JPH0239679Y2 - - Google Patents
Info
- Publication number
- JPH0239679Y2 JPH0239679Y2 JP13330685U JP13330685U JPH0239679Y2 JP H0239679 Y2 JPH0239679 Y2 JP H0239679Y2 JP 13330685 U JP13330685 U JP 13330685U JP 13330685 U JP13330685 U JP 13330685U JP H0239679 Y2 JPH0239679 Y2 JP H0239679Y2
- Authority
- JP
- Japan
- Prior art keywords
- punch
- lower punch
- adapter
- plate
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000465 moulding Methods 0.000 claims description 14
- 238000006073 displacement reaction Methods 0.000 claims description 10
- 239000000843 powder Substances 0.000 claims description 5
- 238000005452 bending Methods 0.000 claims description 2
- 230000002093 peripheral effect Effects 0.000 claims description 2
- 238000004080 punching Methods 0.000 claims 1
- 238000001125 extrusion Methods 0.000 description 4
- 238000000748 compression moulding Methods 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229920006311 Urethane elastomer Polymers 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Description
【考案の詳細な説明】
〔産業上の利用分野〕
本考案は、段付き、或いはフランジ等についた
複雑な形状に粉末材料を圧縮成形する粉末成形用
ダイセツトにおける下パンチ機構の改良案に関す
る。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an improvement of the lower punch mechanism in a powder molding die set for compression molding powder material into a complicated shape with steps or flanges.
第3図に示す如き形状の複雑な成形品Aを圧縮
成形する際に、成形品の各部を一様な圧力(例え
ば4〜7ton/cm3)を加えて成形しようとすると、
例えば、図の場合3分割されて同心配置された下
パンチ1,2,3は、通常、外側のもの程内側の
パンチに比べて圧縮方向の長さが短かくなつてい
るため、各下パンチの成形圧による軸方向撓み量
(以下はこれを単に撓み量と云う)に差が生じこ
れが成形品に対して押出し時に亀裂を生じさせる
要因となる。
When compression molding a molded product A with a complicated shape as shown in FIG. 3, if you try to mold each part of the molded product by applying uniform pressure (for example, 4 to 7 tons/cm 3 ),
For example, in the case of the figure, lower punches 1, 2, and 3 are divided into three parts and arranged concentrically. Normally, the outer punches have shorter lengths in the compression direction than the inner punches, so each lower punch There is a difference in the amount of axial deflection (hereinafter referred to simply as the amount of deflection) due to the molding pressure, which causes cracks to occur in the molded product during extrusion.
そこで、従来は、パンチ長さの差による撓み量
の差を補正するため、基台4に支持される撓み量
の最も大きな下パンチ1を除く各下パンチ(図は
2と3)と、図示しないブロツクやサポートピン
を介して基台4に間接的に支持されてそれ等の下
パンチを支持する下パンチプレート5,6との間
にそれ等より低剛性のアダプタ7を介在し、この
アダプタの成形圧による撓みで下パンチ2,3の
撓み不足を補つて1,2,3の上面の樹方向変位
量を均一化し、下パンチの撓み量差に起因する亀
裂を防止していた。同図の8はキヤビテイのつい
たダイ、9はコアロツド、Bは上パンチを示して
いる。 Therefore, in order to correct the difference in the amount of deflection due to the difference in punch length, conventionally, each lower punch (2 and 3 in the figure) except the lower punch 1 which is supported by the base 4 and has the largest amount of deflection, and An adapter 7 having a lower rigidity than the lower punch plates 5 and 6 is interposed between the lower punch plates 5 and 6, which are indirectly supported by the base 4 through non-contact blocks and support pins, and supports the lower punches. The deflection caused by the molding pressure compensated for the lack of deflection of the lower punches 2 and 3, and the amount of displacement in the tree direction of the upper surfaces of the punches 1, 2, and 3 was made uniform, thereby preventing cracks caused by the difference in the amount of deflection of the lower punches. In the figure, 8 indicates a die with a cavity, 9 indicates a core rod, and B indicates an upper punch.
このほか、特開昭60−15099号に示されるよう
に、下パンチと下パンチプレートとの間にウレタ
ンゴム等の弾性体を装着して各下パンチの撓み量
を補正する技術も提案されている。 In addition, as shown in Japanese Patent Application Laid-Open No. 15099/1983, a technique has been proposed in which an elastic body such as urethane rubber is installed between the lower punch and the lower punch plate to correct the amount of deflection of each lower punch. There is.
しかしながら、従来採られている前者の方法で
は、外側の下パンチ、図の場合2と3の断面積が
大きくなると撓み量の差が拡大するためアダプタ
剛性を補正に必要な撓み量の生じるところまで下
げ得ないケースが生じてくる。即ち、撓み量を充
分とれるところ迄アダプタ剛性を肉厚を薄くする
などして下げると、成形圧を受けるのに必要な剛
性が不足してパンチに加わる力でアダプタが割れ
てしまうケースが出てくる。
However, in the former method that has been adopted conventionally, as the cross-sectional area of the outer lower punches (2 and 3 in the figure) increases, the difference in the amount of deflection increases. There will be cases where it cannot be lowered. In other words, if the rigidity of the adapter is lowered by reducing the wall thickness to a point where sufficient deflection can be obtained, the rigidity necessary to receive the molding pressure may be insufficient and the adapter may crack due to the force applied to the punch. come.
一方、特開昭60−15099号に示される技術は、
下パンチ機構を複雑にするだけでなく部品数も増
え、また、弾性体をパンチ周りに点在させるた
め、下パンチの直進性にも悪影響を及ぼすことが
考えられる。 On the other hand, the technology shown in JP-A-60-15099 is
This not only complicates the lower punch mechanism but also increases the number of parts, and since the elastic bodies are scattered around the punch, it is conceivable that the straightness of the lower punch will be adversely affected.
本考案は、上述の諸問題を無くすため、第1図
に示すように、軸方向寸法が最も長くて成形圧で
の軸方方向撓み量が最大となる最内側下パンチ1
を基台4で支持し、このパンチ1の外周に同心配
置する外側下パンチ2,3は基台に間接的に支持
される下パンチプレート5,6にアダプタ7を外
周支持の状態に取付けてそのアダプタの内周側で
支持し、かつ、アダプタ7は、その剛性を基台、
下パンチプレート、基台と下パンチプレート間の
プレート支持部材(上記ブロツクやサポートピ
ン)の剛性よりも小さくて成形圧には耐える大き
さにしてある下パンチ機構において、外側下パン
チ2,3とこれ等の支持用アダプタ7との間にそ
れぞれ下パンチと同心の円形状10aを有する7
よりも低剛性のプレート10を介在し、このプレ
ート10とアダプタ7との接合界面部に、円形穴
19a側に開放してその開放端から外側下パンチ
の支持領域外までパンチ軸方向寸法を次第に縮め
ながら同心円状に広がる隙間11を設け、設計上
求まる下パンチ1と外側下パンチとの間の成形圧
でのパンチ、アダプタの撓みによる軸方向上面積
変位量の差をδとしたとき、各外側下パンチ2,
3について隙間11の円形穴側開放端部における
軸方向寸法をそれぞれの外側下パンチについて求
まるδと一致させる。図は1と2との間に生じる
上面変位量の差がδ1、1と3との間に生じる上面
変位量の差がδ2と考えて2に対応する部分の隙間
の最大部寸法をδ1、3に対応する部分の隙間の最
大寸法をδ2にしている。
In order to eliminate the above-mentioned problems, the present invention has developed the innermost lower punch 1, which has the longest axial dimension and the maximum amount of axial deflection under forming pressure, as shown in Fig. 1.
is supported by a base 4, and the outer lower punches 2 and 3 are arranged concentrically around the outer periphery of the punch 1, and an adapter 7 is attached to the outer periphery of the lower punch plates 5 and 6, which are indirectly supported by the base. The adapter 7 is supported on the inner peripheral side of the adapter, and the adapter 7 has its rigidity as a base.
In the lower punch mechanism, which is smaller than the rigidity of the lower punch plate, the plate support member (the above-mentioned block and support pin) between the base and the lower punch plate, and is sized to withstand molding pressure, the outer lower punches 2 and 3 These supporting adapters 7 each have a circular shape 10a concentric with the lower punch.
A plate 10 having a lower rigidity than that of the plate 10 is interposed, and a circular hole 19a is opened at the joint interface between the plate 10 and the adapter 7, and the dimension in the punch axial direction is gradually increased from the open end to the outside of the support area of the outer lower punch. A gap 11 that expands concentrically while being compressed is provided, and when the difference in the axial upper area displacement due to the bending of the punch and adapter at the forming pressure between the lower punch 1 and the outer lower punch determined in the design is δ, each Lower outer punch 2,
For No. 3, the axial dimension at the open end on the circular hole side of the gap 11 is made to match δ determined for each outer lower punch. The figure shows the maximum dimension of the gap corresponding to 2, assuming that the difference in top surface displacement between 1 and 2 is δ 1 and the difference in top surface displacement between 1 and 3 is δ 2 . The maximum dimension of the gap in the portion corresponding to δ 1 and 3 is set to δ 2 .
なお、下パンチ1の成形圧による軸方向上面変
位量は、基台4の形成圧での軸方向撓み量が実質
0ならば、それ自身の軸方向撓み量で表わされ
る。一方、外側下パンチ2の上面変位量は、下パ
ンチプレートの撓みによる降下が0ならば、下パ
ンチ2自身の軸方向撓み量と2を支持したアダプ
タの軸方向撓み量の和となる。一般的なダイセツ
トの場合、基台や下パンチプレートについては、
成形圧での撓みが殆ど生じないように設計される
ので、隙間11の軸方向最大寸法は、1の撓み量
から2の撓み量とそれを支持したアダプタの撓み
量を差し引いた値に定めることになる。この考え
方はパンチ3についても同じである。 Note that, if the amount of axial deflection of the base 4 under the forming pressure is substantially 0, the amount of displacement of the upper surface in the axial direction due to the forming pressure of the lower punch 1 is expressed by the amount of axial deflection of the base 4 itself. On the other hand, the amount of displacement of the upper surface of the lower outer punch 2 is the sum of the amount of axial deflection of the lower punch 2 itself and the amount of axial deflection of the adapter supporting the lower punch 2, if the drop due to the deflection of the lower punch plate is zero. In the case of a general die set, the base and lower punch plate are
Since it is designed so that almost no deflection occurs due to molding pressure, the maximum axial dimension of the gap 11 should be determined by subtracting the deflection amount of 2 from the deflection amount of 1 and the deflection of the adapter that supported it. become. This idea is the same for Punch 3 as well.
なお、アダプタは成形圧に耐える剛性を付与す
ると軸方向撓み量が最内側下パンチと外側下パン
チの軸方向撓み量差より小さくなるので、上記δ
が負の値になることはない。 Note that if the adapter is given rigidity to withstand molding pressure, the amount of axial deflection will be smaller than the difference in the amount of axial deflection between the innermost lower punch and the outermost lower punch, so the above δ
is never a negative value.
ここで、例示の下パンチは、プレート10の円
形穴周りに円錐面10bを設けて隙間10bを設
けて隙間11を作り出しているが、隙間11は、
鎖線で示すように、アダプタ7に円錐面7aを設
けるか又はプレート10とアダプタ7の双方に円
錐面を付して作り出してもよい。 Here, in the illustrated lower punch, a conical surface 10b is provided around the circular hole of the plate 10, and a gap 10b is provided to create a gap 11.
As shown by the chain line, the adapter 7 may be provided with a conical surface 7a, or both the plate 10 and the adapter 7 may be provided with conical surfaces.
この構造によれば、補足撓み量のうち、必要剛
性の確保されたアダプタ7が補うことのできない
分をプレート10が補う。即ち、第2図(この図
の変形量は極端な例を示している)に示すよう
に、加圧時に外側下パンチ2とそれを支持したア
ダプタ7と2,7間のプレート10とが一体とな
つて撓み、(下パンチ3側も同じ)、隙間11が埋
めつくされることによつて軸方向寸法の短かい外
側下パンチ2,3の撓み量の不足分が補われる。
また、プレート10はアダプタ7に助けられて成
形圧による破壊が防止される。そして、加圧時に
撓んだ外側下パンチ2,3とアダプタ7及びプレ
ート10は、圧縮成形が終了して加圧が解除され
ると、各々の弾性力で元の状態に戻る。従つて、
各下パンチに一様な成形圧を加えても押出し時成
形品に亀裂を生じさせる心配がない。 According to this structure, the plate 10 compensates for the amount of supplementary deflection that cannot be compensated for by the adapter 7, which has the required rigidity. That is, as shown in FIG. 2 (the amount of deformation in this figure shows an extreme example), when pressurizing, the outer lower punch 2, the adapter 7 that supported it, and the plate 10 between 2 and 7 are integrated. As a result, the gap 11 is completely filled (the same applies to the lower punch 3 side), thereby compensating for the lack of deflection of the outer lower punches 2 and 3, which are shorter in the axial direction.
Further, the plate 10 is prevented from being destroyed by the molding pressure with the help of the adapter 7. Then, when the compression molding is completed and the pressure is released, the lower outer punches 2 and 3, the adapter 7, and the plate 10, which are bent during pressurization, return to their original states by their respective elastic forces. Therefore,
Even if uniform molding pressure is applied to each lower punch, there is no fear of cracks occurring in the molded product during extrusion.
また、隙間11は、プレート10やアダプタ7
に円錐面をつけるだけで簡単に作り出せるので、
下パンチ機構を複雑にすることもない。 In addition, the gap 11 is formed between the plate 10 and the adapter 7.
It can be easily created by simply adding a conical surface to the
There is no need to complicate the lower punch mechanism.
さらに、プレート10に円錐面をつけて隙間を
作り出した場合には特に、プレート10を交換す
るだけで隙間の大きさを変化させ得るので、下パ
ンチの長さの変化にも容易に対応できる。 Furthermore, especially when the plate 10 is provided with a conical surface to create a gap, the size of the gap can be changed simply by replacing the plate 10, so changes in the length of the lower punch can be easily accommodated.
なお、以上の説明は、外側下パンチを2,3の
2個とし、内側の下パンチを含めて下パンチ機構
を計3個の下パンチで構成するものを想定して行
つたが、この考案は、下パンチ機構が同心的に配
置される2個以上の下パンチを組合せて構成され
るにも適用される。 The above explanation was made assuming that the outer lower punches are two, 2 and 3, and the lower punch mechanism is composed of a total of three lower punches, including the inner lower punch. This also applies to the case where the lower punch mechanism is constructed by combining two or more lower punches arranged concentrically.
以下、第4図を参照してプレート10の剛性と
隙間11の大きさの簡単な計算実例を示す。ここ
では、パンチ1も2と同様に同一材質の熱処理合
金鋼板の円板で支持すると仮定している。1の支
持円板は20,2の支持円板は30の符号を付し
た。パンチ1は全長=L、撓み量=△L、パンチ
2は全長=l、撓み量△l、円板30は厚み=
h1、撓み量=We、円板20は厚みh2、撓み量=
WLとする。軸方向、及び径方向の寸法諸元は図
に記した。 A simple calculation example of the rigidity of the plate 10 and the size of the gap 11 will be shown below with reference to FIG. Here, it is assumed that the punch 1 is also supported by a disk made of a heat-treated alloy steel plate made of the same material as the punch 2. The support disk 1 is numbered 20, and the support disk 2 is numbered 30. Punch 1 has a total length of L, deflection amount = △L, punch 2 has a total length of 1, deflection amount △L, and the disc 30 has a thickness of △L.
h 1 , amount of deflection = W e , thickness of the disk 20 h 2 , amount of deflection =
Let it be W L. The axial and radial dimensions are shown in the figure.
このように、円板20,30の内周に圧力が加
わるとすると、
パンチ2の撓みは△l=l・P/E
円板30の撓みはWe=αq1P・S1・a1 2/Eh1 3
円板30の応力はσe=βq1P・S1/h1 3
ここで、円板30については、受圧面積S1=
π/4(702−602)=1021mm2、E(ヤング率)=21000
Kg/mm2、2a1=100、2b1=60、b1/a1での撓み係
数αq1と応力係数βq1は、機械設計便覧P765の図
6,54、図6,58より、σe=40.0Kg/mm2、円
板20のそれは同様の式から▽L=0.83、WL=
0.05、σL=102Kg/mm2となる。従つて、このよう
に設計できれば、各円板は撓み、応力が共に充分
に小さくて破損しない。しかし、これでは1と2
の上面変位量の差がδ=△L+WL−(△l+We)
=0.51と大きいため押出し時成形品に亀裂が生じ
る。そこで、この差δをWeを増加させて吸収し
ようとすると、
まで、板厚h1を薄くする必要が生じ、このときの
σeは215Kg/mm2となつて30が破損する。 Assuming that pressure is applied to the inner periphery of the disks 20 and 30 in this way, the deflection of the punch 2 is △l=l・P/E The deflection of the disk 30 is W e =α q1 P・S 1・a 1 2 /Eh 1 3The stress of the disk 30 is σ e =β q1 P・S 1 /h 1 3Here , for the disk 30, the pressure receiving area S 1 =
π/4 (70 2 - 60 2 ) = 1021 mm 2 , E (Young's modulus) = 21000 Kg/mm 2 , 2a 1 = 100, 2b 1 = 60, deflection coefficient α q1 and stress coefficient at b 1 /a 1 β q1 is calculated from Figures 6, 54 and 6, 58 of Machine Design Handbook P765, σ e = 40.0Kg/mm 2 , and that of disk 20 is calculated from the same formula as ▽L = 0.83, W L =
0.05, σ L =102Kg/mm 2 . Therefore, if the design can be made in this manner, each disk will have a sufficiently small amount of deflection and stress and will not be damaged. However, in this case, 1 and 2
The difference in top surface displacement is δ=△L+W L −(△l+W e )
= 0.51, which causes cracks in the molded product during extrusion. Therefore, if we try to absorb this difference δ by increasing W e , we get It becomes necessary to reduce the plate thickness h 1 until the plate thickness h 1 becomes thinner, and at this time σ e becomes 215 Kg/mm 2 and 30 is damaged.
そこで、2と30の間に図のようにt=10、外
径100、内径60、δ0.51の隙間をもつプレート10
を入れてやると、2b/2a=0.6より10の撓み、
応力係数はαq=0.6、βq=1.4であるので、
σ′=0.6×P×502/21000×103
から、相当圧力P=7700Kgでプレート10がδ+
Weの分だけ撓み、しかも、そのプレートの応力
はσ=107.8Kg/mm2となる。即ち、パンチ端面に
加わる力S1・P=71.5×103Kgに対し、円板30
をh1=50mmのままこわすことなく、また、プレー
ト10もこわれることなく下パンチ上面の成形圧
による軸方向上面変位量差を調整することができ
る。 Therefore, as shown in the figure, a plate 10 with a gap of t=10, outer diameter 100, inner diameter 60, and δ0.51 between 2 and 30
If we include 2b/2a=0.6, we get a deflection of 10,
Since the stress coefficients are α q = 0.6 and β q = 1.4, from σ′ = 0.6 × P × 50 2 /21000 × 10 3 , plate 10 becomes δ+ at equivalent pressure P = 7700 Kg.
The plate is deflected by We, and the stress on the plate is σ=107.8Kg/ mm2 . That is, for the force S 1・P = 71.5×10 3 Kg applied to the punch end face, the force of the disk 30
It is possible to adjust the difference in displacement of the upper surface in the axial direction due to the molding pressure on the upper surface of the lower punch without breaking the plate 10 while keeping h 1 =50 mm.
以上述べたように、本考案によれば、同心配置
された複数の下パンチのうち、外側に位置する下
パンチと、そのパンチの撓み量不足を補うために
下パンチプレートとの間に介在したアダプタとの
間にプレートを設け、このプレートとアダプタと
の間に隙間を設けてアダプタが補い得ない撓み量
を上記プレートの撓みによつて確保するようにし
たので、アダプタの必要剛性を確保して各パンチ
の加圧時の撓みによる上面変位量を均一化するこ
とができ、従つて押出し時にこの圧力の開放によ
るパンチのスプリングの差によつて成形品に異常
な圧力が生ずることが回避され、異常圧力に起因
した成形品の亀裂発生が防止される。
As described above, according to the present invention, among the plurality of lower punches arranged concentrically, a lower punch located on the outside and a lower punch plate interposed between the lower punch and the lower punch plate to compensate for the lack of deflection of that punch. A plate is provided between the adapter and the adapter, and a gap is provided between the plate and the adapter so that the amount of deflection that cannot be compensated for by the adapter is ensured by the deflection of the plate, thereby ensuring the necessary rigidity of the adapter. This makes it possible to equalize the amount of upper surface displacement due to the deflection of each punch when pressurized, and therefore avoids generating abnormal pressure on the molded product due to differences in the springs of the punches due to the release of this pressure during extrusion. , cracks in molded products caused by abnormal pressure are prevented.
また、プレートとアダプタ間の隙間は、上述し
たように簡単に作り出せるため、下パンチ機構を
複雑化させることがなく、さらに、プレートは全
周において下パンチを支持しているので下パンチ
の直進性を悪化させることもない。 In addition, since the gap between the plate and the adapter can be easily created as described above, the lower punch mechanism is not complicated.Furthermore, since the plate supports the lower punch around the entire circumference, the lower punch can move in a straight line. It does not make things worse.
このほか、プレート又はアダプタを交換するだ
けで隙間の大きさを変化させられるので、パンチ
長さの変化に対処することも容易である。 In addition, since the size of the gap can be changed simply by replacing the plate or adapter, it is also easy to deal with changes in punch length.
第1図は本考案の一実施例を示す無負荷状態の
断面図、第2図はその加圧時の断面図、第3図は
従来の下パンチ機構の一例を示す要部断面図、第
4図はδとプレート剛性を求めるための計算実例
を示す図である。
1……最内側下パンチ、2,3……外側の下パ
ンチ、4……基台、5,6……下パンチプレー
ト、7……アダプタ、7a……円錐面、10……
プレート、10a……円形穴、10b……円錐
面、11……隙間。
Fig. 1 is a cross-sectional view of an embodiment of the present invention in an unloaded state, Fig. 2 is a cross-sectional view of the pressurized state, Fig. 3 is a cross-sectional view of essential parts showing an example of a conventional lower punch mechanism, and Fig. FIG. 4 is a diagram showing an example of calculation for determining δ and plate rigidity. 1... Innermost lower punch, 2, 3... Outer lower punch, 4... Base, 5, 6... Lower punch plate, 7... Adapter, 7a... Conical surface, 10...
Plate, 10a...Circular hole, 10b...Conical surface, 11...Gap.
Claims (1)
ち、軸方向寸法が最も長くて成形圧での軸方向
撓み量が最大となる最内側下パンチを基台で支
持し、最内側下パンチの外周に同心配置するn
個(n≧1)の外側下パンチは基台に間接的に
支持される基台上方のn個の下パンチプレート
にそれぞれアダプタを外周支持の状態に取付け
てそのアダプタの内周側で支持し、かつ、アダ
プタは、その剛性を基台、下パンチプレート、
基台と下パンチプレート間のプレート支持部材
の剛性より小さくて成形圧には耐える大きさに
して成形圧での軸方向撓み量が最内側下パンチ
と外側下パンチの軸方向撓み量差よりも小に保
たれるようにしてある粉末成形用ダイセツトの
下パンチ機構において、 外側下パンチとこれを支持するアダプタとの
間に下パンチと同心の円形穴を有するアダプタ
よりも低剛性のプレートを介在し、このプレー
トとアダプタの接合界面部に上記円形穴に開放
してその開放端から外側下パンチの支持領域外
までパンチ軸方向寸法を次第に縮めながら同心
円状に広がる隙間を設け、設計上求まる最内側
下パンチと外側下パンチの成形圧でのパンチ、
アダプタの撓みによる軸方向上面変位量の差を
δとしたとき、各外側下パンチについて上記隙
間の円形穴側開放端部における軸方向寸法をそ
れぞれの外側下パンチについて求まるδと一致
させたことを特徴とする粉末成形用ダイセツト
における下パンチ機構。 (2) 上記隙間が、プレート又はアダプタもしくは
その両者の接合面に円錐面を設けて作り出され
ていることを特徴とする実用新案登録請求の範
囲第(1)項記載の粉末成形用ダイセツトにおける
下パンチ機構。[Scope of Claim for Utility Model Registration] (1) Among the plurality of lower punches opposed to the upper punch, the innermost lower punch, which has the longest axial dimension and the maximum amount of axial deflection under forming pressure, is used as the base. n
The outer lower punches (n≧1) are each attached with an adapter supported on the outer periphery of the n lower punch plates above the base, which are indirectly supported by the base, and are supported on the inner peripheral side of the adapter. , and the adapter uses its rigidity as the base, the lower punch plate,
The rigidity of the plate support member between the base and the lower punch plate is smaller than the rigidity of the plate supporting member, and the size is strong enough to withstand the molding pressure, so that the amount of axial deflection under the molding pressure is greater than the difference in the amount of axial deflection between the innermost lower punch and the outer lower punch. In the lower punch mechanism of a powder compacting die set that is kept small, a plate with lower rigidity than the adapter having a circular hole concentric with the lower punch is interposed between the outer lower punch and the adapter that supports it. Then, at the joint interface between this plate and the adapter, a gap is provided that opens into the circular hole and expands concentrically from the open end to outside the support area of the outer lower punch while gradually reducing the dimension in the punch axis direction. Punching with forming pressure of inner lower punch and outer lower punch,
Letting δ be the difference in the amount of displacement of the upper surface in the axial direction due to the bending of the adapter, the axial dimension at the open end on the circular hole side of the above gap for each lower outer punch is made to match δ determined for each lower outer punch. Features a lower punch mechanism in a die set for powder molding. (2) The lower part of the die set for powder molding according to claim (1) of the utility model registration claim, wherein the gap is created by providing a conical surface on the joint surface of the plate, the adapter, or both. Punch mechanism.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13330685U JPH0239679Y2 (en) | 1985-08-29 | 1985-08-29 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13330685U JPH0239679Y2 (en) | 1985-08-29 | 1985-08-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6241498U JPS6241498U (en) | 1987-03-12 |
JPH0239679Y2 true JPH0239679Y2 (en) | 1990-10-24 |
Family
ID=31033500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13330685U Expired JPH0239679Y2 (en) | 1985-08-29 | 1985-08-29 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0239679Y2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5674039B2 (en) * | 2011-05-31 | 2015-02-18 | 住友電工焼結合金株式会社 | Powder molding equipment |
-
1985
- 1985-08-29 JP JP13330685U patent/JPH0239679Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS6241498U (en) | 1987-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4198037A (en) | Method of making polyester elastomer compression spring and resulting product | |
KR100316196B1 (en) | Isolation Device and Isolation System | |
EP1325784B2 (en) | Method of making a metallic bellows | |
JPWO2015125723A1 (en) | Press molding method, press product manufacturing method, and press molding apparatus | |
JPH0239679Y2 (en) | ||
US4573335A (en) | Hydraulic press with pressure cell | |
JP3985606B2 (en) | Manufacturing equipment and manufacturing method for press-formed products | |
JP2001137997A (en) | Method and apparatus for die-forging | |
JP4711426B2 (en) | Rubber spring device for articulated dump truck | |
JP4061818B2 (en) | Seismic isolation device | |
CN218646741U (en) | Steel pipe restraint UHPC post axle pressure bearing capacity test device | |
CN110621503B (en) | Tool set with offset compensation | |
JP4467071B2 (en) | Powder mold equipment | |
JPH07278607A (en) | Powder molding method using segmental die | |
JP2010207907A (en) | Pressing method and device | |
WO2001054958A1 (en) | Resilient member for railway vehicle side bearings and method of manufacture thereof | |
JP2021041447A (en) | Manufacturing device and manufacturing method of hat-shaped cross section component having curvature protrusion part | |
JPH0633801B2 (en) | Stretchable connecting material and manufacturing method thereof | |
KR790001637B1 (en) | Dies | |
JPS6015099A (en) | Die set for powder molding | |
JPS62161499A (en) | Molding method with rubber press | |
JP5642403B2 (en) | Molding method and molded body of plate workpiece | |
JPH10310803A (en) | Powder compacting device | |
RU1822380C (en) | Device for fastening the moulds | |
EP4349505A1 (en) | Method for joining members, and composite elastic body used in said method |