JPH02241543A - Preparation of catalyst for reducing nitrogen oxide - Google Patents

Preparation of catalyst for reducing nitrogen oxide

Info

Publication number
JPH02241543A
JPH02241543A JP1059639A JP5963989A JPH02241543A JP H02241543 A JPH02241543 A JP H02241543A JP 1059639 A JP1059639 A JP 1059639A JP 5963989 A JP5963989 A JP 5963989A JP H02241543 A JPH02241543 A JP H02241543A
Authority
JP
Japan
Prior art keywords
catalyst
titanium oxide
denitrification
denitration
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1059639A
Other languages
Japanese (ja)
Inventor
Masayuki Hanada
花田 正幸
Morio Fukuda
盛男 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP1059639A priority Critical patent/JPH02241543A/en
Publication of JPH02241543A publication Critical patent/JPH02241543A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a high capacity denitration catalyst having high denitration capacity and a low SO2 oxidation rate by mixing hydrous titanium oxide and compounds of elements of the Groups IIa, IIIa of the Periodic table to bake the resulting mixture and supporting a catalytically active component by the baked mixture. CONSTITUTION:Hydrous titanium oxide such as a titania sol or metatitanic acid and element compounds such as sulfates or nitrates of elements of the Group IIa, IIIa of the Periodic Table are mixed and subsequently baked. A catalytically active component such as W or Mo is supported by the baked mixture to obtain a denitration catalyst. This catalyst has a large pore volume, high denitration capacity and a low SO2 oxidation rate and is excellent in mechanical strength, heat resistance, durability and moldability.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は排ガス中の窒素酸化物をアンモニアガスなどの
還元剤の共存下に窒素と水に分解する窒素酸化物還元用
触媒の製造方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for producing a catalyst for reducing nitrogen oxides, which decomposes nitrogen oxides in exhaust gas into nitrogen and water in the coexistence of a reducing agent such as ammonia gas. .

さらに詳しく言えば、本発明は窒素酸化物の分解活性(
以下これを脱硝活性という)が高く、しかも成型性、機
械的強度、耐熱性、耐SOx酸化能及び耐久性に優れた
窒素酸化物還元用触媒の製造方法に係る。
More specifically, the present invention provides nitrogen oxide decomposition activity (
The present invention relates to a method for producing a catalyst for reducing nitrogen oxides, which has high denitrification activity (hereinafter referred to as denitrification activity), and has excellent moldability, mechanical strength, heat resistance, SOx oxidation resistance, and durability.

[従来の技術] 現在量も広く工業的に使用されている窒素酸化物還元用
触媒(以下これを脱硝触媒という)は、酸化チタンを主
成分とする担体に、バナジウム。
[Prior Art] Nitrogen oxide reduction catalysts (hereinafter referred to as denitrification catalysts), which are currently widely used industrially, contain vanadium on a carrier whose main component is titanium oxide.

タングステン、モリブデンなどの金属の酸化物を活性成
分として担持させたものである。触媒の脱硝活性を高め
る方策として、バナジウム、タングステンなどの活性成
分の担持壁を増加させることは、有力な手段であり、特
にバナジウム酸化物の増加はその効果が大きい。
It supports oxides of metals such as tungsten and molybdenum as active ingredients. Increasing the supporting wall of active components such as vanadium and tungsten is an effective means of increasing the denitrification activity of the catalyst, and increasing the amount of vanadium oxide is particularly effective.

しかし、これら活性成分の含有量を増大させることは、
触媒価格を上昇させるばがりでなく、多くの燃焼排ガス
に含まれるsoバ亜硫酸ガス)のSO3への酸化率を高
める点で、必ずしも推奨できない、ちなみに、SO2が
酸化されることで生成されるS03は、脱硝装置の下流
側に位置する各種装置やダクトなどを腐食させる。また
、SO□は還元剤であるアンモニアと反応して硫安や重
硫安を生成させるが、この硫安や重硫安は脱硝装置の下
流側に位置する熱交換器に付着して熱交換率を低下させ
るほか、熱交換器を腐食させる。従って、無闇に活性成
分の含有量を増大させることは好ましくない。
However, increasing the content of these active ingredients
Not only does it increase the price of the catalyst, but it also increases the rate of oxidation of SOBA (sulfur dioxide gas, which is included in many combustion exhaust gases) into SO3, so it is not necessarily recommended. This corrodes various equipment and ducts located downstream of the denitrification equipment. In addition, SO□ reacts with ammonia, which is a reducing agent, to generate ammonium sulfate and ammonium bisulfate, but this ammonium sulfate and ammonium bisulfate adhere to the heat exchanger located downstream of the denitration equipment and reduce the heat exchange rate. In addition, it corrodes the heat exchanger. Therefore, it is not preferable to increase the content of active ingredients blindly.

上記したように脱硝触媒としては、高い脱硝活性を保持
しなからSOx酸化能は低いことが要求されるほか5機
械的強度、耐熱性、耐久性などに加えて、成型性にも優
れていることが重要である。このことから、脱硝触媒の
成型性や機械的強度などを改良する技術が種々提案され
ている6例えば、特公昭53−44431号には適当な
気孔率、比表面積、細孔分布などの諸特性を具備し、し
かも充分な機械的強度を備えた担体の製造方法として、
水酸化チタンを含む担体原料を800℃以下、好ましく
は200〜700℃で1次加熱し、該1次加熱物を成形
に適する粒度に粉砕した後、公知の方法で所望する形状
に成形した後。
As mentioned above, denitrification catalysts are required to have high denitrification activity and low SOx oxidation ability.5 In addition to mechanical strength, heat resistance, durability, etc., they also have excellent moldability. This is very important. For this reason, various techniques have been proposed to improve the formability and mechanical strength of denitrification catalysts. As a method for producing a carrier having sufficient mechanical strength,
The carrier raw material containing titanium hydroxide is first heated at 800°C or lower, preferably 200 to 700°C, and the first heated product is pulverized to a particle size suitable for molding, and then molded into the desired shape by a known method. .

再び800℃以下、好ましくは200〜700℃で2次
焼成する方法に於いて、1次加熱される担体原料及び1
次加熱後粉砕された担体原料中に、メタチタン酸ゾルを
存在させることが提案されている。
In the method of secondary firing again at 800°C or lower, preferably 200 to 700°C, the carrier raw material to be primarily heated and the
It has been proposed that a metatitanic acid sol be present in the carrier raw material that has been pulverized after subsequent heating.

また、脱硝触媒の耐熱性および耐久性を向上させる方法
の一つとして、触媒の主基剤であるチタニア原料の焼成
温度を高くし、しかも焼成時間を長くすることによりチ
タニアの熱に対する安定性を向上させ、さらに触媒の焼
成温度をも触媒の使用温度より充分に高くすることが知
られている。しかし、この方法は触媒の脱硝活性を低下
させ、SOx酸化能を高めてしまう欠点がある。
In addition, one method to improve the heat resistance and durability of denitrification catalysts is to increase the firing temperature of the titania raw material, which is the main base material of the catalyst, and to increase the firing time. Furthermore, it is known to raise the firing temperature of the catalyst to a level sufficiently higher than the operating temperature of the catalyst. However, this method has the disadvantage of reducing the denitrification activity of the catalyst and increasing the SOx oxidation ability.

特公昭59−26331号には、高温下で耐久性のある
脱硝触媒が提案されている。この触媒は600〜750
℃で焼成して得られるもので、A成分としてチタン酸化
物、B成分としてアルミニウム、ジルコニウム、マグネ
シウム、カルシウム及びランタンから選ばれた少なくと
も1種の元素の酸化物又はシリカあるいはシリカ−アル
ミナ、C成分としてタングステン酸化物を含有し、チタ
ン1原子に対して、B成分の原子比が0.05〜0.7
の範囲にあり、かつタングステンの原子比が0.01〜
1の範囲にある。
Japanese Patent Publication No. 59-26331 proposes a denitrification catalyst that is durable at high temperatures. This catalyst is 600-750
It is obtained by firing at ℃, and the A component is titanium oxide, the B component is an oxide of at least one element selected from aluminum, zirconium, magnesium, calcium, and lanthanum, or silica or silica-alumina, and the C component. Contains tungsten oxide as a titanium atom, and the atomic ratio of the B component to one titanium atom is 0.05 to 0.7.
and the atomic ratio of tungsten is in the range of 0.01 to
It is in the range of 1.

[発明の目的] 上に紹介したものも含めて従来の脱硝触媒は。[Purpose of the invention] Conventional denitrification catalysts, including those introduced above.

これに要求される様々な要件のなかのある特定な要件を
満足するものの、他の要件については不充分なものが殆
どであった。むしろ、工業触媒にあっては、ある種の触
媒特性が若干犠牲になっても、他の触媒特性を向上させ
るのが通例であって、例えば、ある程度脱硝性能を犠牲
にしてでも1機械的強度を向上させる工夫が通常施され
ている。
Among the various requirements required for this, most of them satisfied certain specific requirements, but were insufficient in other requirements. Rather, in industrial catalysts, it is common to improve other catalyst properties even if some catalyst properties are sacrificed. For example, even if some catalyst properties are sacrificed to some extent, mechanical strength Efforts are usually made to improve this.

本発明の目的は工業触媒として具備すべき要件の全部又
は殆どを満足できる脱硝触媒の製造方法を提供すること
にあり、具体的には大きな細孔容積を持ち、脱硝性能が
高< 、 SO’a酸化率が小さく、機械的強度、耐熱
性及び耐久性に優れ、成形性にも優れた脱硝触媒の製造
方法を提供することを目的とする。
The purpose of the present invention is to provide a method for producing a denitrification catalyst that satisfies all or most of the requirements that an industrial catalyst should have. It is an object of the present invention to provide a method for producing a denitrification catalyst that has a low oxidation rate, excellent mechanical strength, heat resistance, and durability, and excellent moldability.

[発明の構成] 本発明に係る脱硝触媒の製造方法は、含水酸化チタンと
、周期律表IIa族及びIIa族から選ばれた少なくと
も1種の元素の化合物とを混合して焼成し、この焼成物
に触媒活性成分を担持させることを特徴とする。
[Structure of the Invention] The method for producing a denitrification catalyst according to the present invention includes mixing hydrous titanium oxide and a compound of at least one element selected from Groups IIa and IIa of the periodic table, and calcining the mixture. It is characterized by supporting a catalytically active component on the product.

本発明で言う「含水酸化チタン」は、水酸化チタンある
いは水和酸化チタンとも別称される化合物であって、具
体的にはチタニアゾル、メタチタン酸、オルトチタン酸
などが包含される。
The "hydrated titanium oxide" referred to in the present invention is a compound also known as titanium hydroxide or hydrated titanium oxide, and specifically includes titania sol, metatitanic acid, orthotitanic acid, and the like.

本発明では50wt%以上、好ましくは80wt%以上
の含水酸化チタンを含有するチタン化合物が使用可能で
あり、特に硫酸法による酸化チタンの製造工程で、中間
品として得られる含水酸化チタンスラリーを、必要に応
じて洗浄したものは、本発明の出発原料として好適であ
る。
In the present invention, a titanium compound containing 50 wt% or more, preferably 80 wt% or more of hydrous titanium oxide can be used, and in particular, a hydrous titanium oxide slurry obtained as an intermediate product in the titanium oxide manufacturing process by the sulfuric acid method can be used. Those washed according to the conditions are suitable as starting materials for the present invention.

また、周期律表Ila族及びIIa族から選ばれる元素
の化合物とは、これら元素を含有する硫酸塩、硝酸塩、
炭酸塩、酢酸塩、蓚酸塩、アンモニウム塩、塩化物、水
酸化物などを言い、なかでもMg、Ba、La、Ce、
Yの少なくとも1種を含有する上記化合物で、水溶性の
ものが特に好ましい。
Compounds of elements selected from Groups Ila and IIa of the periodic table are sulfates, nitrates, and nitrates containing these elements.
Carbonates, acetates, oxalates, ammonium salts, chlorides, hydroxides, etc., especially Mg, Ba, La, Ce,
Of the above compounds containing at least one type of Y, water-soluble compounds are particularly preferred.

本発明の方法によれば、含水酸化チタンと、周期律表I
Ia族及びIIa族から選ばれる少なくとも1種の元素
の化合物が混合される。含水酸化チタンと混合される化
合物の量は、酸化物換算で混合物の1.0−1o重量%
の範囲が好ましく、さらに好ましくは1.5〜5.0重
量%の範囲である。
According to the method of the present invention, hydrous titanium oxide and periodic table I
A compound of at least one element selected from Group Ia and Group IIa is mixed. The amount of the compound mixed with hydrous titanium oxide is 1.0-10% by weight of the mixture in terms of oxide.
It is preferably in the range of 1.5 to 5.0% by weight, and more preferably in the range of 1.5 to 5.0% by weight.

1.0重量%未濶では、満足できる耐熱性と耐久性を与
えることができず、10重量%以上では混合物に成型性
が悪化し、触媒のSOx酸化能も高くなる0周期律表1
1a族及びIIIa族の元素を含有する化合物のなかで
は、Mg、Ba、La。
At 1.0% by weight, satisfactory heat resistance and durability cannot be provided, and at more than 10% by weight, the moldability of the mixture deteriorates and the SOx oxidation ability of the catalyst increases.0Periodic Table 1
Among the compounds containing elements of groups Ia and IIIa, Mg, Ba, La.

Ce、Yの少なくとも1種を含有する化合物が、本発明
の目的を達成する上で好適であるが、取り分け、Mg、
La、Co、Yの少なくとも1種を含有する化合物の使
用は、脱硝性能が高く。
Compounds containing at least one of Ce and Y are suitable for achieving the object of the present invention, but in particular, compounds containing Mg,
The use of a compound containing at least one of La, Co, and Y provides high denitrification performance.

SOx酸化能が低く、耐久性に優れた触媒を得る上で特
に有効である。
It is particularly effective in obtaining a catalyst with low SOx oxidation ability and excellent durability.

含水酸化チタンと上記化合物との混合は、当該混合物を
焼成して得られる粉末の成型性を良好ならしめるために
、含水酸化チタンの水性スラリーに、上記化合物または
その水溶液を添加し、混合スラリーのpHを6以上、好
ましくは8〜10の範囲に調整し、次いで40℃以上、
好ましくは50〜95℃の温度で0.5〜5時間攪拌す
る方法で行なうことが望ましい。
To mix hydrous titanium oxide and the above compound, in order to improve the moldability of the powder obtained by firing the mixture, the above compound or its aqueous solution is added to an aqueous slurry of hydrous titanium oxide, and the mixed slurry is mixed. Adjust the pH to 6 or more, preferably in the range of 8 to 10, then 40 ° C or more,
Preferably, stirring is carried out at a temperature of 50 to 95°C for 0.5 to 5 hours.

こうして得られる混合物は次いで焼成されるが、その焼
成は500℃以上、好ましくは550〜700℃の温度
で1〜7時間行なわれる。焼成温度が550℃より低い
場合は、焼成で得られる粉末の流動性、成型性が悪く、
これから得られる脱硝触媒に充分な耐熱性及び耐久性を
付与することができない。
The mixture thus obtained is then calcined at a temperature above 500°C, preferably from 550 to 700°C, for 1 to 7 hours. If the firing temperature is lower than 550°C, the powder obtained by firing will have poor fluidity and moldability.
It is not possible to impart sufficient heat resistance and durability to the denitrification catalyst obtained from this.

本発明の脱硝触媒は、上記の焼成工程から得られる粉末
に、触媒活性成分を任意の方法で担持させることにより
調製される0例えば、触媒活性成分は、焼成粉末を予め
適当な形状と寸法の担体に成型した後、この担体に任意
の方法で担持させることができる。また、触媒活性成分
を含有する化合物と、上記の焼成粉末とを、水の存在下
に混練し、次いでこれを例えばハニカム形状に押出し成
型後、常法通り乾燥焼成する方法により、脱硝触媒を調
製することもできる。
The denitrification catalyst of the present invention is prepared by supporting a catalytically active component by any method on the powder obtained from the above-mentioned calcination process. After being molded into a carrier, the carrier can be supported by any method. In addition, a denitrification catalyst is prepared by kneading a compound containing a catalytically active component and the above-mentioned calcined powder in the presence of water, then extruding it into a honeycomb shape, and drying and calcining it in a conventional manner. You can also.

成型に当っては、成型助剤、無機繊維などを必要に応じ
て配合可能であり、成型物の焼成は500〜700℃で
1〜10時間程度行なわれるのが通例である。
During molding, molding aids, inorganic fibers, etc. can be added as necessary, and the molded product is usually fired at 500 to 700°C for about 1 to 10 hours.

触媒活性成分としては、W、Mo、V、Cu、Fe、M
n、Nb及びCrからなる群から選ばれる少なくとも1
種の金属が使用され、なかでもW、Mo、Vは好ましい
触媒活性成分である。
Catalyst active components include W, Mo, V, Cu, Fe, M
At least one selected from the group consisting of n, Nb and Cr
Species of metals are used, among which W, Mo, and V are preferred catalytically active components.

本発明の触媒活性成分は、通常酸化物の形で触媒に存在
し、その量は通常の脱硝触媒と同様、酸化物換算で触媒
の0.1〜30重量%の範囲にある。
The catalytically active component of the present invention is usually present in the catalyst in the form of an oxide, and its amount is in the range of 0.1 to 30% by weight of the catalyst in terms of oxide, similar to a normal denitrification catalyst.

本発明の方法で製造された脱硝触媒は、ボイラー、ガス
タービンからの排ガス、各種工業炉などから排出される
燃焼排ガスに含まれる窒素酸化物を、アンモニアなどの
還元剤の共存下に、還元除去するに際して、通常の反応
条件で使用することができる。
The denitrification catalyst produced by the method of the present invention reduces and removes nitrogen oxides contained in exhaust gas from boilers, gas turbines, and combustion exhaust gas discharged from various industrial furnaces in the coexistence of a reducing agent such as ammonia. In this case, normal reaction conditions can be used.

[実 施 例] 実施例l Ti0□として30重量%濃度のメタチタン酸スラリー
84kgに、硝酸ランタン2.24kgを加え、1時間
攪拌缶、アンモニア水を加えてP)! 7.0とした。
[Example] Example 1 2.24 kg of lanthanum nitrate was added to 84 kg of metatitanic acid slurry with a concentration of 30% by weight as Ti0□, stirred in a can for 1 hour, and aqueous ammonia was added.P)! It was set at 7.0.

これを60℃に昇温し、2時間攪拌した。冷却後固形分
番濾別して乾燥し、620℃で5時間焼成した。こうし
て得られた焼成粉末には、ランタンがLa20.として
3.1重量%含まれていた。
This was heated to 60°C and stirred for 2 hours. After cooling, the solids were separated by filtration, dried, and calcined at 620°C for 5 hours. The fired powder thus obtained contains lanthanum of La20. It contained 3.1% by weight.

この焼成粉末5kgに、wO3として50重景%のタン
グステンを含有するメタタングステン酸アンモンの水溶
液0.8kg、硫酸バナジル96g、イオン交換水2.
OQ、ポリビニルアルコール65g及びカルボキシメチ
ルセルロース65gを加え、1時間加熱しながら混練し
た。次いで水分調節を行なった後、この混線物をハニカ
ム形状に押出し成型し、充分乾燥後、620℃で5時間
焼成してハニカム状脱硝触媒を得た(ピッチ7.4■、
壁厚1.4鳳膳)。
To 5 kg of this calcined powder, 0.8 kg of an aqueous solution of ammonium metatungstate containing 50% tungsten as wO3, 96 g of vanadyl sulfate, and 2.0 kg of ion-exchanged water.
OQ, 65 g of polyvinyl alcohol, and 65 g of carboxymethyl cellulose were added and kneaded while heating for 1 hour. Next, after adjusting the moisture content, this mixture was extruded into a honeycomb shape, thoroughly dried, and then calcined at 620°C for 5 hours to obtain a honeycomb denitrification catalyst (pitch 7.4cm,
Wall thickness 1.4 Hozen).

実施例2 実施例1と同様なメタチタン酸スラリーに、硫酸セリウ
ム(C8(No、 )3−68. O) 2.55kg
を加え、1時間攪拌後、アンモニア水を加えてpH8,
5とした後、60℃に昇温しで2時間攪拌した。冷却後
固形分を濾別して乾燥し、さらに550℃で5時間焼成
した。得られた焼成粉末には、セリウムがCeO2とし
て3.6重量%含まれていた。
Example 2 2.55 kg of cerium sulfate (C8(No, )3-68.O) was added to the same metatitanic acid slurry as in Example 1.
After stirring for 1 hour, ammonia water was added to adjust the pH to 8.
5, the temperature was raised to 60° C. and stirred for 2 hours. After cooling, the solid content was filtered off, dried, and further calcined at 550°C for 5 hours. The obtained fired powder contained 3.6% by weight of cerium as CeO2.

この焼成粉末5kgに、vOlとして50重量%のタン
グステンを含有するメタタングステン酸アンモンの水溶
液0.81kg、硫酸バナジル96g及びイオン交換水
2.02を加えて混練し、さらにポリビニルアルコール
65g及びカルボキシメチルセルロース65gを加え、
1時間加熱しながら混練した。以後は実施例1と同様の
方法及び条件でハニカム状脱硝触媒を得た。
To 5 kg of this calcined powder, 0.81 kg of an aqueous solution of ammonium metatungstate containing 50% by weight of tungsten as vOl, 96 g of vanadyl sulfate, and 2.02 g of ion-exchanged water were added and kneaded, followed by 65 g of polyvinyl alcohol and 65 g of carboxymethyl cellulose. Add
The mixture was kneaded while heating for 1 hour. Thereafter, a honeycomb denitrification catalyst was obtained using the same method and conditions as in Example 1.

実施例3 Tie、として15重量%濃度の水和酸化チタンスラリ
ー84kgに、塩化バリウム(BaC1*・2H*O)
810g及び硝酸ランタン(La (NO−) 3・6
H* 0 ) 1−28kgを加え、1時間攪拌した後
、アンモニア水を加えてpHを9.0とし、次いで80
℃に昇温しで1時間攪拌した。冷却後固形分を濾別して
乾燥し、650℃で5時間焼成した。得られた焼成粉末
には、ランタンがLa、03として3.5重量%、バリ
ウムがBaOとして2.5重壁%含まれていた。
Example 3 Barium chloride (BaCl*2H*O) was added to 84 kg of hydrated titanium oxide slurry with a concentration of 15% by weight as Tie.
810g and lanthanum nitrate (La (NO-) 3.6
After adding 1-28 kg of H*0) and stirring for 1 hour, aqueous ammonia was added to adjust the pH to 9.0, and then to 80
The temperature was raised to ℃ and stirred for 1 hour. After cooling, the solid content was filtered off, dried, and calcined at 650°C for 5 hours. The obtained fired powder contained 3.5% by weight of lanthanum as La, 03 and 2.5% of heavy wall barium as BaO.

この焼成粉末5kgに、パラタングステン酸アンモン4
63g、硫酸バナジル96g及びイオン交換水1.7Q
を加えて混練後、さらにポリビニルアルコール65g及
びカルボキシメチルセルロース86gを加えて1時間混
練した。以後は実施例1と同様の方法及び条件でハニカ
ム状脱硝触媒を得た。
Add 4 kg of ammonium paratungstate to 5 kg of this fired powder.
63g, vanadyl sulfate 96g and ion exchange water 1.7Q
After adding and kneading, 65 g of polyvinyl alcohol and 86 g of carboxymethyl cellulose were further added and kneaded for 1 hour. Thereafter, a honeycomb denitrification catalyst was obtained using the same method and conditions as in Example 1.

実施例4〜7 実施例1の硝酸ランタンに代えて、塩化バリウム、硝酸
イツトリウム、塩化マグネシウムをそれぞれ使用し、焼
成粉末を得る際の焼成温度を580℃に変更した以外は
実施例1と同様の方法で、表−4に示すハニカム状脱硝
触媒を得た。
Examples 4 to 7 Same as Example 1 except that barium chloride, yttrium nitrate, and magnesium chloride were used in place of lanthanum nitrate in Example 1, and the firing temperature to obtain the fired powder was changed to 580°C. By this method, a honeycomb denitrification catalyst shown in Table 4 was obtained.

比較例I Tie、として30重量%濃度の水和酸化チタンスラリ
ー84kgに、硝酸ランタン(La(NO3)3・6H
iO)1.7kgを加え、次に一〇、として50重量%
のタングステンを含有するメタタングステン酸アンモン
3.5kg、硫酸バナジル468g、ポリビニルアルコ
ール317g及びカルボキシメチルセルロース317g
を加えて加熱混練した。この混線物を乾燥した後、粉砕
して620℃で5時間焼成した。
Comparative Example I To 84 kg of hydrated titanium oxide slurry with a concentration of 30% by weight as Tie, lanthanum nitrate (La(NO3)3.6H
iO) 1.7 kg, then 10, 50% by weight
3.5 kg of ammonium metatungstate containing tungsten, 468 g of vanadyl sulfate, 317 g of polyvinyl alcohol and 317 g of carboxymethyl cellulose.
was added and heated and kneaded. After drying this mixed wire material, it was crushed and calcined at 620° C. for 5 hours.

この焼成粉末5kgに、イオン交換水2.0Qとカルボ
キシメチルセルロース65gを加え、5時間混練して水
分を調節した後、実施例1と同様にハニカム形状に押出
し成型し、以後も実施例1と同様な乾燥焼成操作を行な
ってハニカム状触媒を得た。
To 5 kg of this calcined powder, 2.0 Q of ion-exchanged water and 65 g of carboxymethyl cellulose were added, kneaded for 5 hours to adjust the moisture content, and then extruded into a honeycomb shape in the same manner as in Example 1. A honeycomb-shaped catalyst was obtained by performing a drying and firing operation.

比較例2 580℃で焼成して得た比表面積60rrr/gのアナ
ターゼ型酸化チタン15.4kgに、2.3kgの硝酸
ランタンQ、a(Now)i・6H□0)を溶解した水
溶液を加えて50℃に加温し、pH=7.0で攪拌しな
がら3時間混合した。水分を蒸発乾固させた後、620
℃で5時間焼成した。得られた焼成粉末にはランタンが
La20.とじて3.3重量%含まれたいた。
Comparative Example 2 To 15.4 kg of anatase-type titanium oxide with a specific surface area of 60 rrr/g obtained by firing at 580°C, an aqueous solution in which 2.3 kg of lanthanum nitrate Q, a(Now)i・6H□0) was dissolved was added. The mixture was heated to 50° C. and mixed for 3 hours with stirring at pH=7.0. After evaporating water to dryness, 620
It was baked at ℃ for 5 hours. The obtained fired powder contains lanthanum with La20. It contained 3.3% by weight.

実施例1で得た焼成粉末に代えて、上記の焼成粉末を使
用した以外は実施例1と全く同様にしてハニカム状触媒
を得た。
A honeycomb-shaped catalyst was obtained in exactly the same manner as in Example 1, except that the above-mentioned calcined powder was used instead of the calcined powder obtained in Example 1.

[触媒の評価] 上記の各実施例及び比較例で得られた触媒それぞれにつ
いて、触媒性能を次の方法で評価した。
[Evaluation of Catalyst] The catalyst performance of each of the catalysts obtained in each of the above Examples and Comparative Examples was evaluated by the following method.

(1)脱硝率:それぞれの触媒を用いて表−1の条件で
ガスの脱硝処理を行ない、次式により脱硝率を求めた。
(1) Denitration rate: Gas was denitrated using each catalyst under the conditions shown in Table 1, and the denitration rate was determined using the following formula.

脱硝率= (2)SOx酸化率:表−2に示す条件でガスの脱硝処
理を行ない、次式によりSOx酸化率を求めた。
Denitration rate = (2) SOx oxidation rate: Gas denitration treatment was performed under the conditions shown in Table 2, and the SOx oxidation rate was determined using the following formula.

−2:  SOx    ヒ   雪 ガス温度:380℃ S V   : 2500hr−1 (3)耐久性二人−3に示す組成のガスに1表−3の条
件で触媒を予め2500時間接触させた後、その触媒を
使用して上記(1)と同一内容の脱硝処理と行なって同
様に脱硝率を求め、耐久性を評価した。
-2: SOx Hi Snow gas temperature: 380°C SV: 2500hr-1 (3) Durability After contacting the catalyst with the gas having the composition shown in 2-3 for 2500 hours under the conditions shown in Table 1-3, the The same denitration treatment as in (1) above was carried out using a catalyst, the denitration rate was determined in the same manner, and the durability was evaluated.

表−1:  率評価 ガス温度:350℃ S V   : 10,0OOhr” ガス温度=430℃ v : 80QOhr−’ バランス 各触媒の性状と性能評価をまとめて表−4に示す、尚、
触媒の細孔容積は水銀圧入法で、また圧壊強度は圧縮強
度試験機でそれぞれ測定した値である。
Table-1: Rate evaluation gas temperature: 350°C SV: 10,000hr" Gas temperature = 430°C v: 80QOhr-' Balance The properties and performance evaluation of each catalyst are summarized in Table-4.
The pore volume of the catalyst was measured by mercury intrusion method, and the crushing strength was measured using a compressive strength testing machine.

[発明の効果] 本発明の方法で製造される脱硝触媒は、表−4に示した
データからも裏付けられる通り、側孔容積が大きいにも
かかわらず、圧壊強度が強い。これに加えて、この触媒
は脱硝率が高く、耐久性にも優れ、 5Oxl’iQ化
率が低い。従って、本発明の方法で得られる脱硝触媒は
、工業触媒として優れた性能を発揮する。
[Effects of the Invention] As evidenced by the data shown in Table 4, the denitrification catalyst produced by the method of the present invention has high crushing strength despite having a large side hole volume. In addition, this catalyst has a high denitrification rate, excellent durability, and a low 5Oxl'iQ conversion rate. Therefore, the denitrification catalyst obtained by the method of the present invention exhibits excellent performance as an industrial catalyst.

Claims (1)

【特許請求の範囲】[Claims] 1、含水酸化チタンと、周期律表IIa族及びIIIa族か
ら選ばれた少なくとも1種の元素の化合物とを混合して
焼成し、この焼成物に触媒活性成分を担持させることを
特徴とする窒素酸化物還元用触媒の製造方法。
1. Nitrogen, characterized in that hydrous titanium oxide and a compound of at least one element selected from Groups IIa and IIIa of the Periodic Table are mixed and fired, and the fired product is made to support a catalytically active component. A method for producing an oxide reduction catalyst.
JP1059639A 1989-03-14 1989-03-14 Preparation of catalyst for reducing nitrogen oxide Pending JPH02241543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1059639A JPH02241543A (en) 1989-03-14 1989-03-14 Preparation of catalyst for reducing nitrogen oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1059639A JPH02241543A (en) 1989-03-14 1989-03-14 Preparation of catalyst for reducing nitrogen oxide

Publications (1)

Publication Number Publication Date
JPH02241543A true JPH02241543A (en) 1990-09-26

Family

ID=13118995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1059639A Pending JPH02241543A (en) 1989-03-14 1989-03-14 Preparation of catalyst for reducing nitrogen oxide

Country Status (1)

Country Link
JP (1) JPH02241543A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005342710A (en) * 2004-05-07 2005-12-15 Mitsubishi Chemical Engineering Corp Heat-resistant denitrifying catalyst
JP2006314989A (en) * 2005-04-11 2006-11-24 Valtion Teknillinen Tutkimuskeskus Catalyst for catalytically reducing nitrogen oxide and catalyst structure
CN109772299A (en) * 2019-01-31 2019-05-21 北京科技大学 One kind low-temperature denitration catalyst containing lanthanum and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005342710A (en) * 2004-05-07 2005-12-15 Mitsubishi Chemical Engineering Corp Heat-resistant denitrifying catalyst
JP2006314989A (en) * 2005-04-11 2006-11-24 Valtion Teknillinen Tutkimuskeskus Catalyst for catalytically reducing nitrogen oxide and catalyst structure
CN109772299A (en) * 2019-01-31 2019-05-21 北京科技大学 One kind low-temperature denitration catalyst containing lanthanum and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2682628B2 (en) Nitrogen oxide removal method and removal catalyst
SU1685256A3 (en) Catalyst for decreasing nitrogen oxide content in flue gases, method of its manufacture and catalytic reduction process
RU2058814C1 (en) Catalyst for selective nitrogen oxides reduction with ammonia and a method of its preparing
JPH01168343A (en) Exhaust gas purifying catalyst
JPH0768172A (en) Catalyst for catalyst production of nox and method thereof
KR100911797B1 (en) Catalyst for removing nitrogen oxides, method for production thereof and method for removing nitrogen oxides
JPH0242536B2 (en)
JPS6211892B2 (en)
JPH1099684A (en) Catalyst composition for reduction of nox, its production and reducing method for nox in exhaust combustion gas containing oxygen
WO2013099253A1 (en) Titanium-containing granular powder and method for production thereof, and exhaust gas treatment catalyst using same and method for production thereof
JP4798909B2 (en) Nitrogen oxide removing catalyst and method for producing the same
JPH02241543A (en) Preparation of catalyst for reducing nitrogen oxide
JP4798908B2 (en) Nitrogen oxide removing catalyst and method for producing the same
JP2000308832A (en) Exhaust gas cleaning catalyst compound, catalyst containing the same and manufacture of the same
JP2583912B2 (en) Nitrogen oxide removal catalyst
JP3246757B2 (en) Nitrogen oxide removal catalyst
JP3495592B2 (en) Method for reducing SO3 in exhaust gas
JPH0824651A (en) Ammonia decomposition catalyst and method for decomposing ammonia using the same
JPH08141398A (en) Catalyst for decomposing ammonia
JP2743336B2 (en) Catalyst for reducing nitrogen oxides and method for removing nitrogen oxides from exhaust gas
JPH01317545A (en) Preparation of denitrification catalyst
JPS59213442A (en) Preparation of denitration catalyst
JPH0596165A (en) Denitrating catalyst inhibiting oxyidation of sulfur dioxide and its production
JP3739032B2 (en) Catalyst for removing organic halogen compound, method for producing the same, and method for removing organic halogen compound
JP3298914B2 (en) Catalyst for reducing nitrogen oxides and method for catalytic reduction and decomposition of nitrogen oxides