JPH0239741B2 - - Google Patents

Info

Publication number
JPH0239741B2
JPH0239741B2 JP56207959A JP20795981A JPH0239741B2 JP H0239741 B2 JPH0239741 B2 JP H0239741B2 JP 56207959 A JP56207959 A JP 56207959A JP 20795981 A JP20795981 A JP 20795981A JP H0239741 B2 JPH0239741 B2 JP H0239741B2
Authority
JP
Japan
Prior art keywords
circuit
amplifier
transducer
layer
adder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56207959A
Other languages
English (en)
Other versions
JPS57132056A (en
Inventor
Anri Kurusan Roje
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of JPS57132056A publication Critical patent/JPS57132056A/ja
Publication of JPH0239741B2 publication Critical patent/JPH0239741B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/38Detecting the response signal, e.g. electronic circuits specially adapted therefor by time filtering, e.g. using time gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4463Signal correction, e.g. distance amplitude correction [DAC], distance gain size [DGS], noise filtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52025Details of receivers for pulse systems
    • G01S7/52026Extracting wanted echo signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

−繰返しの電気信号を生じる信号発生器211 −該信号発生器211から生じる電気励振信号を
第1入力端で受ける第1加算器212 −出力端を第1変換器層11に接続しうる第1増
幅器213 が直列に接続されており、前記受信回路3は受信
回路網31を有し、該受信回路網においては、 −入力端を第2変換器層12に接続しうる第2増
幅器311 −第2変換器層12において超音波信号が受けた
遅延を補償する遅延回路312 −受信エコーに相当する電気信号を処理する信号
処理回路314 が直列に接続されている超音波検査装置におい
て、 前記の送信回路2が制御回路網22をも具え、
該制御回路網22が第3増幅器222を有し、該
第3増幅器の出力端を、前記の送信回路網21の
伝達関数を補正する為の第1補正回路223の入
力端に接続し、該第1補正回路の出力端を前記の
第1加算器212の第2入力端に接続し、前記の
制御回路網22が送信中、第1増幅器213に接
続されていない変換器層12,13から生じる信
号を第3増幅器222に供給する作用をするよう
にしたことを特徴とする超音波検査装置。
2 特許請求の範囲第1項に記載の超音波検査装
置において、前記の信号供給手段が第1ゲート回
路221を有し、該第1ゲート回路を第2変換器
層12と第2増幅器311の入力端との間に接続
し、超音波信号の送信中前記の第1ゲート回路が
第2変換器層12を第3増幅器222にのみ接続
し、エコー信号の受信中前記の第1ゲート回路が
第2変換器層12を第2増幅器311にのみ接続
するようにしたことを特徴とする超音波検査装
置。
3 特許請求の範囲第1項に記載の超音波検査装
置において、前記の信号供給手段を第3変換器層
13を以つて構成し、該第3変換器層を第3増幅
器222の入力端に接続し、第2変換器層12を
第2増幅器311の入力端に接続したことを特徴
とする超音波検査装置。
4 特許請求の範囲第1〜3項のいずれか一項に
記載の超音波検査装置において、前記の受信回路
3が、第1変換器層11を信号処理回路314に
接続しうるようにした補助回路網32をも有し、
該補助回路網が −第1増幅器213の出力端と第1変換器層11
との間に接続した第2ゲート回路321 −第4増幅器322 −受信回路網31の伝達関数を補正する為の第2
補正回路323 の直列接続素子を有し、遅延回路312と信号処
理回路314との間に第2加算器213を接続
し、該第2加算器の出力端を前記の信号処理回路
314の入力端に接続し、前記の第2加算器の第
1入力端を前記の第2補正回路323の出力端に
接続し、前記の第2加算器の第2入力端を前記の
遅延回路312の出力端に接続し、超音波信号の
送信中前記の第2ゲート回路321が第1変換器
層11を第1増幅器213にのみ接続し、エコー
信号の受信中前記の第2ゲート回路321が第1
変換器層11を第4増幅器322にのみ接続する
ようにしたことを特徴とする超音波検査装置。
5 特許請求の範囲第1〜3項のいずれか一項に
記載の超音波検査装置において、前記の変換器1
が第1変換器層11と第2変換器層12との間に
圧電材料より成る第4変換器層14を有し、前記
の受信回路3が、前記の第4変換器層14を信号
処理回路314に接続しうるようにする補助回路
網32をも有し、該補助回路網が第4増幅器32
2を有し、該第4増幅器の出力端を、受信回路網
31の伝達関数を補正する為の第2補正回路32
3に接続し、遅延回路312と信号処理回路31
4との間に第2加算器313を設け、該第2加算
器の出力端を信号処理回路314の入力端に接続
し、前記の第2加算器の第1入力端を第2補正回
路323の出力端に接続し、前記の第2加算器の
第2入力端を遅延回路312の出力端に接続した
ことを特徴とする超音波検査装置。
6 特許請求の範囲第1〜3項のいずれか一項に
記載の超音波検査装置において、前記の変換器1
が、第1および第2変換器層11および12の前
方に設けられた圧電材料より成る第4変換器層1
4′を有し、前記の受信回路3が、前記の第4変
換器層14′を信号処理回路314に接続しうる
ようにする補助回路網32をも有し、該補助回路
網が −第4増幅器322 −受信回路網31の伝達関数を補正する為の第2
補正回路323 −第2遅延回路324 の直列接続素子を有し、第1遅延回路312と信
号処理回路314との間に第2加算器313を接
続し、該第2加算器の出力端を信号処理回路31
4の入力端に接続し、前記の第2加算器の第1入
力端を第2遅延回路324の出力端に接続し、前
記の第2加算器の第2入力端を第1遅延回路31
2の出力端に接続したことを特徴とする超音波検
査装置。
7 特許請求の範囲第1〜6項のいずれか一項に
記載の超音波検査装置において、各補正回路22
3,323が多数の入力端を有する加算回路22
5,325を具え、該加算回路の各入力端を遅延
線227i,327iの出力端に接続し、該遅延
線の入力端を減衰器226i,326iの出力端
に接続したことを特徴とする超音波検査装置。
【発明の詳細な説明】
本発明は、少くとも、送信回路に接続でき超音
波エネルギーを伝達する圧電材料の第1変換器層
と、受信回路に接続でき超音波エコー信号を検出
する圧電材料の第2変換器層とを有する変換器を
具える超音波検査装置であつて、第1および第2
変換器層は超音波ビーム方向に積重ねられてお
り、前記送信回路は送信回路網を有し、該送信回
路網においては、 −繰返しの電気信号を生じる信号発生器 −該信号発生器から生じる電気励振信号を第1入
力端で受ける第1加算器 −出力端を第1変換器層に接続しうる第1増幅器 が直列に接続されており、前記受信回路は受信回
路網を有し、該受信回路網においては、 −入力端を第2変換器層に接続しうる第2増幅器 −第2変換器層において超音波信号が受けた遅延
を補償する遅延回路 −受信エコーに相当する電気信号を処理する信号
処理回路 が直列に接続されている超音波検査装置に関する
ものである。
この種類の超音波検査装置は欧州特許出願第
21534号明細書に記載されており既知である。変
換器は送信および受信用の別個の変換器層を有す
る為、これらの層の各々はその機能に最適に適合
しうるようにすることができる。しかし、この変
換器を経て相互接続される送信および受信回路は
互いに悪影響を及ぼすおそれがある。
本発明の目的は、上述した悪影響を可成り減少
せしめ、超音波送信および受信回路を適切に切り
離し、変換器の感度および減衰の制御を同時に可
能としうるようにすることにある。
本発明は、少くとも、送信回路に接続でき超音
波エネルギーを伝達する圧電材料の第1変換器層
と、受信回路に接続でき超音波エコー信号を検出
する圧電材料の第2変換器層とを有する変換器を
具える超音波検査装置であつて、第1および第2
変換器層は超音波ビーム方向に積重ねられてお
り、前記送信回路は送信回路網を有し、該送信回
路網においては、 −繰返しの電気信号を生じる信号発生器 −該信号発生器から生じる電気励振信号を第1入
力端で受ける第1加算器 −出力端を第1変換器層に接続しうる第1増幅器 が直列に接続されており、前記受信回路は受信回
路網を有し、該受信回路網においては、 −入力端を第2変換器層に接続しうる第2増幅器 −第2変換器層において超音波信号が受けた遅延
を補償する遅延回路 −受信エコーに相当する電気信号を処理する信号
処理回路 が直列に接続されている超音波検査装置におい
て、 前記の送信回路が制御回路網をも具え、該制御
回路網が第3増幅器を有し、該第3増幅器の出力
端を、前記の送信回路網の伝達関数を補正する為
の第1補正回路の入力端に接続し、該第1補正回
路の出力端を前記の第1加算器の第2入力端に接
続し、前記の制御回路網が送信中、第1増幅器に
接続されていない変換器層から生じる信号を第3
増幅器に供給する作用をするようにしたことを特
徴とする。
本発明によれば、送信回路網の伝達関数を最適
に適合しうるようになる。更に補正回路により超
音波変換器の減衰度および感度を部分的に制御し
うるようになる。本発明による超音波検査装置の
好適例によれば更に改善を達成することができ
る。この例では、前記の受信回路が、第1変換器
層を信号処理回路に接続しうるようにした補助回
路網をも有し、該補助回路網が −第1増幅器の出力端と第1変換器層との間に接
続した第2ゲート回路 −第4増幅器 −受信回路網の伝達関数を補正する為の第2補正
回路 の直列接続素子を有し、遅延回路と信号処理回路
との間に第2加算器を接続し、該第2加算器の出
力端を前記の信号処理回路の入力端に接続し、前
記の第2加算器の第1入力端を前記の第2補正回
路の出力端に接続し、前記の第2加算器の第2入
力端を前記の遅延回路の出力端に接続し、超音波
信号の送信中前記の第2ゲート回路が第1変換器
層を第1増幅器にのみ接続し、エコー信号の受信
中前記の第2ゲート回路が第1変換器層を第4増
幅器にのみ接続するようにする。
第2補正回路が設けられることにより超音波変
換器の減衰度および感度の制御が一層優れたもの
となり、また変換器の作動を最適化しうるように
なる。
図面につき本発明を説明する。
ブロツク線図で第1図に示す本発明の一例の超
音波検査装置は超音波変換器1を有し、この超音
波変換器により、被検体に超音波信号を繰返し放
射し、順次の放射間の時間隔中は被検体から超音
波変換器に向けて反射されたこれら信号の超音波
エコー信号を受ける。
本例の変換器1は異なる圧電材料から造るのが
好ましい2つの変換器層11および12を有し、
これらの層を厚さ方向に振動させるようにする。
主として超音波信号を伝達する作用をし、例えば
ジルコン酸チタン酸鉛から造る第1層11は、変
換器に電気励振信号を与える送信回路2に接続す
る。超音波エコー信号を受ける作用をし、例えば
ニオブ酸鉛から造る第2層12は変換器に送られ
たエコー信号を受けて処理する受信回路3に接続
することができる。第1および第2変換器層11
および12は変換器によつて伝達或いは検出する
或いはその双方を行なうべき超音波ビームの方向
に積み重ねられている。
送信回路2は送信回路網21と制御回路網22
とを有する。送信回路網21は広帯域電気信号発
生器211と、第1加算器212と、第1増幅器
213(線形、広帯域、低出力インピーダンス増
幅器)との直列回路を以つて構成し、第1加算器
の第1入力端が信号発生器211から生じる信号
を受け、第2入力端が制御回路網22の出力信号
を受け、前記の第1増幅器213が第1加算器2
12の出力端に生じる信号を増幅し、この第1増
幅器213の出力端を後に詳細に説明する回路3
21を経て第1変換器層11に接続しうるように
する。超音波信号の送信中第2変換器層12を加
算器212の第2入力端に接続する作用をする制
御回路網22は以下の直列接続素子を有する。
〇 信号供給装置として作用する第1ゲート回路
221 〇 低入力インピーダンスを有する線形広帯域増
幅器222(以後第3増幅器と称する) 〇 送信回路網21の伝達関数を補正する第1補
正回路223 本例の受信回路3は受信回路網31と補助回路
網32とを有する。受信回路網31は第2増幅器
311と、遅延回路312と、第2加算器313
と、信号処理回路314の直列接続回路網を以つ
て構成する。第2増幅器311は第1ゲート回路
221を経て第2変換器層12に接続しうる線形
広帯域増幅器を以つて構成する。遅延回路312
は、第1変換器層11によつて受信されるエコー
信号がまず最初に第2変換器層12を通過すると
いう事実を考慮して設けた。これにより、第2変
換器層12中にこれらのエコー信号が受ける遅延
を補償する。第2加算器313の第1入力端は第
2増幅器311の遅延出力信号を受け、第2加算
器313の第2入力端は補助回路網32の出力信
号を受ける。補助回路網32はエコー信号の受信
中第1変換器層11を第2加算器313の第2入
力端に接続する作用をする。この補助回路網32
は、第2ゲート回路321と、線形広帯域増幅器
322(以後第4増幅器と称する)と、受信回路
網31の伝達関数を補正する第2補正回路323
との直列接続素子を有する。
2つの異なる変換器層を有する変換器を具える
上述した装置は送信回路2および受信回路3によ
り変換器1のローデイングを最適にしうるばかり
ではなく、 (a) 通常送信の作用をする第1変換器層11の付
近に、この層11によつて送信される信号の一
部を吸収し送信回路網を制御しうる補正信号を
生ぜしめるセンサ(層12)が得られるように
するとともに、これとは逆に (b) 第2変換器層12のすぐそばに、補助回路網
32を経て信号処理回路314に供給し受信回
路網31伝達関数を補正しうるようにする補正
信号を生じる他のセンサ(層11)が得られる
ようにする。
ゲート回路221よび321は送信および受信
中に上述した補正作動を実行しうるようにする。
送信中は第2ゲート回路321が第1増幅器21
3を第1変換器層11に接続し、この第2ゲート
回路321の第3端子を接地する。この場合第1
ゲート回路221が第2変換器層12を第3増幅
器222に接続し、この第1ゲート回路の第3端
子は接地する。しかし受信中は第2ゲート回路3
21が第1変換器層11を第4増幅器322に接
続し、この場合第2ゲート回路321の第1端子
は浮動とし(すなわち第1増幅器213に電気接
続しない)、第1ゲート回路221が第2変換器
層1を第2増幅器311に接続し、送信中第3増
幅器222に接続されていた第1ゲート回路の端
子は接地する。
第2aおよび2b図は、信号P1およびP2によ
りそれぞれ制御される第1および第2ゲート回路
221および321の一例をそれぞれ示す。これ
らの信号P1およびP2を第3図bおよびcにそれ
ぞれ示してあり、これらの信号は、第3図aに示
す電気励振信号が信号発生器211によつて生ぜ
しめられる時間間隔に直接関連する期間中“高”
或いは“低”論理レベルとなる。励振信号は凝似
周期t0t2,t2t4等を有する繰返しバーストから成
り、各バーストは超音波変換器の共振周波数にほ
ぼ等しい周波数で順次に生じる多数のパルスから
成る。周期t0t1,t2t3等は送信が行なわれる期間
を構成し、周期t1t2,t3t4等は受信が行なわれる
期間を構成する。
第1ゲート回路221の3つの接続端子は第2
変換器層12、第3増幅器222および第2増幅
器311にそれぞれ接続する。4つの電界効果ト
ランジスタ331,332,333および334
はこのゲート回路におけるスイツチング部材とし
て作用する。送信中は電界効果トランジスタ33
1および333が導通し、電界効果トランジスタ
332および334が遮断し、受信中はトランジ
スタ331および333が遮断し、トランジスタ
332および334が導通する。第2ゲート回路
321の3つの接続端子は第1変換器層11、第
1増幅器213および第4増幅器322にそれぞ
れ接続する。3つの電界効果トランジスタ34
1,342および343はこのゲート回路におけ
るスイツチング素子として作用する。送信中は電
界効果トランジスタ341および343が導通
し、電界効果トランジスタ342が遮断し、受信
中はトランジスタ341および343が遮断し、
トランジスタ342が導通する。
送信および受信中の装置の作動を以下に説明す
る。
送信中は第1変換器層11の両端間に存在する
電圧のラプラス変換は次式で与えられる。
V1(p)=A1(p)・〔E(p)+C1 (p)・A2(p)・Ze(p)/ZT(p)+Ze(p) ・V2(p)〕 この式において、各種の記号は次の意味を有す
る。ただし、F.T.(…)は“(…)の伝達関数”
を表わし、T.L.(…)は“(…)のラプラス変換”
を表わすものとする。
A1(p)=F.T.(増幅器213) A2(p)=F.T.(増幅器222) C1(p)=F.T.(補正回路223) E(p)=T.L.(信号発生器211から生じ
る励振信号) V2(p)=T.L.(層12の両端間の電圧) Ze(p)=F.T.(増幅器222の入力インピ
ーダンス) ZT(p)=F.T.(層12のインピーダンス) 双方の増幅器213および222の帯域幅が、
前述した装置が作動する周波数帯域の幅を越える
ものとすると、A1(p)およびA2(p)は定数A1
およびA2とみなしうる為、 V1(p)=A1〔E(p)+C1(p)・A2・ Ze(p)/ZT(p)+Ze(p)・V2(p)〕 となる。M1(p)=V2(p)/V1(p)およびM2
(p)=F1(p)/V1(p)であるとすると(ここ
にF1(p)は発生された音響エネルギーのラプラ
ス変換を示す)、 V1(p)=A1E(p)+A1A2 Ze(p)/ZT(p)+Ze(p)・C1(p) ・M1(p)・V1(p) V1(p) =A1E(p)/1−A1A2Ze(p)/ZT(p)+Ze(p
)C1(p)・M1(p) E1(p)=M2(p)V1(p) となる。従つて閉ループの伝達関数は F1(p)/E(p) =M2(p)・A1/1−A1A2Ze(p)/ZT(p)+Ze
p)C1(p)・M1(p) として書き表わせる。いわゆるクツク−レツドウ
ツド(Cook−Redwood)近似法(文献IRE
convention Record4,1956,p.p61−69のE.G.
Cook氏著“Transient and steddy−state
response of ultrasonic piezoelectric
transducers”およびJournal of the Acoustical
Society of America,33,1961,p.p527−536の
M.Redwood氏著“Transient performance of
a piezoelectric transducer”参照)を用いれ
ば、次式として書き表わせる。
Ze(p)/ZT(p)+Ze(p)M1(p)=K1o=∞n=0 αo・e-np および M2(p)=K2o=∞n=0 βo・e-np ここにK1およびK2は伝達定数(増幅率に等し
い)であり、αoおよびβoは種々の界面での反射係
数の関数である。nが無限大になると、関数αo
よびβoは零に急速に収束する為、αおよびβの級
数を中断させることができ、次式が得られる。
A1A2C1(p)K1M0 αoe-npが1よりも小さいも
のとすると(このことはK1が1よりも著るしく
小さい為正しいことである)、一次近似で次式が
得られる。
F1(p)/E(p)A1K2M0 βoe-np〔1+A1A2C1K1M0 αoe-np〕 F1(p)/E(p)=A1K2M0 βoe-np+A2 1A2K1K2C1(p)M0 βoe-np M0 αoe-np Mよりも大きい指数を有する項を無視することに
より、 M0 βoe-npM0 αoe-npM0 goe-np であると仮定すると(係数goはαoおよびβoの関数
であり、後者よりもゆつくり収束する)、次式が
得られる。
F1(p)/E(p)=A1K2M0 βoe-np+A1A2K1C1(p)M0 goe-np〕 補正回路223に対して、遅延をともない重み付
けを行なう加算回路の伝達関数に等しい伝達関数
を有する回路を選択する場合、すなわち、C1
(p)を C1(p)=M0 doe-np として書き表わすことができ(ここにdoは可調整
係数である)、またδo=A1A2K1doである場合に
は、次式が得られる。
F1(p)/E(p)=A1K2M0 βoe-npM0 δoe-np M0 goe-np〕F1(p)/E(p)=A1K2M0 (βo+γo)e-np ここに M0 o e-npM0 goe-npM0 γoe-np である。これらの式においては前述したようにM
よりも大きい指数を有する項は無視した。係数γo
は補正回路223およびその伝達係数C1(p)の
選択により間接的に制御しうる為、これにより係
数βoを補償或いは増強させて装置の感度および減
衰度を変えるようにすることができる。
受信に対しては以下の記号を導入することがで
きる。
A3(p)=F.T.(増幅器311) A4(p)=F.T.(増幅器322) C2(p)=F.T.(補正回路323) F2(p)=T.L.(変換器に対し垂直な入射
音響エネルギーによつて及ぼされる力の成
分) S(p)=T.L.(加算器312の出力端に
おける受信信号) V1(p)=T.L.(層11の両端間の電圧) V2(p)=T.L.(層12の両端間の電圧) e-p=F.T.(遅延回路312) この場合次式が得られる。
S(p)=e-p・A3(p)・V2(p)+C2(p)・A4
(p)・V1(p) M3(p)=V1(p)/V2(p)およびM4(p)=V2
(p)/F2(p)である。
場合には、V1(p)=M3(p)・V2(p)=M3
(p)・M4(p)・F2(p)となる。従つてS(p)=
〔e-p・A3(p)・M4(p)+C2(p)・A4(p)・M
3
(p)・M4(p)〕・F2(p) となる。増幅器311および322の双方の帯域
幅が、超音波検査装置が作動する周波数帯域の幅
を越えるものとすると、A3(p)およびA4(p)
を定数A3およびA4とみなすことができる。この
場合には、 S(p)/F2(p)=e-p・A3・M4(p) +C2(p)・A4・M3(p)・M4(p) となる。所定の近似法(前述したクツク−レツド
ウツド近似法)を用いると、次式が得られる。
e-p・M4(p)=M0 aoe-npおよびM3(p)=M0 boe-np 従つて、 S(p)/F2(p)=A3M0 ao・e-np+A4・C2(p)・M0 boe-np となる。この場合も遅延をともない重み付けを行
なう加算回路の伝達関数に等しい伝達関数を有す
る回路を補正回路323に対して選択する場合に
は、C2(p)は C2(p)=M0 Coe-np となり、従つて S(p)/F2(p)=A3M0 ao・e-np+A4M0 Coe-npM0 boe-np となる。この場合もMよりも大きな指数を有する
項を無視することにより、次式 S(p)/F2(p)=A3M0 ao・e-np+A4M0 doe-np が得られ、またはαo=A3aoおよびδo=A4doを代
入することにより、 S(p)/F2(p)=M0 (αo+δo)・e-np が得られる。係数δoは補正回路323およびその
伝達関数C2(p)を選択することにより間接的に
制御しうる為、この場合もこれらの係数を用いて
係数αoを補償或いは増強させ、超音波検査装置の
感度および減衰度を変えるようにすることができ
る。
上述した計算式により、送信および受信回路網
の伝達関数はe-pの多項式として形成しうるラプ
ラス変数の関数であるということを確めた。この
場合、制御回路網22および補助回路網32によ
りe-pのアナログ級数の使用を可能化し、また送
信および受信の双方またはいずれか一方の際に補
正を行なう目的でこれらの回路網内に設けた補正
回路を経てe-pの項を加えうるようにする。これ
らの加えられたまた現存する項を算術的に合成す
る、すなわち増強作動に対して加算し、相殺作動
すなわち補償作動に対して減算することができ
る。
本例における2つの補正回路223および32
3は加算回路225および325をそれぞれ有
し、これらの加算回路は多数の入力端(第1図の
回路223の場合5個の入力端、回路323の場
合4個の入力端)を有し、各入力端は遅延線22
7b〜227mおよび327b〜327nの出力
端にそれぞれ接続され、これら遅延線の入力端は
減衰器226a〜226mおよび326a〜32
6nの出力端にそれぞれ接続されている。遅延線
は例えばCCD(電荷結合装置)型のアナログシフ
トレジスタを以つて、或いはアナログ−デジタル
変換器、デジタルシフトレジスタおよびデジタル
−アナログ変換器を用いて形成することができ
る。より一層経済的な解決法は遅延e-pの近似に
対して3次に制限し、 e-p=1/e+p=1/1+τp+τ2p2/2!+τ3p3
/3! とすることである。従つて実際には各遅延線は上
述した多項式をその伝達関数として有する回路網
とすることができる。p=Jwである為、τnpn
n!の級数は有効周波数帯域の幅、すなわち実際
には励振信号のスペクトルの幅に制限される。
上述した例の種々の変形例が可能である。上述
した複合超音波変換器は例えば、第1変換器層1
1の後方、第2変換器層12の前方およびこれら
の層間のうちの少くとも1つに設けた干渉層を有
するようにすることができる。これにより変換器
の感度および変換器の帯域幅を増大させ、補正回
路222および323における遅延線の個数を減
少せしめることができる。
ゲート回路221および321の一方(または
双方)は変換器の構造をより一層複雑とする犠性
を払つて省略することができる。その2例を第4
および5図に示す。これらの双方の例の場合、制
御回路22に対する信号供給手段を、第3増幅器
222の入力端子に接続された第3変換器層13
を以つて構成する。また第2変換器層12は第2
増幅器211な永久的に接続する。従つて第1ゲ
ート回路221は省略することができる。変換器
1が第4変換器層(第4図に14でまた第5図に
14′で示す)を有する場合には第2ゲート回路
321も省略することができる。第4変換器層1
4は第1および第2変換器層(11および12)
間に位置させ、この第4変換器層を第4増幅器3
22の入力端子に接続し、この第4増幅器322
は第1図と全く同様に第2補正回路323および
第2加算器313と直列に接続して補助回路網を
形成するようにする。
第4変換器層14′(第5図)が層11および
12の前方に位置する場合には、補助回路網は第
2補正回路323および第2加算器313間に接
続された第2遅延回路324を有する。第2遅延
回路324および第1遅延回路312(第1図)
によつて導入される庭延間には、エコー信号が第
4変換器層14′を通過した後にのみ第2変換器
層12に到達するという事実を考慮して差を与え
る。従つてこれらのエコー信号は追加の遅延を受
ける。
【図面の簡単な説明】
第1図は本発明による超音波検査装置の一例を
示すブロツク線図、第2aおよび2b図は第1図
に示す装置の一部の例を詳細に示す回路図、第3
図は第1図に示す装置で生じる信号を示す波形
図、第4図は本発明による超音波検査装置の他の
例の一部を示す線図、第5図は本発明による超音
波検査装置の更に他の例の一部を示す線図であ
る。 1……超音波変換器、11……第1変換器層、
12……第2変換器層、13……第3変換器層、
14,14′……第4変換器層、2……送信回路、
21……送信回路網、22……制御回路網、21
1……広帯域信号発生器、212……第1加算
器、213……第1増幅器、221……第1ゲー
ト回路、222……線形広帯域増幅器(第3増幅
器)、223……第1補正回路、225……加算
回路、226……減衰器、227……遅延線、3
……受信回路、31……受信回路網、32……補
助回路網、311……第2増幅器、312……遅
延回路、313……第2加算器、314……信号
処理回路、321……第2ゲート回路、322…
…線形広帯域増幅器(第4増幅器)、323……
第2補正回路、324……第2遅延回路、325
……加算回路、326……減衰器、327……遅
延線。

Claims (1)

    【特許請求の範囲】
  1. 1 少くとも、送信回路2に接続でき超音波エネ
    ルギーを伝達する圧電材料の第1変換器層11
    と、受信回路3に接続でき超音波エコー信号を検
    出する圧電材料の第2変換器層12とを有する変
    換器1を具える超音波検査装置であつて、第1お
    よび第2変換器層は超音波ビーム方向に積重ねら
    れており、前記送信回路2は送信回路網21を有
    し、該送信回路網においては、
JP56207959A 1980-12-22 1981-12-22 Ultrasonic inspection apparatus Granted JPS57132056A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR8027202A FR2496919A1 (fr) 1980-12-22 1980-12-22 Appareil d'examen de milieux par methode ultrasonore

Publications (2)

Publication Number Publication Date
JPS57132056A JPS57132056A (en) 1982-08-16
JPH0239741B2 true JPH0239741B2 (ja) 1990-09-06

Family

ID=9249351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56207959A Granted JPS57132056A (en) 1980-12-22 1981-12-22 Ultrasonic inspection apparatus

Country Status (11)

Country Link
US (1) US4446739A (ja)
JP (1) JPS57132056A (ja)
AU (1) AU546958B2 (ja)
BE (1) BE891559A (ja)
BR (1) BR8108285A (ja)
CA (1) CA1178707A (ja)
DE (1) DE3149317A1 (ja)
ES (1) ES8301365A1 (ja)
FR (1) FR2496919A1 (ja)
GB (1) GB2091877B (ja)
IL (1) IL64585A (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4582677A (en) * 1980-09-22 1986-04-15 Kabushiki Kaisha Kobe Seiko Sho Method for producing honeycomb-shaped metal moldings
US5957851A (en) * 1996-06-10 1999-09-28 Acuson Corporation Extended bandwidth ultrasonic transducer
DE19735101A1 (de) 1997-08-13 1999-02-18 Krautkraemer Gmbh Prüfkopf für die Ultraschallprüfung nach dem Impuls-Echo-Verfahren
US6416478B1 (en) 1998-05-05 2002-07-09 Acuson Corporation Extended bandwidth ultrasonic transducer and method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB715143A (en) * 1951-12-13 1954-09-08 Kelvin & Hughes Ltd Improvements in and relating to the non-destructive testing of solid bodies using mechanical vibrations
US3889166A (en) * 1974-01-15 1975-06-10 Quintron Inc Automatic frequency control for a sandwich transducer using voltage feedback
FR2288367A1 (fr) * 1974-10-17 1976-05-14 Oki Electric Ind Co Ltd Generateur d'onde ultra-sonore
JPS535661A (en) * 1976-07-03 1978-01-19 Nippon Soken Ultrasonic transmitting*receiving device
US4096756A (en) * 1977-07-05 1978-06-27 Rca Corporation Variable acoustic wave energy transfer-characteristic control device
DE2914031C2 (de) * 1979-04-06 1981-01-15 Siemens Ag, 1000 Berlin Und 8000 Muenchen Ultraschallwandler
NL7904924A (nl) * 1979-06-25 1980-12-30 Philips Nv Akoestische transducent.
FR2460489A1 (fr) * 1979-07-04 1981-01-23 Labo Electronique Physique Circuit de traitement des signaux de reception d'une mosaique de transducteur ultra-sonore utilisee en echographie de type b

Also Published As

Publication number Publication date
ES508116A0 (es) 1982-11-16
DE3149317C2 (ja) 1990-08-02
BE891559A (fr) 1982-06-21
BR8108285A (pt) 1982-10-05
ES8301365A1 (es) 1982-11-16
IL64585A (en) 1985-09-29
FR2496919B1 (ja) 1984-10-19
FR2496919A1 (fr) 1982-06-25
DE3149317A1 (de) 1982-07-22
GB2091877A (en) 1982-08-04
GB2091877B (en) 1984-07-18
US4446739A (en) 1984-05-08
AU7864681A (en) 1982-07-01
IL64585A0 (en) 1982-03-31
JPS57132056A (en) 1982-08-16
AU546958B2 (en) 1985-09-26
CA1178707A (en) 1984-11-27

Similar Documents

Publication Publication Date Title
CA1062802A (en) Signal processor for ultrasonic imaging
US9240814B2 (en) Ultrasonic receiver front-end
JPS5847027B2 (ja) 超音波パルス反響信号を判定する方法及び装置
US5298828A (en) Ultrasonic electroacoustic transducer
GB1588547A (en) Ultrasonic scanning apparatus
GB2064118A (en) Ultrasonic imaging system
US7596078B2 (en) Method and apparatus for reducing crosstalk in a structural health monitoring system
JPH0239741B2 (ja)
US6099472A (en) Ultrasonic diagnostic system using a nonlinearity of an examined body with respect to propagation of ultrasonic wave
US3365590A (en) Piezoelectric transducer
JPH05223925A (ja) 超音波変換器における反射を抑圧する装置および方法
US5062429A (en) Ultrasound imaging system probe with alternate transducer polling for common-mode noise rejection
US4532796A (en) Dual transducer connection by a single cable
JPS6319024B2 (ja)
JPS6226211B2 (ja)
EP0043048B1 (en) Comb filter
JP2004008684A (ja) 超音波診断装置
JPH03126441A (ja) 超音波診断装置
JP3303262B2 (ja) 超音波受信回路及びそれを用いた超音波診断装置
JPH0610966Y2 (ja) 超音波診断装置
SU1062599A1 (ru) Ультразвуковой дефектоскоп
JPS59162472A (ja) セクタ電子走査形超音波診断装置の反射波受信方式
JPH0649287Y2 (ja) 超音波診断装置
US4663745A (en) Circuit arrangement for separating high-frequency pulses generated by an acoustic reflecting lens arrangement
JPH0746115B2 (ja) 線路故障点検出装置