JPH0239537B2 - FUKINSHITSUTAKOMAKUNOSEIZOHO - Google Patents

FUKINSHITSUTAKOMAKUNOSEIZOHO

Info

Publication number
JPH0239537B2
JPH0239537B2 JP14363481A JP14363481A JPH0239537B2 JP H0239537 B2 JPH0239537 B2 JP H0239537B2 JP 14363481 A JP14363481 A JP 14363481A JP 14363481 A JP14363481 A JP 14363481A JP H0239537 B2 JPH0239537 B2 JP H0239537B2
Authority
JP
Japan
Prior art keywords
membrane
hollow fiber
mol
water
eva
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14363481A
Other languages
Japanese (ja)
Other versions
JPS5845239A (en
Inventor
Shiro Osada
Toshio Oono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP14363481A priority Critical patent/JPH0239537B2/en
Publication of JPS5845239A publication Critical patent/JPS5845239A/en
Publication of JPH0239537B2 publication Critical patent/JPH0239537B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、高い透水性とすぐれた分画性を有す
るポリビニルアルコール(以下PVAと記す。)系
重合体不均質多孔膜の製造法に関する。 従来より医療用およ工業用の透析膜や限外過
膜あるいは、超精密過膜等ミクロフイルターと
してセルロース系膜、合成膜等数多くの膜が開発
されている。本発明者らは、極めて特異な親水特
性を有し、各種機械的性質および耐久性、化学的
安定性にすぐれ、しかも医療材料として欠くこと
の出来ない要素である生体親和性や抗溶血性、抗
血栓性に関してもすぐれた特性が期待出来る
PVA系重合体膜について鋭意研究を重ねてきた。 例えば、エチレン―ビニルアルコール系共重合
体(以下EVAと記す。)を用いた均質多孔構造か
らなるEVA透析膜についてはすでに特公昭56−
1122号に見られ、またそのEVA中空繊維膜にい
ては既に開発に成功し、人工腎臓用として重用さ
れつつある。この種、人工腎臓用透析膜として
は、適度の透水性と高い尿毒素物質透過性が必要
とされ、適性膜構造について数多くの凝固膜発現
要因を厳密に制御しつつ、複雑きわまりない各種
要因を逐次突明していつた結果、結局、比較的緩
慢な条件下で湿式成膜して得られた上記均質構造
タイプが有効であつた。 他方、医療用途も含め一般過用膜、とくに限
外過膜としては、これとは異なり、可能な限り
高い透水性と明確な分画性が必要とされ、その為
適正膜構造も、おのずから異なる。この種膜構造
として一般に、膜表皮に極薄活性緻密層を有し、
かつ内部が疎な空隙構造からなる不均質多孔構造
膜が有効であることは周知の通りである。 ところで本発明でいうPVA系重合体について
は、この種不均質構造タイプの膜素材として未だ
充分な検討がなされておらず、例えば特開昭55−
35969の方法では、安定に均一な活性緻密層を形
成せしめることが難しく、一定分画性能に対する
達成透水性が低く、透水性を高く設定すると、分
画サイズが大巾に大きい側にずれ、分画性自体甘
くなり、逆に分画性を向上させるべく条件変更す
ると、透水性が著しく低下せざるをえないといつ
た難点があつた。 そこで本発明者らは、製膜原液あるいは凝固系
全般にわたり、第二、第三成分を添加することに
より膜構造発現にどのような影響があるかについ
て詳細究明し、分画性のシヤープな活性緻密層を
形成し、かつ内部が疎な不均質多孔膜の製造法に
ついて鋭意検討を加えた。その結果、実質的に水
不溶性のPVA系重合体をジメチルスルホキシド
に溶解し、この重合体溶液をM―Xで示される塩
を有する水溶液からなる凝固媒体中で製膜するこ
とにより、高い透水性と同時にシヤープな分画性
を有する不均質多孔膜が得られることを見出し、
本発明に到つた。 本発明における膜構成原素材としては、実質的
に水不溶性で、かつジメチルスルホキシドに可溶
性のPVA系重合体が好適に用いられる。ここで
いう実質的に水不溶性のPVA系重合体とは具体
的にはエチレン含有量が10〜70モル%、好ましく
は15〜60モル%で、かつケン化度が80%以上の
EVA、炭素数が3〜20のα・オレフイン(α・
オレフイン含有量はエチレン単位換算で10〜70モ
ル%、好ましくは15〜60モル%)―ビニルアルコ
ール系共重合体、エチレン、α・オレフイン以外
の疎水性単量体{たとえば塩化ビニル、「Veova」
The present invention relates to a method for producing a polyvinyl alcohol (hereinafter referred to as PVA) polymer heterogeneous porous membrane having high water permeability and excellent fractionability. Many membranes such as cellulose-based membranes and synthetic membranes have been developed as microfilters such as dialysis membranes, ultrafiltration membranes, and ultra-precision membranes for medical and industrial use. The present inventors have discovered that it has extremely unique hydrophilic properties, excellent mechanical properties, durability, and chemical stability, as well as biocompatibility and anti-hemolytic properties, which are essential elements for medical materials. It can also be expected to have excellent antithrombotic properties.
We have been conducting intensive research on PVA-based polymer membranes. For example, an EVA dialysis membrane with a homogeneous porous structure using an ethylene-vinyl alcohol copolymer (hereinafter referred to as EVA) has already been published in
No. 1122, and its EVA hollow fiber membrane has already been successfully developed and is being used extensively for artificial kidneys. This type of dialysis membrane for artificial kidneys requires moderate water permeability and high permeability to uremic toxins, and while strictly controlling the many factors that develop the coagulation membrane to ensure an appropriate membrane structure, various factors that are extremely complex must be carefully controlled. As a result of successive efforts, the above-mentioned homogeneous structure type obtained by wet film formation under relatively slow conditions was found to be effective. On the other hand, membranes for general use, including medical applications, and ultrafiltration membranes in particular, require as high a water permeability as possible and a clear fractionation property, and therefore the appropriate membrane structure is naturally different. . This kind of membrane structure generally has an extremely thin active dense layer on the membrane epidermis,
It is well known that a membrane with a heterogeneous porous structure having a sparse internal pore structure is effective. By the way, the PVA-based polymer referred to in the present invention has not yet been sufficiently studied as a material for membranes with this type of heterogeneous structure.
With the method of 35969, it is difficult to form a stable and uniform active dense layer, and the water permeability achieved for a given fractionation performance is low. The problem was that the imageability itself was poor, and when conditions were changed to improve the fractionation, the water permeability had to drop significantly. Therefore, the present inventors conducted a detailed investigation into the effect on membrane structure development by adding second and third components to the membrane-forming stock solution or the entire coagulation system, and found We conducted extensive research on a method for manufacturing a heterogeneous porous membrane that forms a dense layer and has a sparse interior. As a result, by dissolving a substantially water-insoluble PVA polymer in dimethyl sulfoxide and forming a film from this polymer solution in a coagulation medium consisting of an aqueous solution containing a salt represented by M-X, high water permeability was achieved. At the same time, we discovered that a heterogeneous porous membrane with sharp fractionation properties could be obtained.
We have arrived at the present invention. As the membrane constituent raw material in the present invention, a PVA-based polymer that is substantially water-insoluble and soluble in dimethyl sulfoxide is suitably used. Specifically, the substantially water-insoluble PVA polymer mentioned here has an ethylene content of 10 to 70 mol%, preferably 15 to 60 mol%, and a saponification degree of 80% or more.
EVA, α-olefin with 3 to 20 carbon atoms (α-olefin
Olefin content is 10 to 70 mol%, preferably 15 to 60 mol% in terms of ethylene units) - hydrophobic monomers other than vinyl alcohol copolymers, ethylene, and α-olefins (e.g., vinyl chloride, "Veova")

【式】ここでR1、R2、R3は C1〜C20のアルキル基}―ビニルアルコール系共
重合体、ホルムアルデヒド、アセトアルデヒド、
グルタルアルデヒドなどの各種モノまたは多価ア
ルデヒドによるアセタール化変性PVA(たとえば
ポリビニルホルマール、ホルマール化EVA)、さ
らには高分子反応を利用した各種エーテル化、エ
ステル化変性PVAなどを意味し、またこれらの
混合物も使用可能である。これらのうち後述する
実施例に示すとおりEVAが好適である。 本発明において用いられるEVAはランダム、
ブロツク、グラフトいずれの共重合体でもよい
が、エチレン含有量としてはその含有量が10モル
%以下では湿潤時の機械的性質が不充分となり、
また溶出物の増大があるので好ましくは、また70
モル%以上では生体親和性および透過性が低下す
るので好ましくない。したがつて、10〜70モル%
なかでも15〜60モル%が好ましい。このような
EVAはPVAと異なり、溶出物が非常に少ないの
が特長であり、メデイカル分野では血液透析膜素
材に適している。EVAのケン化度としては80モ
ル%以上なければ、湿潤時の機械的性質の点で不
充分となり、さらに95モル%以上が好ましい。通
常はケン化度99モル%以上の実質的に完全ケン化
のものが用いられる。EVAとしては例えば、メ
タクリル酸、ビニルクロライド、メチルメタクリ
レート、アクリロニトリル、ビニルピロリドンな
どの共重合可能な重合性単量体が15モル%以下の
範囲で共重合されていてもよく、また製膜前もし
くは製膜後においてEVAを硼素化合物等の無機
架橋剤あるいはジイソシアナート、ジアルデヒド
などの有機架橋剤などにより処理することによ
り、架橋が導入されたものあるいはビニルアルコ
ール単位の官能性水酸基が30モル%以内におい
て、ホルムアルデヒド、アセトアルデヒド、ブチ
ルアルデヒド、ベンズアルデヒドなどのアルデヒ
ドでアセタール化されたものも含まれる。本発明
に用いられるEVAは粘度測定〔濃度3重量%の
ジメチルスルホキシド溶液(温度30℃)をB型粘
度計で粘度を測定する。〕により得られる値が1.0
〜50センチポイズの範囲にあるものを用いること
が好ましい。これにより粘度が低い、すなわち重
合度が低いところでは膜として必要な機械的性能
が得られなく、また、これより粘度が高いと製膜
が難しくなる。 これらのPVA系重合体、とくにEVAの溶媒と
してはジメチルスルホキシドが好適でありこれを
用いる。ジメチルスルホキシドに他種溶媒、例え
ばアセトン、メタノール、エタノール、プロパノ
ール、イソプロパノール、水、メチルピロリド
ン、ジメチルアセトアミド、ジメチルホルムアミ
ドなどを一部混合して用いることもできるが、そ
の混合割合については本発明で用いるM―Xで示
される塩からなる凝固助剤の効果をそこなうこと
のない程度にすべきである。原液中のPVA系重
合体濃度としては10〜30重量%、好ましくは15〜
25%である。この範囲より高濃度では、膜性能時
に透水性が著しく低く、使用に耐えず、また、こ
の範囲より低濃度では、製膜性が悪い。製膜時の
原液温度は、通常10〜100℃、好ましくは、20〜
80℃の範囲である。この範囲外では所望の不均質
構造の発現が難しく、透過特性がそこなわれる。 本発明における凝固媒体とは、M―Xで示され
る塩を凝固助剤として単独ないし二種以上含有す
る水溶液をいう。ここでM―XはMが周期律表第
、第族元素、好ましくはカルシユウム、マグ
ネシユウム、亜鉛、アルミニユウムなどを、Xは
ブレンステツド(Bro¨nstead)酸残基、好ましく
はハロゲンを意味し、かつ、M―Xの20℃の水に
対する溶解度が少なくとも0.5g/dl、好ましく
は1.0g/dl以上であるものをいう。これ以下の
低溶解性塩では、効果の発現が難しく、使用に適
さない。また第、族元素のうちでも水銀、カ
ドミユウム等の為害性の強い元素は実用に耐えな
い。M―Xの具体例としては、塩化カルシユウム
(CaCl2)、臭化カルシユウム(CaBr2)、沃化カル
シユウム(CaI2)、塩化マグネシユウム
(MgCl2)、臭化マグネシユウム(MgBr2)、沃化
マグネシユウム(MgI2)、塩化亜鉛(ZnCl2)、臭
化亜鉛(ZnBr2)、沃化亜鉛(ZnI2)、塩化銅
(CuCl2)、臭化銅(CuBr2)、塩化アルミニユウム
(AlCl3)、臭化アルミニユウム(AlBr3)、硫酸亜
鉛(ZnSO4)、硫酸アルミニウム(Al2(SO43)、
硫酸マグネシウム(MgSO4)などである。この
うち塩化カルシユウムが最適である。M―Xの適
正使用濃度範囲は一義的に定することはできず、
原液濃度、原液温度、凝固媒体の温度など他要因
との相関において所望の分画サイズを発現すべき
決定されるが、大旨M―Xの凝固媒体中の濃度は
5〜30重量%、好ましくか5〜20重量%である。
該凝固助剤を含む凝固媒体としては水系が好まし
いが、一部メチルアルコール、エチルアルコー
ル、プロパノール、イソプロパノールなどの各種
アルコール類、ジメチルスルホキシド、メチルピ
ロリドン、ジメチルアセトアミド、ジメチルホル
ムアミド、アセトン、メチルエチルケトン、酢酸
エステル等の有機溶剤を一部併用することもでき
る。 本発明の製膜法は、膜形状として、平膜、チユ
ーブ状膜、中空繊維状膜、支持体との複合膜等い
ずれの製造にも適用できるが、本発明の方法はと
くに中空繊維膜の製造に有用である。平膜として
は膜厚3〜2000μ程度、中空繊維膜としては外径
40〜3000μ、より好ましくは100〜2000μ、膜厚は
3〜1000μ、より好ましくは10〜500μ程度であ
る。中空繊維膜の紡糸においては前記凝固媒体を
中空形成用中空繊維膜内注入液としてのみ用い、
凝固浴として通常のもの(水または水とジメチル
スルホキシドの混合液など)を用いて紡糸するこ
とができる。この場合は中空繊維膜の内面に活性
緻密層が形成される。また該凝固媒体を中空繊維
膜内注入液のみならず、凝固浴液に用いれば、内
外層表面に活性緻密層を有する中空繊維膜が得ら
れる。さらにまた中空繊維膜内に窒素などの不活
性ガスを導入し、凝固浴に該凝固媒体を用いれ
ば、外層表面に活性緻密層を有する中空繊維膜が
得られる。 本発明の製膜法としては原液吐出口であるダイ
スないし、ノズルを出た原液が直ちに凝固浴に浸
る湿式法の他に原液が一度空中通過後凝固浴に浸
るいわゆる乾湿式法をも適用することができる。 凝固温度は通常0〜40℃、好ましくは10〜35℃
の範囲が適当である。この範囲より低温では、充
分な膜特性、とくに透水性がえられず、より高温
では紡糸安定性が悪く性能も劣る。 このようにして得られた膜は、走査型電子顕微
鏡により観察の結果、第1図および第2図から明
らかなように該凝固媒体との接触した側に極く薄
い均一な活性緻密層が存在し、また反対側の膜の
内部は疎な空隙層(フインガーライク状のボイド
層)からなる良好ないわゆる限外過膜タイプの
不均質多孔構造を有することが確認された。また
得られた膜の分画分子量は1万〜60万、好ましく
は4万〜40万であり、この範囲内においてシヤー
プな分画性を有している。 さらにこのようにして得られた膜を延伸、熱処
理などの後処理を施すことによりその膜構造をよ
り安定化させることができる。 また得られたPVA系膜は前述のEVAの説明の
項で説明したとおり、必要に応じて硼素化合物等
の無機架橋剤あるいはイソシアナート、アルデヒ
ド等の官能基を有する有機架橋剤により、更には
放射線照射等の手段による架橋導入等により、改
質を行なうことが可能であり、これにより特に機
械的諸特性の向上が期待できる。 本発明により得られる膜は一般限外過用はも
とより、生体液過、例えば過型人工腎、腹胸
水蛋白濃縮あるいは、生体中蛋白成分分画用膜
(たとえば血漿処理用分画用膜)として活用でき
る。 以下実施例により本発明をさらに説明する。 実施例 1 エチレン―酢酸ビニル共重合体けん化物(エチ
レン含量31モル%、ケン化度99.9モル%)220g
をジメチルスルホキシド780gに90℃にて溶解後、
60℃にて静置脱泡した。この原液を用いてホツト
プレート上においたガラス板上にキヤステイング
し、20℃に調整したCaCl2の10%水溶液(CaCl2
の20℃の水に対する溶解度83g/dl)中にガラス
板ごと浸漬し、湿式凝固すると、白色膜がえられ
た。得られた膜の断面を走査型電子顕微鏡で観察
の結果、自由表面側に明確な活性緻密層が認めら
れた。この膜の牛血清アルブミン阻止率は98%と
分画性はシヤーープで、しかも透水性は112ml/
m2.hr.mmHgと高水準を示した。 実施例 2 エチレン―酢酸ビニル共重合体けん化物(エチ
レン含量40モル%、ケン化度98モル%)250gを
ジメチルスルホキシド720g、水30gの混合溶媒
にとかし、これを原液として以下の中空繊維紡糸
を行なつた。 ノズルとしては「化繊ノズル社」製の単孔タイ
プを用い、原液押し出し部分の内径600μ、外径
1200μのものを用いた。原液温度は50℃に保持
し、中空内注入液としては15℃のCaCl2の10%水
溶液を、凝固浴には、20℃に調製した水を用い
た。原液移送速度はギヤポンプ吐出量5ml/min
とし、離浴糸速は、8m/minで湿式紡糸した。
得られた中空繊維膜は外径950μ、内径500μであ
り、ほぼ完全な真円の断面形状を示していた。得
られた中空繊維膜の断面構造を走査型電子顕微鏡
写真により調べた。その電子顕微鏡写真を第1〜
第2図に示す。 第1図:倍率450の断面図であり、内層部は疎
な構造でフインガーライクなボイド層が見られ内
表面には緻密な活性層が、また外表面には多孔層
のあることがわかる。 第2図:倍率9000の内表面側の断面図であり、
内表面には緻密層のあることが明白にわかる。こ
の中空繊維膜を小型モジユールに組み込み性能測
定の結果、透水性は105ml/m2 hrmmHg片血清ア
ルブミン阻止率は98%と分画性はシヤープであつ
た。 比較例 1 実施例1と同様の条件で凝固浴に蒸留水のみを
用いた場合得られた膜の牛血清アルブミン阻止率
65%、分水性120ml/m2.hr.mmHgとなり、一定
の透水性に対する蛋白分画性は著しく劣つてい
た。 実施例 3 実施例2と同じ条件下、ノズルとして内径
400μ、外径800μのものを使用し、凝固浴にも、
中空内注入液と同じCaCl210%水溶液を用いた。
えられた中空繊維膜は走査型電子顕微鏡観察によ
り内外表皮層に緻密層が認められた。透過特性は
蛋白阻止率98〜99%で良好だが、透水率が95ml/
m2.hr.mmHgとやや低かつた。
[Formula] Here, R 1 , R 2 , and R 3 are C 1 to C 20 alkyl groups}-vinyl alcohol copolymer, formaldehyde, acetaldehyde,
It means acetalized modified PVA (e.g. polyvinyl formal, formalized EVA) with various mono- or polyvalent aldehydes such as glutaraldehyde, various etherified and esterified modified PVA using polymer reactions, and mixtures thereof. is also available. Among these, EVA is preferred as shown in the examples described later. The EVA used in the present invention is random,
Either block or graft copolymers may be used, but if the ethylene content is less than 10 mol%, the mechanical properties when wet will be insufficient.
In addition, since there is an increase in eluate, it is preferable that 70
If the amount exceeds mol%, biocompatibility and permeability decrease, which is not preferable. Therefore, 10-70 mol%
Among these, 15 to 60 mol% is preferable. like this
Unlike PVA, EVA is characterized by very little eluate, making it suitable as a hemodialysis membrane material in the medical field. If the degree of saponification of EVA is not 80 mol% or more, the mechanical properties when wet will be insufficient, and a degree of saponification of EVA of 95 mol% or more is more preferable. Generally, a material that is substantially completely saponified with a degree of saponification of 99 mol% or more is used. For example, EVA may be copolymerized with a copolymerizable monomer such as methacrylic acid, vinyl chloride, methyl methacrylate, acrylonitrile, or vinylpyrrolidone in a range of 15 mol% or less, or before film formation or After film formation, EVA is treated with an inorganic cross-linking agent such as a boron compound or an organic cross-linking agent such as diisocyanate or dialdehyde, resulting in cross-linking or 30 mol% of functional hydroxyl groups in vinyl alcohol units. Within this range, those acetalized with aldehydes such as formaldehyde, acetaldehyde, butyraldehyde, and benzaldehyde are also included. The EVA used in the present invention was measured by viscosity measurement [the viscosity of a dimethyl sulfoxide solution (temperature 30° C.) with a concentration of 3% by weight was measured using a B-type viscometer. ] is 1.0
It is preferable to use one in the range of ~50 centipoise. As a result, if the viscosity is low, that is, if the degree of polymerization is low, the necessary mechanical performance as a membrane cannot be obtained, and if the viscosity is higher than this, it becomes difficult to form a membrane. As a solvent for these PVA-based polymers, especially EVA, dimethyl sulfoxide is suitable and used. Dimethyl sulfoxide can be partially mixed with other solvents such as acetone, methanol, ethanol, propanol, isopropanol, water, methylpyrrolidone, dimethylacetamide, dimethylformamide, etc., but the mixing ratio is used in the present invention. The effect of the coagulation aid consisting of the salt represented by M--X should be maintained at a level that does not impair the effect. The PVA polymer concentration in the stock solution is 10 to 30% by weight, preferably 15 to 30% by weight.
It is 25%. If the concentration is higher than this range, the membrane performance will be extremely low in water permeability, making it unusable, and if the concentration is lower than this range, the membrane forming property will be poor. The temperature of the stock solution during film formation is usually 10 to 100°C, preferably 20 to 100°C.
It is in the range of 80℃. Outside this range, it is difficult to develop the desired heterogeneous structure, and the transmission properties are impaired. The coagulation medium in the present invention refers to an aqueous solution containing one or more salts represented by MX as coagulation aids. Here, MX means M is a group element of the periodic table, preferably calcium, magnesium, zinc, aluminum, etc., and X is a Bronsted acid residue, preferably a halogen, and The solubility of MX in water at 20°C is at least 0.5 g/dl, preferably 1.0 g/dl or more. If the salt has a low solubility below this level, it is difficult to express the effect and it is not suitable for use. Furthermore, among Group 1 elements, highly toxic elements such as mercury and cadmium cannot be put to practical use. Specific examples of M-X include calcium chloride (CaCl 2 ), calcium bromide (CaBr 2 ), calcium iodide (CaI 2 ), magnesium chloride (MgCl 2 ), magnesium bromide (MgBr 2 ), and magnesium iodide . (MgI 2 ), zinc chloride (ZnCl 2 ), zinc bromide (ZnBr 2 ), zinc iodide (ZnI 2 ), copper chloride (CuCl 2 ), copper bromide ( CuBr 2 ) , aluminum chloride (AlCl 3 ), Aluminum bromide (AlBr 3 ), zinc sulfate (ZnSO 4 ), aluminum sulfate (Al 2 (SO 4 ) 3 ),
Examples include magnesium sulfate (MgSO 4 ). Among these, calcium chloride is most suitable. The appropriate concentration range for use of M-X cannot be unambiguously defined;
The desired fraction size is determined in correlation with other factors such as the concentration of the stock solution, the temperature of the stock solution, and the temperature of the coagulation medium, but the general idea is that the concentration of MX in the coagulation medium is 5 to 30% by weight, preferably or 5 to 20% by weight.
The coagulation medium containing the coagulation aid is preferably an aqueous one, but some include various alcohols such as methyl alcohol, ethyl alcohol, propanol, and isopropanol, dimethyl sulfoxide, methyl pyrrolidone, dimethyl acetamide, dimethyl formamide, acetone, methyl ethyl ketone, and acetic acid ester. It is also possible to use some organic solvents such as . The membrane forming method of the present invention can be applied to any membrane shape such as a flat membrane, a tube-shaped membrane, a hollow fiber membrane, a composite membrane with a support, etc., but the method of the present invention is particularly suitable for producing hollow fiber membranes. Useful in manufacturing. The film thickness is approximately 3 to 2000μ for a flat membrane, and the outer diameter for a hollow fiber membrane.
The film thickness is about 40 to 3000μ, more preferably 100 to 2000μ, and the film thickness is about 3 to 1000μ, more preferably about 10 to 500μ. In the spinning of hollow fiber membranes, the coagulation medium is used only as an injection liquid in hollow fiber membranes for forming hollow fibers,
Spinning can be performed using a common coagulation bath (such as water or a mixture of water and dimethyl sulfoxide). In this case, an active dense layer is formed on the inner surface of the hollow fiber membrane. Further, if the coagulation medium is used not only for the solution injected into the hollow fiber membrane but also for the coagulation bath solution, a hollow fiber membrane having active dense layers on the surfaces of the inner and outer layers can be obtained. Furthermore, by introducing an inert gas such as nitrogen into the hollow fiber membrane and using the coagulation medium in the coagulation bath, a hollow fiber membrane having an active dense layer on the surface of the outer layer can be obtained. As the film forming method of the present invention, in addition to the wet method in which the stock solution exits the die or nozzle that is the stock solution discharge port is immediately immersed in a coagulation bath, a so-called wet-dry method in which the stock solution is immersed in a coagulation bath after passing through the air is also applied. be able to. Solidification temperature is usually 0~40℃, preferably 10~35℃
A range of is appropriate. At temperatures lower than this range, sufficient membrane properties, especially water permeability, cannot be obtained, and at higher temperatures, spinning stability is poor and performance is poor. As a result of observation using a scanning electron microscope, the membrane thus obtained was found to have an extremely thin and uniform active dense layer on the side that came into contact with the coagulation medium, as is clear from Figures 1 and 2. However, it was confirmed that the inside of the membrane on the opposite side had a good so-called ultrafiltration membrane type inhomogeneous porous structure consisting of a sparse void layer (finger-like void layer). Further, the obtained membrane has a molecular weight cut-off of 10,000 to 600,000, preferably 40,000 to 400,000, and has sharp fractionation within this range. Further, by subjecting the membrane thus obtained to post-treatments such as stretching and heat treatment, the membrane structure can be further stabilized. In addition, as explained in the explanation of EVA above, the obtained PVA-based film may be treated with an inorganic cross-linking agent such as a boron compound or an organic cross-linking agent having a functional group such as isocyanate or aldehyde, if necessary, and further treated with radiation. Modification can be carried out by introducing crosslinking by means such as irradiation, and improvement in mechanical properties can be expected in particular. The membrane obtained by the present invention can be used not only for general ultrafiltration purposes, but also for biological fluid filtration, such as hypermorphic artificial kidneys, abdominal and pleural effusion protein concentration, and membranes for fractionating protein components in living organisms (for example, membranes for plasma processing fractionation). Can be used. The present invention will be further explained below with reference to Examples. Example 1 Saponified ethylene-vinyl acetate copolymer (ethylene content 31 mol%, degree of saponification 99.9 mol%) 220 g
After dissolving in 780g of dimethyl sulfoxide at 90℃,
The mixture was left to stand at 60°C for degassing. This stock solution was casted onto a glass plate placed on a hot plate, and a 10% aqueous solution of CaCl 2 (CaCl 2
A white film was obtained by immersing the entire glass plate in a solution (solubility in water at 20°C: 83 g/dl) and wet coagulating it. When the cross section of the obtained film was observed using a scanning electron microscope, a clear active dense layer was observed on the free surface side. This membrane has a bovine serum albumin rejection rate of 98%, a sharp fractionation, and a water permeability of 112ml/
m2 . It showed a high level of hr.mmHg. Example 2 250 g of saponified ethylene-vinyl acetate copolymer (ethylene content: 40 mol%, saponification degree: 98 mol%) was dissolved in a mixed solvent of 720 g of dimethyl sulfoxide and 30 g of water, and this was used as a stock solution for the following hollow fiber spinning. I did it. The nozzle used was a single-hole type made by Kasei Nozzle Co., Ltd., with an inner diameter of 600μ and an outer diameter of the part that extruded the stock solution.
1200μ was used. The temperature of the stock solution was maintained at 50°C, and a 10% aqueous solution of CaCl 2 at 15°C was used as the solution injected into the cavity, and water adjusted to 20°C was used as the coagulation bath. The raw solution transfer speed is a gear pump discharge rate of 5ml/min.
Wet spinning was performed at a bath separation yarn speed of 8 m/min.
The obtained hollow fiber membrane had an outer diameter of 950 μm and an inner diameter of 500 μm, and had an almost perfectly circular cross-sectional shape. The cross-sectional structure of the obtained hollow fiber membrane was examined using scanning electron micrographs. The first electron micrograph
Shown in Figure 2. Figure 1: A cross-sectional view at 450 magnification, showing that the inner layer has a sparse structure with finger-like void layers, a dense active layer on the inner surface, and a porous layer on the outer surface. . Figure 2: A cross-sectional view of the inner surface at a magnification of 9000.
It is clearly seen that there is a dense layer on the inner surface. This hollow fiber membrane was incorporated into a small module, and performance measurements showed that the water permeability was 105 ml/m 2 hrmmHg, the serum albumin rejection rate was 98%, and the fractionation was sharp. Comparative Example 1 Bovine serum albumin rejection rate of membrane obtained when using only distilled water in the coagulation bath under the same conditions as Example 1
65%, water separation 120ml/ m2 . hr.mmHg, and protein fractionation was significantly inferior for a given water permeability. Example 3 Under the same conditions as Example 2, the inner diameter of the nozzle was
400μ and outer diameter 800μ, and also for coagulation bath.
The same 10% CaCl 2 aqueous solution as the hollow injection solution was used.
When the obtained hollow fiber membrane was observed using a scanning electron microscope, dense layers were observed in the inner and outer epidermal layers. The permeation characteristics are good with a protein rejection rate of 98-99%, but the water permeability is 95ml/
m2 . hr.mmHg was slightly low.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明により得られた中空繊維膜の断
面図を示す倍率450の走査型電子顕微鏡写真であ
り、第2図は中空繊維膜の内表面側の断面図を示
す倍率9000の走査型電子顕微鏡写真である。
FIG. 1 is a scanning electron micrograph at a magnification of 450 showing a cross-sectional view of the hollow fiber membrane obtained by the present invention, and FIG. 2 is a scanning electron micrograph at a magnification of 9000 showing a cross-sectional view of the inner surface side of the hollow fiber membrane. This is an electron micrograph.

Claims (1)

【特許請求の範囲】 1 ポリビニルアルコール系重合体からなる不均
質多孔膜の製造法であつて、該不均質多孔膜は実
質的に水不溶性のポリビニルアルコール系重合体
をジメチルスルホキシドに溶解し、この重合体溶
液をM―Xで示される塩を5〜30重量%含有する
水溶液からなる凝固媒体中で製膜することを特徴
とする不均質多孔膜の製造法。 ただしM―Xは、Mが周期律表第または第
族元素、Xがブレンステツド酸残基であり、かつ
20℃の水に対する溶解度が少なくとも0.5g/dl
を示す塩である。
[Scope of Claims] 1. A method for producing a heterogeneous porous membrane made of a polyvinyl alcohol polymer, which comprises dissolving a substantially water-insoluble polyvinyl alcohol polymer in dimethyl sulfoxide; 1. A method for producing a heterogeneous porous membrane, comprising forming a polymer solution into a coagulation medium consisting of an aqueous solution containing 5 to 30% by weight of a salt represented by MX. However, in M-X, M is a group element or group element of the periodic table, X is a Brønsted acid residue, and
Solubility in water at 20℃ is at least 0.5g/dl
It is a salt that shows
JP14363481A 1981-09-10 1981-09-10 FUKINSHITSUTAKOMAKUNOSEIZOHO Expired - Lifetime JPH0239537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14363481A JPH0239537B2 (en) 1981-09-10 1981-09-10 FUKINSHITSUTAKOMAKUNOSEIZOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14363481A JPH0239537B2 (en) 1981-09-10 1981-09-10 FUKINSHITSUTAKOMAKUNOSEIZOHO

Publications (2)

Publication Number Publication Date
JPS5845239A JPS5845239A (en) 1983-03-16
JPH0239537B2 true JPH0239537B2 (en) 1990-09-06

Family

ID=15343316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14363481A Expired - Lifetime JPH0239537B2 (en) 1981-09-10 1981-09-10 FUKINSHITSUTAKOMAKUNOSEIZOHO

Country Status (1)

Country Link
JP (1) JPH0239537B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6514409B2 (en) 2000-02-04 2003-02-04 Kuraray Co., Ltd. Hollow fiber membrane made of an ethylene-vinyl alcohol polymer

Also Published As

Publication number Publication date
JPS5845239A (en) 1983-03-16

Similar Documents

Publication Publication Date Title
US4220543A (en) Ethylene-vinyl alcohol membranes having improved properties and a method of producing the same
US4810384A (en) Hydrophilic PVDF semipermeable membrane
US4269713A (en) Ethylene-vinyl alcohol copolymer membrane and a method for producing the same
KR100284911B1 (en) Hydrophilic materials and semipermeable membranes using the same
US4134837A (en) Ethylene-vinyl alcohol copolymer membranes having improved permeability characteristics and a method for producing the same
JPS61257203A (en) Hydrophilic porous membrane and its preparation
GB2050935A (en) Hollow fibre membranes of ethylene-vinylalcohol copolymer
GB2050936A (en) Hollow-fibre membranes of ethylene-vinylalcohol copolymer
EP1134019B1 (en) Hollow fiber membrane and process for producing the same
US4608172A (en) Plasmapheresis membrane and process for the preparation thereof
JPH0278425A (en) Hydrophilic and dryable semipermeable membrane based on polyvinylidene fluoride
JPH0451216B2 (en)
EP0566754B1 (en) Heat-resisting porous membrane, hydrophilized heat-resisting porous membrane and production processes thereof
JPH0239537B2 (en) FUKINSHITSUTAKOMAKUNOSEIZOHO
JP2510540B2 (en) Polyacrylonitrile-based semipermeable membrane and method for producing the same
JPS62102801A (en) Selective permeable hollow composite fiber
JPS5836602B2 (en) Ethylene-vinyl alcohol copolymer membrane and its manufacturing method
JP2006124714A (en) Contamination resistant material and contamination resistant semipermeable membrane
JPS60202702A (en) Dialysis membrane
JPH0952030A (en) Polyvinyl alcohol hollow yarn membrane and its manufacture
JPH07185278A (en) Production of separation membrane
JPH1057787A (en) Separating membrane and its production
JPS5891731A (en) Asymmetrical porous membrane of polyvinyl fluoride and its production
JPH09141070A (en) Separating membrane and its production
JP4659166B2 (en) Film-forming stock solution and method for producing ethylene-vinyl alcohol polymer film