts of starting materials used were changed so that the composition of the catalyst was as shown in Table 1. Produce a catalyst consisting of
A NO x removal activity test was conducted. The results are shown in Table 1. Example 8 A catalyst was produced in the same manner as in Example 1, except that the amount of ammonium sulfate used was changed to 24 g, and NO x
A removal activity test was conducted. The results are shown in Table 1. Comparative Example 1 A catalyst consisting of water-insoluble vanadyl sulfate and barium sulfate was produced in the same manner as in Example 1, except that titanium hydroxide was not used and the amount of barium sulfate used was 85 g, and NO x removal was performed. An activity test was conducted.
The results are shown in Table 1. Comparative Example 2 A catalyst consisting of water-insoluble vanadyl sulfate, barium sulfate, and titanium dioxide was produced in the same manner as in Example 1, except that 10 g of titanium dioxide (anatase type) was used instead of titanium hydroxide.
A NO x removal activity test was conducted. The results are shown in Table 1.

【表】 * 二酸化チタン換算
参考例1および比較参考例1 実施例1〜8および比較例1〜2で行つた
NOx除去活性試験におけるモデルガス中の
NH3/NO=0.8を第2表に記載のように変化さ
せ、反応温度を300℃に維持したほかは、同様の
試験方法で、実施例1および比較例1の触媒につ
いてNOx除去活性試験を行つた結果および反応
管出口ガス中に残留するNH3濃度を測定した結
果を、参考例1(実施例1の触媒)および比較参
考例1(比較例1の触媒)として、第2表に示す。
[Table] * Titanium dioxide conversion Reference Example 1 and Comparative Reference Example 1
in model gas in NO x removal activity test.
NO x removal activity tests were conducted on the catalysts of Example 1 and Comparative Example 1 using the same test method, except that NH 3 /NO = 0.8 was changed as shown in Table 2 and the reaction temperature was maintained at 300°C. The results of the measurement and the measurement of the NH 3 concentration remaining in the gas at the outlet of the reaction tube are shown in Table 2 as Reference Example 1 (catalyst of Example 1) and Comparative Reference Example 1 (catalyst of Comparative Example 1). show.

【表】 比較例 3 水100mlにメタバナジン酸アンモニウム38.0g
を加えて80℃に加温し、撹拌下に、シユウ酸57g
を徐々に加えてバナジウムを還元し、このバナジ
ウム化合物の溶液に硫酸アンモニウム64.3gを加
え、次いで二酸化チタン(TiO2アナターゼ型)
粉末300gを加えて十分に混練し、押出機で押出
せる程度にまで混練しながら乾燥して押出機で5
mmφのひも状に押出し、空気雰囲気下で110℃で
15時間乾燥した後、長さ5mmに切断し、SO2
0.5%、NH3=0.2%を含む空気雰囲気下で390℃
で20時間焼成し、触媒を製造した。 この触媒について長期のNOx除去活性試験と
SO2の酸化活性試験を行つた。その結果を第3表
および第4表に、実施例1の触媒についての結果
とともに示す。なお、NOx除去活性試験は、反
応温度を300℃に維持したほかは、実施例1〜8
および比較例1〜2の場合と同様の試験方法で行
つた。またSO2の酸化活性試験は、触媒20mlを30
mmφのステンレス製U字型反応管に充填して、
350℃に保持し、反応管にSO20.1%、O25%およ
び残りN2からなるモデルガスを空間速度
5000hr-1の流量で流し、反応管入口および出口に
おけるガス中のSO2濃度をSO2分析計で測定する
方法で行い、次式によりSO2の酸化活性(%)を
求めた。 SO2の酸化活性(%)=入口ガス中のSO2濃度−出口ガス
中のSO2濃度/入口ガス中のSO2濃度×100
[Table] Comparative Example 3 38.0g of ammonium metavanadate in 100ml of water
Add 57g of oxalic acid and warm to 80℃, and while stirring, add 57g of oxalic acid.
64.3 g of ammonium sulfate was added to this solution of vanadium compound, and then titanium dioxide (TiO 2 anatase type) was added to reduce the vanadium.
Add 300g of powder, mix thoroughly, dry while kneading to the extent that it can be extruded with an extruder, and mix it thoroughly with an extruder.
Extruded into a string of mmφ and heated at 110℃ in an air atmosphere.
After drying for 15 hours, cut into 5 mm length and SO 2 =
0.5%, 390℃ in air atmosphere containing NH 3 = 0.2%
The mixture was calcined for 20 hours to produce a catalyst. A long-term NO x removal activity test was conducted on this catalyst.
An SO 2 oxidation activity test was conducted. The results are shown in Tables 3 and 4 together with the results for the catalyst of Example 1. Note that the NO x removal activity test was conducted using Examples 1 to 8, except that the reaction temperature was maintained at 300°C.
The same test method as in Comparative Examples 1 and 2 was used. In addition, in the SO 2 oxidation activity test, 20 ml of catalyst was
Fill a mmφ stainless steel U-shaped reaction tube,
A model gas consisting of 0.1% SO 2 , 5% O 2 and the balance N 2 was introduced into the reaction tube at a space velocity of 350°C.
The SO 2 concentration in the gas at the inlet and outlet of the reaction tube was measured using an SO 2 analyzer, and the oxidation activity (%) of SO 2 was determined using the following formula. Oxidation activity of SO2 (%) = SO2 concentration in inlet gas - SO2 concentration in outlet gas / SO2 concentration in inlet gas x 100

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 バナジウムの原子価が5価のバナジウム化合
物に水の存在下で還元性物質を加えてバナジウム
の原子価を5価より小さい原子価に還元したバナ
ジウム化合物の溶液、硫酸または硫酸のアンモニ
ウム塩、硫酸バリウム、および水酸化チタンを混
合した後、焼成することを特徴とするチタン化合
物、硫酸バリウムおよび水に不溶性の硫酸バナジ
ルからなる窒素酸化物還元浄化用触媒の製法。
1. A solution of a vanadium compound in which the valence of vanadium is lower than 5 by adding a reducing substance to a vanadium compound in the presence of water, sulfuric acid or an ammonium salt of sulfuric acid, sulfuric acid A method for producing a catalyst for nitrogen oxide reduction and purification comprising a titanium compound, barium sulfate, and water-insoluble vanadyl sulfate, which comprises mixing barium and titanium hydroxide and then calcining the mixture.
JP57167655A 1982-09-28 1982-09-28 Preparation of catalyst for reductively purifying nitrogen oxide Granted JPS5959249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57167655A JPS5959249A (en) 1982-09-28 1982-09-28 Preparation of catalyst for reductively purifying nitrogen oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57167655A JPS5959249A (en) 1982-09-28 1982-09-28 Preparation of catalyst for reductively purifying nitrogen oxide

Publications (2)

Publication Number Publication Date
JPS5959249A JPS5959249A (en) 1984-04-05
JPH0240374B2 true JPH0240374B2 (en) 1990-09-11

Family

ID=15853779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57167655A Granted JPS5959249A (en) 1982-09-28 1982-09-28 Preparation of catalyst for reductively purifying nitrogen oxide

Country Status (1)

Country Link
JP (1) JPS5959249A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164334A (en) * 1984-09-07 1986-04-02 Ube Ind Ltd Production of catalyst for purifying nitrogen oxide
DE69726036T2 (en) * 1996-02-09 2004-08-26 Isuzu Motors Ltd. NOx decomposition catalyst and exhaust gas purifier using this catalyst
EP1236510A4 (en) * 1999-09-29 2003-07-02 Mitsui Chemicals Inc Catalyst for decomposing organic hazardous material and method for decomposing organic halides using the same
JP5558199B2 (en) * 2010-05-13 2014-07-23 ユミコア日本触媒株式会社 Exhaust gas purification catalyst

Also Published As

Publication number Publication date
JPS5959249A (en) 1984-04-05

Similar Documents

Publication Publication Date Title
SU1685256A3 (en) Catalyst for decreasing nitrogen oxide content in flue gases, method of its manufacture and catalytic reduction process
US4003978A (en) Method for treating ammonia-containing gases
CN108367275A (en) Denitrating catalyst and its manufacturing method
JPH01168343A (en) Exhaust gas purifying catalyst
JPS62193649A (en) Nitrogen oxide reducing catalyst
BRPI0416597B1 (en) PROCESS FOR PREPARING A CATALYST COMPOSITION AS WELL AS THE DIAL CATALYST COMPOSITION.
IE63828B1 (en) New catalyst capable of being used in a process for the selective reduction of oxides of nitrogen
CN109967069A (en) A kind of low-temperature SCR catalyst and preparation method thereof for cement kiln flue gas denitration
US5604173A (en) Desulfurization of sulfur compound-containing gases with vanadium catalysts
JPS6211892B2 (en)
JPS5852698B2 (en) Datsushi Yokubai
JPH0240374B2 (en)
US4225462A (en) Catalyst for reducing nitrogen oxides and process for producing the same
JPS5935026A (en) Preparation of calcined titanium oxide and catalyst
JPS5812057B2 (en) Shiyokubaisosabutsu
JPS5814817B2 (en) Method for manufacturing nitrogen oxide purification catalyst
WO2023203602A1 (en) Denitration catalyst and method for producing same, and denitration method
JP7278555B1 (en) Exhaust gas denitrification method
JPH0438455B2 (en)
CN111822008B (en) Denitration catalyst suitable for low-temperature sulfur-containing flue gas and preparation method thereof
JPH038820B2 (en)
JPS6013750B2 (en) Catalyst for removing nitrogen oxides and its manufacturing method
JPS621456A (en) Catalyst reducing nitrogen oxide content of combustion exhaust gas
JPH02241543A (en) Preparation of catalyst for reducing nitrogen oxide
KR100963080B1 (en) DIVANADIUM PENTAOXIDE-BASED CATALYSTS WASHCOATING Ag FOR REDUCING SULFUR DIOXIDE OXIDATION