JPS5845239A - Preparation of heterogeneous porous film - Google Patents

Preparation of heterogeneous porous film

Info

Publication number
JPS5845239A
JPS5845239A JP14363481A JP14363481A JPS5845239A JP S5845239 A JPS5845239 A JP S5845239A JP 14363481 A JP14363481 A JP 14363481A JP 14363481 A JP14363481 A JP 14363481A JP S5845239 A JPS5845239 A JP S5845239A
Authority
JP
Japan
Prior art keywords
porous membrane
producing
heterogeneous porous
water
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14363481A
Other languages
Japanese (ja)
Other versions
JPH0239537B2 (en
Inventor
Shiro Osada
長田 司郎
Toshio Ono
大野 敏夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP14363481A priority Critical patent/JPH0239537B2/en
Publication of JPS5845239A publication Critical patent/JPS5845239A/en
Publication of JPH0239537B2 publication Critical patent/JPH0239537B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a heterogeneous porous film having high water permeability and improved fractionating properties, by dissolving a water-insoluble polyvinyl alcohol polymer in dimethyl sulfoxide, making it into a film in a coagulating medium containing a specific salt. CONSTITUTION:A substantially water-insoluble polyvinyl alcohol polymer (ethylene-vinyl alcohol copolymer having an ethylene content of preferably 15- 60mol% and a saponification degree of preferably >=95mol%) is dissolved in dimethyl sulfoxide, and this polymer solution is made into a film in a coagulating medium consisting of preferably 5-20wt% aqueous solution of a salt (e.g., calcium chloride) shown by the formula M-X (M is Ca, Mg, Cu, Zn, or Al; X is halogen; solubility in water at 20 deg.C is at least 1.0g/dl), to give the desired porous film. USE:Useful for common ultrafiltration, filtration for a solution of an organism, etc.

Description

【発明の詳細な説明】 本発明は、高い透水性とすぐれた分画性を有するポリビ
ニルアルコール(以下PVAと記す。)系重合体不均實
多孔膜の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a polyvinyl alcohol (hereinafter referred to as PVA) polymer heterogeneous porous membrane having high water permeability and excellent fractionation properties.

従来工す医療用および工業用の透析膜や限外p過膜ある
いは、超精密−過膜等ミクロフィルターとしてセルロー
ス系膜、合成1m等数多くの膜が開発されている。本発
明者らは、極めて特異な親水特性を有し、各種機械的性
質および耐久性、化学的安定性にすぐれ、しかむ医療材
料として欠くことの出来ない要素である生体親和性や抗
溶血性、抗血栓性に関してもすぐれた特性が期待出来る
Pv・A系重合体膜について鋭意研究を重ねてきた。
Many membranes such as cellulose-based membranes and synthetic 1m membranes have been developed as microfilters such as conventional medical and industrial dialysis membranes, ultrapolar membranes, and ultra-precision membranes. The present inventors have discovered that it has extremely unique hydrophilic properties, has excellent mechanical properties, durability, and chemical stability, and has biocompatibility and anti-hemolytic properties, which are essential elements for medical materials. We have been conducting intensive research on Pv/A polymer membranes, which are expected to have excellent antithrombotic properties.

例えば、エチレン−ビニルアルコール系共重合体(以下
EVAと記す。)を用いた均質多孔構造からなるEVA
透析膜についてはすでに特公昭56−1122号に見ら
れ、捷たそのEVA中空繊維膜については既に開発に成
功し、人工腎臓用としてム用されつつある。この棹、人
工野縁用透析膜としては、適度の透水性と高い尿轡素物
質透過性が必要とされ、適性膜構造について数多くの凝
固膜発現要因を厳密に制御しつつ、複雑きわまり桑い4
!rfa要因を逐次究明していった結果、結局、比較的
緩慢な条件下で湿式成膜して得られた上記均質構造タイ
プが有効であつん。
For example, EVA, which has a homogeneous porous structure using an ethylene-vinyl alcohol copolymer (hereinafter referred to as EVA),
Dialysis membranes have already been published in Japanese Patent Publication No. 1122/1983, and the EVA hollow fiber membranes have already been successfully developed and are now being used for artificial kidneys. This dialysis membrane for artificial field treatment requires moderate water permeability and high urinary sludge permeability, and requires strict control of numerous coagulation membrane development factors for an appropriate membrane structure. 4
! As a result of successive investigation of rfa factors, it was concluded that the above-mentioned homogeneous structure type obtained by wet film formation under relatively slow conditions was effective.

他方、医療用途も含め一般沖適用膜、とくに限外濾過膜
としては、これとは異なり、可能な限シ高い透水性と明
確な分画性が必要とされ、その為適正膜構造も、おのず
から異なる。この種膜構造として一般に、膜表皮に極薄
活性緻密層を有し、かつ内部が疎な空隙構造からなる不
均質多孔栴造腺が有効であることは周知の通りである。
On the other hand, membranes for general off-shore applications, including medical applications, and especially ultrafiltration membranes, differ from this in that they require the highest possible water permeability and clear fractionation, and therefore the appropriate membrane structure is naturally required. different. It is well known that a heterogeneous porous gland having an ultra-thin active compact layer on the membrane epidermis and a sparse pore structure inside is generally effective as this membrane structure.

ところで本発明でいうPVA系重合体については、この
種不均質構造タイプの膜素材として未だ充分な検討がな
されておらず゛、例えば特開昭55−35969の方法
では、安定に均一な活性緻密層を形成せしめることが難
しく、一定分画性能に対する達成透水性が低く、透水性
を高く設定すると、分画サイズが大巾に大きい側にずれ
、分画性自体甘くなシ、逆に分画性を向上させるべく条
件変更すると、透水性が著しく低下せざるをえないとい
った難点があった。
By the way, the PVA-based polymer referred to in the present invention has not yet been sufficiently investigated as a membrane material with this type of heterogeneous structure. It is difficult to form a layer, and if the water permeability achieved for a given fractionation performance is low, and the water permeability is set high, the fraction size will shift to the large side, and the fractionation performance itself will be poor, and on the contrary, the fractionation If the conditions were changed to improve the properties, there was a problem in that the water permeability had to be significantly reduced.

そこで本発明者らは、*膜原液あるいは凝固系全般にわ
たり、第二、第三成分を添加することKより膜構造′発
現にどのような影響があるかについて詳細究明し、分画
性のシャープな活性緻密層を形成し、かつ内部が疎ガ不
均質多孔膜の製造法について鋭意検討を加えた0その結
果、実質的に水不溶性のPVA系重合体をジメチルスル
ホキシドに溶解し、この電合体浴液をlVl = Xで
示され゛る塩を含有する水浴液からなる凝向媒体中で製
膜す−ることKより、高い透水性と同時にシャープな分
画性を有する不均質多孔膜が得られること番見出し、本
発明に到った。
Therefore, the present inventors investigated in detail how the addition of second and third components to the membrane stock solution or the entire coagulation system affects the expression of membrane structure. We conducted extensive research on a method for manufacturing a heterogeneous porous membrane that forms a dense active layer with a loose interior.As a result, we dissolved a substantially water-insoluble PVA polymer in dimethyl sulfoxide, and created this electropolymer. By forming a film in a coagulation medium consisting of a water bath solution containing a salt represented by lVl = As a result, we have arrived at the present invention.

本発明における膜徊成原素劇としては、実質的に水不溶
性で、かつジメチルスルホキシドに可溶性のP−vA系
夏合体が好適に用吟られる。ここでいう実質的に水不溶
性のPVA系重合体とはネ*具体的にはエチレン 含有量が1p〜70モルチ、好ましくは15〜60モル
チで、かつクン化度が5Oqb以上のEVA%炭本数が
3〜2.0のα・オレフィン(α・オレフィン含有量は
エチレン単位換算で10〜70モルチ、LtLi、i:
15〜60モルtIb)−ビニルアルコール”系共重合
体、エチレン、α・オレフィン以外の疎水性単量体(た
とえは塩化ビニルs 「Veova 」 RI I (CHシ=CH−0−C−C−R2ここでR1、R2、
R3はCt3 〜C20のアルキル基)−ビニルアルコール系共重合体
、ホルムアルデヒド、アセトアルデヒド、グルタルアル
デヒドなどの各種モノまたは多価アルデヒドによるアセ
タール化変性PVA(たとえばポリビニルアルコール、
ホルマール化EVA)、さらには高分子反ルを利用°し
た各植エーテル化、エステル化変性PVAなどを意味し
、またこれらの混合物も使用可能である。これらのうち
後述する実施例に示すとおl) Ec F2Vムが好適
である。
As the membrane-promoting element in the present invention, a P-vA-based summer compound that is substantially water-insoluble and soluble in dimethyl sulfoxide is preferably used. The substantially water-insoluble PVA-based polymer referred to here is *Specifically, EVA% carbon having an ethylene content of 1 p to 70 mol, preferably 15 to 60 mol, and a degree of oxidation of 5 Oqb or more. is 3 to 2.0 (α-olefin content is 10 to 70 molti in terms of ethylene unit, LtLi, i:
15 to 60 moles tIb)-vinyl alcohol" copolymer, ethylene, hydrophobic monomers other than α-olefins (for example, vinyl chloride s "Veova" RI I (CHsi=CH-0-C-C- R2 where R1, R2,
R3 is a Ct3 to C20 alkyl group)-vinyl alcohol copolymer, acetalized modified PVA (for example, polyvinyl alcohol,
This refers to formalized EVA), as well as etherified and esterified modified PVA using polymeric polymers, and mixtures thereof can also be used. Among these, Ec F2V is preferred as shown in the Examples below.

本発明にお−て用−られるEVAはランダム。The EVA used in the present invention is random.

ブロック、グラフトいずれの共重合体でもよいが、エチ
レン含有量としてはその含有量が10モル%以下では湿
間時の機構的性質が不充分となり、またrr; I−i
物の増大があるので好ましくなく、また70モル嘱以上
では生体親和性および透過性が低下するので好ましくな
い。したがって、10〜70モルチなかでも15〜60
モル俤が好ましい。このようなE V A il P 
V Aと異なり、鼾出物が非常に少ないのが特長であり
、メディカル分野では血液透析膜素材に適している。E
VAのケン化度としては80モルチ以上なければ、湿潤
時の機械的性實の点で不充分となり、さらに95モル係
以上が好ましい。通常はケン化度99モル多以にの実質
的に完全ケン化のものが用いら扛る。EVAとしては例
えば、メタクリル酸、ビニルフロラ1ド、メチルメタク
リレ−1−、アクリロニトリル、ビニルピロリドンなど
の共重合可吐な改合法単鼠体が15モルチ以下の範囲で
共重合されていてもよく、また−膜前もしくは製膜後に
おいてEVAを(Jj嵩化合物畳の無機架橋剤あるいは
ジインシアナート。
Either a block or a graft copolymer may be used, but if the ethylene content is less than 10 mol%, the mechanical properties in wet conditions will be insufficient, and rr; I-i
If the amount exceeds 70 mol, the biocompatibility and permeability will decrease, which is not preferable. Therefore, 15-60 among 10-70 molti
A molar range is preferred. Such E V A il P
Unlike VA, it is characterized by very little exudate, making it suitable as a hemodialysis membrane material in the medical field. E
If the degree of saponification of VA is not 80 molar or more, the mechanical properties in wet conditions will be insufficient, and a degree of saponification of VA of 95 molar or higher is more preferable. Generally, a material that is substantially completely saponified with a degree of saponification of 99 molar or more is not used. As EVA, for example, methacrylic acid, vinyl fluoride, methyl methacrylate, acrylonitrile, vinyl pyrrolidone, etc. may be copolymerized by a single rodent method that can be copolymerized in a range of 15 molar or less, In addition, EVA (Jj bulk compound, inorganic crosslinking agent or diincyanate) is added before or after film formation.

ジアルデヒドなどの有機架橋剤などによ多処理すること
により、架橋が導入されたものあるいはビニルアルコー
ル単位の官能性水酸基が30モルチ以内において、ホル
ムアルデヒド、アセトアルデヒド、ブチルアルデヒド、
ベンズアルデヒドなどのアルデヒドでアセタール化され
友ものも含まれる。本発明に用いられるEVAは粘度測
定〔濃度3J[[蓋チのジメチルスルホキシド溶液(温
度30℃)をB型粘度計で粘度を測定する。〕により得
られる値が1.0〜50センチボイズの範囲にあるもの
を用いることが好ましい。これよシ粘度が低い、すなわ
ち重合度が低いところでは膜として必要な機械的性能が
得られなく、また、これより粘度が高いと#膜が謔しく
なる。
Formaldehyde, acetaldehyde, butyraldehyde, butylaldehyde, acetaldehyde, butyraldehyde, etc. in which crosslinking has been introduced by multiple treatments with organic crosslinking agents such as dialdehyde, or where the functional hydroxyl group of the vinyl alcohol unit is within 30 molar.
It also includes compounds that are acetalized with aldehydes such as benzaldehyde. EVA used in the present invention was measured by viscosity measurement [concentration 3J] [Measure the viscosity of a dimethyl sulfoxide solution (temperature 30° C.) with a lid with a B-type viscometer. ] It is preferable to use one whose value is in the range of 1.0 to 50 centivoise. If the viscosity is lower than this, that is, if the degree of polymerization is low, the necessary mechanical performance as a membrane cannot be obtained, and if the viscosity is higher than this, the membrane becomes unsatisfactory.

これらのPVA系重合体、とくにEVAの溶媒としては
ジメチルスルホキシドが好適でありこれを用いる0ジメ
チルスルホキシドに他種溶媒、例えばアセトン、メタノ
ール、エタノール、グロパノール、インプロパツール、
水、メチルピロリドン、ジメチルアセドアきド、ジメチ
ルアセドアきドなどを一部混合して用いること本できる
が、その混合割合については本発明で用いるM−Xで示
される塩からなる凝固助剤の効果をそこなうことのない
程度にすべきである。原液中のPVA系重、合体111
1!度としては10〜30重量%、好ましくは15〜2
5%である。この範囲よシ高濃度では、膜性能時に透水
性が著しく低く、使用に耐えず、また、この範囲より低
嬢度では、製膜性が悪い〇製膜時の原液温度は、通常1
0〜100℃、好ましくは、20〜80℃の範囲である
。この範囲外では所望の不均質膜構造の発現が難しく、
透過特性がそこなわれる。
Dimethyl sulfoxide is suitable as a solvent for these PVA-based polymers, especially EVA, and dimethyl sulfoxide is used in addition to other solvents such as acetone, methanol, ethanol, glopanol, impropatol,
Water, methylpyrrolidone, dimethylacedooxide, dimethylacedooxide, etc. can be partially mixed and used, but the mixing ratio is as follows: A coagulation aid consisting of a salt represented by M-X used in the present invention. should be kept to a level that does not impair the effectiveness of the PVA-based polymer in stock solution, coalescence 111
1! The degree is 10 to 30% by weight, preferably 15 to 2%.
It is 5%. At concentrations higher than this range, the membrane performance is extremely low in water permeability, making it unusable, and at concentrations lower than this range, film forming properties are poor. The stock solution temperature during membrane forming is usually 1.
The temperature range is from 0 to 100°C, preferably from 20 to 80°C. Outside this range, it is difficult to develop the desired heterogeneous membrane structure;
Transmission characteristics are impaired.

本発明における凝固媒体とは、M−Xで示される塩を凝
固助剤として単独ないし二種以上含有する水溶液をいう
。ここでM−XはMが周期律表第■、第■族元素、好ま
しくは力、ルシュウム、マグネシュウム、亜鉛、アルミ
ニュウムなどを、Xはブレンステッド(Br0nste
ad)酸残基、好ましくはハロゲンを意味し、かつ、M
−Xの20℃の水に対する溶解度が少なくとも0.5f
/di、好ましくは1.Of/#以上である本のをいう
。これ以下の低浴解性塩では、効果の発現が難しく、使
用に適さない0また第L I族元素のうちでも水銀、カ
ドミュウム等の為害性の強い元素は実用に耐えない。
The coagulation medium in the present invention refers to an aqueous solution containing one or more salts represented by M-X as coagulation aids. Here, M-X is an element of Group ■ or Group ■ of the periodic table, preferably metal, lucium, magnesium, zinc, aluminum, etc., and X is Br0nste.
ad) means an acid residue, preferably a halogen, and M
-X has a solubility of at least 0.5f in water at 20°C
/di, preferably 1. Refers to books that are Of/# or higher. Salts with low bath dissolubility below this level are difficult to exhibit their effects, and among group 0 and LI elements that are unsuitable for use, highly toxic elements such as mercury and cadmium cannot be put to practical use.

M −Xの具体例としては、塩化力ルシュウム(Ca(
’J2)s臭化カルシュラム(CaBr2)、沃化カル
As a specific example of M-X, lucium chloride (Ca(
'J2) Calcium bromide (CaBr2), Cal iodide.

シュラム(Cal2)、[化マグネシュウム(Mrα2
)、臭化冑グネシュウム(MfBrz)、沃化マグネシ
ュウム(MfIz)、塩化亜鉛(Z nα2 )、臭化
亜鉛(ZnBrz)、沃化亜鉛(Znl1 )、塩化鋼
(Cucjz )、臭化銅(CuBr2)、塩化アルミ
ニュウム(Ajα3)、臭化アルミニュウム(AJBr
s )などである。このうち塩化力ルシュウムが最適で
ある。M−Xの適正使用濃度範囲は一義的に決定するこ
とはできず、原液濃度、原液温度、凝固媒体の温度など
他要因との相関において所望の分画サイズを発現すべく
決定されるが、大旨M−Xの凝固媒体中の濃度は3〜3
0重童チ、好ましくは5〜20重tqbである。
Schramm (Cal2), [magnesium chloride (Mrα2)
), magnesium bromide (MfBrz), magnesium iodide (MfIz), zinc chloride (Znα2), zinc bromide (ZnBrz), zinc iodide (Znl1), steel chloride (Cucjz), copper bromide (CuBr2) , aluminum chloride (Ajα3), aluminum bromide (AJBr
s) etc. Among these, lucium chloride is most suitable. The appropriate concentration range for use of M-X cannot be determined uniquely, but is determined in order to express the desired fraction size in correlation with other factors such as the concentration of the stock solution, the temperature of the stock solution, and the temperature of the coagulation medium. The concentration of Oji M-X in the coagulation medium is 3-3
0 tqb, preferably 5 to 20 tqb.

fJLIIIl固助剤を含む凝固媒体としては水系が好
ましいl)1%−8Bメチルアルコール、エチルアルコ
ール、プロパツール、インプロパツールなどの各椙アル
コール類、ジメチルスルホキシド、メチルピロリドン、
ジメチルアセドアばド、ジメチルアセドアばド、アセト
ン、メチルエチルケトン、酢酸エステル等の有機溶剤を
一部併用することもできる。
fJLIIIl The coagulation medium containing the coagulation aid is preferably an aqueous system l) 1%-8B methyl alcohol, ethyl alcohol, propatool, impropateol, etc., dimethyl sulfoxide, methylpyrrolidone,
Some organic solvents such as dimethylacetoamide, dimethylacetoamide, acetone, methyl ethyl ketone, and acetic acid ester can also be used in combination.

本発明の製膜法は、膜形状として、平膜、チューブ状膜
、中空繊維状膜、支持体との複合膜等いずれの製造1屯
適用できるが、本発明の方法はとくに中空繊維膜の製造
に有用である。平膜としては膜厚3〜2000μ程度、
中空繊維膜としては外径40〜3000μ、より好まし
くは100へ2000μ、膜厚は3〜1000ハより好
ましくは10〜500μ程度である。中空繊維膜の紡糸
においては前記凝固媒体を中空形成用中空繊維膜内注入
液としてのみ用い、凝固浴として通常のもの(水または
水とジメチルスルホキシドの混合液など)を用いて紡糸
することができる。この場合は中空繊−膜の内面に活性
緻密jfIが形成されるみまた該凝固媒体を中空繊維膜
内注入液のみならず、凝固浴液に用いれば、内外層表面
に活性w!、密層を有する中空繊維膜が得られる。さら
にまた中空繊維膜内に窒素などの不活性ガスを導入し、
凝固浴に該凝固媒体を用いれば、外層表面に活性緻密層
を有する中空繊維膜が得られる。
The membrane forming method of the present invention can be applied to any membrane shape, such as a flat membrane, a tubular membrane, a hollow fiber membrane, or a composite membrane with a support. Useful in manufacturing. As a flat film, the film thickness is about 3 to 2000μ,
The hollow fiber membrane has an outer diameter of 40 to 3,000 microns, more preferably 100 to 2,000 microns, and a membrane thickness of 3 to 1,000 microns, more preferably 10 to 500 microns. In spinning hollow fiber membranes, the coagulation medium is used only as an injected liquid in the hollow fiber membrane for forming hollows, and a normal coagulation bath (such as water or a mixed solution of water and dimethyl sulfoxide) can be used for spinning. . In this case, active dense jfI is formed on the inner surface of the hollow fiber membrane, and if the coagulation medium is used not only for the hollow fiber membrane injection solution but also for the coagulation bath liquid, active w! , a hollow fiber membrane with a dense layer is obtained. Furthermore, inert gas such as nitrogen is introduced into the hollow fiber membrane,
If this coagulation medium is used in a coagulation bath, a hollow fiber membrane having an active dense layer on the surface of the outer layer can be obtained.

本発明の製膜法としては原液吐出口であるダイスないし
、ノズルを出た原液が直ちに凝固浴に浸る湿式法の他に
原液が一度空中通過後凝固浴に浸るいわゆる乾湿式法を
龜適用することができる。
As the film forming method of the present invention, in addition to the wet method in which the stock solution exits the die or nozzle which is the stock solution discharge port is immediately immersed in a coagulation bath, the so-called wet-dry method in which the stock solution is immersed in a coagulation bath after passing through the air is applied. be able to.

凝固温度は通常0〜40℃、好ましくは10〜35℃の
範囲が適当である。この範囲より低温では、充分な膜特
性、とくに透水性がえられず、より高温では紡糸安定性
が悪く性能も劣る。
The appropriate solidification temperature is usually 0 to 40°C, preferably 10 to 35°C. At temperatures lower than this range, sufficient membrane properties, especially water permeability, cannot be obtained, and at higher temperatures, spinning stability is poor and performance is poor.

このようにして得られた膜は、走査型電子顕微鏡により
観察の結果、第1図および第2図から明らかなように該
凝固媒体との接触した側に極〈薄い均一な活性緻密層が
存在し、また反対側の膜の内部は疎な空隙層(フィンガ
ーライク状のボイド1−)からなる良□°好ないわゆる
限外濾過膜タイプの不均質多孔構造を有することが確認
された。また得られた膜の分画分子量は1万一60万、
好ましくは4万〜40万であシ、この範囲内において7
ヤープな分画性を有している。
As a result of observation using a scanning electron microscope, the membrane thus obtained was found to have an extremely thin, uniform active dense layer on the side that came into contact with the coagulation medium, as is clear from Figures 1 and 2. However, it was confirmed that the inside of the membrane on the opposite side had a good so-called ultrafiltration membrane type inhomogeneous porous structure consisting of a sparse void layer (finger-like voids 1-). In addition, the molecular weight cutoff of the obtained membrane was 11,600,000,
Preferably 40,000 to 400,000, within this range 7
It has excellent fractionability.

さらにこのようにして得られた膜を延伸、熱処理などの
後処理を施すことによりその膜構造をよね安定化させる
ことができる。
Further, by subjecting the membrane thus obtained to post-treatments such as stretching and heat treatment, the membrane structure can be stabilized.

筺た得られたPVA系膜は前述のEVAの説明の項で説
明したとおり、必要に応じて硼素化合物等の無機架橋剤
あるいはインシアナート、アルデヒド等の官能基を有す
るM機架橋剤により、更には放射線照射等の手段による
架橋導入等により。
As explained in the explanation of EVA above, the obtained PVA-based membrane is further treated with an inorganic cross-linking agent such as a boron compound or an M-organic cross-linking agent having a functional group such as incyanate or aldehyde, if necessary. By introducing crosslinking by means such as radiation irradiation.

改質を行なうことが可能であり、これにより特に機械的
緒特性の向上が期待できる。
It is possible to carry out modification, which can be expected to particularly improve mechanical properties.

本発明により得られる膜は一般限外濾過用はもとより、
生体液濾過、例えばp過型人工腎1.af1M水蛋白濃
縮あるいは、生体中張白成分分画用膜(たとえば血漿処
理用分画用)j健)として活用できる。
The membrane obtained by the present invention can be used not only for general ultrafiltration, but also for
Biological fluid filtration, e.g. p-type artificial kidney1. It can be used as a membrane for concentrating af1M water protein or for fractionating biological neutral white components (for example, for fractionation for plasma processing).

以下実施例により本発明をさらに説明する。The present invention will be further explained below with reference to Examples.

実施例1 エチレン−酢酵ビニル共電合体けん化物(エチレン含量
31モルチ、ケン化[99,9モル%)220fをジメ
チルスルホキシド780fに90℃にて溶解f&、60
℃にて静置脱泡した。この原液を用いてホットプレート
上においたガラス板上にキャスティングし、20℃Ky
4整したCaα2の101水溶液(Caα2の20℃の
水に対する溶解度82t/dj)中にガラス板ごと浸漬
し、湿式凝固すると、白色膜がえられた。得られた膜の
断面を走査型電子顕微鏡で観察の結果、自由表面側に明
確な活性緻密層が認められた。この膜の片血清アルブミ
ン阻止率は9B係と分画性はシャープで、しかも透水性
け112+wJ/♂、 hr 、 mugと高水準を示
した0 実施例2 エチレン−酢酸ビニル共重合体けん化物(エチレ7 含
1140 モルg 、ケン(t[98モル%) 250
?をジメチルスルホキシド720 F、水302の混合
溶媒にとかし、これを原液として以下の中空繊維紡糸を
行なった。
Example 1 220f of saponified ethylene-acetate vinyl coelectrolyte (ethylene content: 31 mol, saponified [99.9 mol%)] was dissolved in dimethyl sulfoxide 780 at 90°C f&, 60
The mixture was left to stand at ℃ for defoaming. Using this stock solution, cast on a glass plate placed on a hot plate at 20℃ Ky.
A white film was obtained by immersing the glass plate together with the glass plate in a 101 aqueous solution of Caα2 (solubility of Caα2 in water at 20° C.: 82 t/dj) and performing wet coagulation. When the cross section of the obtained film was observed using a scanning electron microscope, a clear active dense layer was observed on the free surface side. The single serum albumin rejection rate of this membrane was around 9B, and the fractionation was sharp, and the water permeability was at a high level of 112+wJ/♂, hr, and mug. Contains Etile 7 1140 molg, Ken (t[98 mol%) 250
? was dissolved in a mixed solvent of 720 F of dimethyl sulfoxide and 302 F of water, and the following hollow fiber spinning was performed using this as a stock solution.

ノズルとしては「化繊ノズル社」展の単孔タイブを用い
、原液押し出し部分の内径600t+、外径1200μ
のものを用いた。原液温度は50℃に保持し、中空内注
入液と゛しては15℃のCaα2の10%水溶液を、凝
固浴には、20℃に調製した水を用いた。原液移送速度
はギヤポンプ吐出量5m//minとし、離俗糸速はs
  8 m / m inで湿式紡糸した。得られた中
空繊維膜は外径950μ、内径500μであ、す、はぼ
完全な真円の断面形状を示し7ていた。得られた中空繊
維膜の断面構造を走査型電子顕微鏡写真により調べた。
For the nozzle, we used a single-hole type manufactured by Kasei Nozzle Co., Ltd., with an inner diameter of 600t+ and an outer diameter of 1200μ at the part that extrudes the stock solution.
I used the one from The temperature of the stock solution was maintained at 50°C, and a 10% aqueous solution of Caα2 at 15°C was used as the solution injected into the cavity, and water adjusted to 20°C was used as the coagulation bath. The raw solution transfer speed is a gear pump discharge rate of 5 m//min, and the loose yarn speed is s.
Wet spinning was performed at 8 m/min. The obtained hollow fiber membrane had an outer diameter of 950 μm, an inner diameter of 500 μm, and exhibited an almost perfectly circular cross-sectional shape. The cross-sectional structure of the obtained hollow fiber membrane was examined using scanning electron micrographs.

その電子顕微鏡写真を第1〜第2図に示す。The electron micrographs are shown in FIGS. 1 and 2.

第1図:倍率450の断面図であり、内層部は疎な構造
でフィンガーライクなボイド層が見られ内表面には緻密
な活性層が、また外表面には多孔層のあることがわかる
○ 第2m:倍率9000の内表面側の断面図であり、内表
面には微密層のあることが明白にわかる。この中空繊維
膜を小型モジュールに組み込み性能測足の結果、透水性
は105yse/rl hr 、Hg片血清アルブミン
阻止率は98%と分画性はンヤープであツ7’c。  
                1N開口a58−4
523り(5)比較例1 実施例1と同様の条件で凝固浴に蒸留水のみを用いた場
合得られた膜の牛血清アルブミン阻止率65多、透水性
120ttl/n? 、 hr 、態Hgとなり、一定
の透水性に対する蛋白分画性は著しく劣っていた。
Figure 1: A cross-sectional view at a magnification of 450, showing that the inner layer has a sparse structure with finger-like void layers, a dense active layer on the inner surface, and a porous layer on the outer surface. 2nd m: This is a sectional view of the inner surface side at a magnification of 9000, and it is clearly seen that there is a microdense layer on the inner surface. This hollow fiber membrane was incorporated into a small module and the performance measurements showed that the water permeability was 105 yse/rl hr, the Hg fragment serum albumin rejection rate was 98%, and the fractionation was 7'C.
1N opening a58-4
523 (5) Comparative Example 1 When only distilled water was used in the coagulation bath under the same conditions as in Example 1, the membrane obtained had a bovine serum albumin rejection rate of 65% and a water permeability of 120ttl/n? , hr, and Hg, and the protein fractionation property for a certain water permeability was significantly inferior.

実施例3 実施例2と同じ条件下、ノズルとして内径400μ、外
径800μのものを使用し、凝固浴にも、中空内注入液
と同じCaα210チ水溶液を用いた。
Example 3 Under the same conditions as in Example 2, a nozzle with an inner diameter of 400 μm and an outer diameter of 800 μm was used, and the same Caα210 aqueous solution as the hollow injection solution was used for the coagulation bath.

えら−il、た中空繊維膜は走査型電子顕微鏡観察によ
ね内外表皮桶に機密層が認めらfLだ。透過特性は蛋白
阻止車98〜99%で良好だが、透水率が95W1e/
rl 、 hr 、y社tgとや−や低かった。
When the hollow fiber membrane was observed under a scanning electron microscope, a secret layer was observed in the inner and outer epidermis. The permeation characteristics are good with a protein inhibition rate of 98-99%, but the water permeability is 95W1e/
rl, hr, and Y company's tg were slightly lower.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明により得られた中空繊維膜の断面図を示
す倍率450の走査型電子顕微鏡写真であり、第2図は
中空繊維膜の内表面側の断面図を示す倍率9000の走
査型電子顕微鏡写真である。
FIG. 1 is a scanning electron micrograph at a magnification of 450 showing a cross-sectional view of a hollow fiber membrane obtained according to the present invention, and FIG. 2 is a scanning electron micrograph at a magnification of 9000 showing a cross-sectional view of the inner surface side of the hollow fiber membrane. This is an electron micrograph.

Claims (1)

【特許請求の範囲】 (1)実質的に水不溶性のポリビニルアルコール系重合
体をジメチルスルホキシドに溶解し、この重合体溶液−
IM−Xで示される塩を含有する水溶液からなる凝固媒
体中で製膜することを特徴とする不均質多孔膜の製造法
。 ただしM−Xは、Mが周期律表第1または第■、族元素
、Xがブレンステッド酸残基であり、かつ20℃の水に
対する溶解度が少なくとも0.5r/みを示す塩である
。 (2)M−Xは、Mがカルシウム、マグネシュウム、亜
鉛、銅またはアルミニュウムであり、Xがハロゲンであ
る特許請求の範囲第1項記載の不均質多孔膜の製造法。 (a)M−Xは、20℃の水に対する溶解度が少くとも
10t/都である特許請求の範囲第1または第2項記載
の不均質多孔膜の製造法。 (41M −、Xは塩化カルシウムである特FIf請求
の範囲第1項記載の不均質多孔膜の製造法。 (6)凝固媒体がM−Xで示される塩の濃度5〜20重
量−の水溶液である特許請求の範囲第1、第2、第3t
たは第4項記載の不均質多孔膜の製造法。 (6)実質的に水不溶性のポリビニルアルコフル系重合
体が、エチレン含有量が10〜70モル−で、かつケン
化度が80モルチ以上のエチレン−ビニルアルコール系
共重合体である特許請求の範囲第1、第2、第3、第4
また拡第5項記載の不均質多孔膜の製造法。 (テ) エチレン含有量が15〜60モル嘩である特許
請求の範囲第6項記載の不均質多孔膜の製造法。 (8)  実質的に水不溶性のポリビニルアルコール系
重合体がアセタール化ポリビニルアルコールである特許
請求の範囲第1、第2、第3、第4またけ第5項記載の
不均質多孔膜の製造法。 (9)不均質多孔膜が中空繊維膜である特許請求の範囲
第1〜第8項記載の不均質多孔膜の製造法。
[Claims] (1) A substantially water-insoluble polyvinyl alcohol polymer is dissolved in dimethyl sulfoxide, and this polymer solution -
1. A method for producing a heterogeneous porous membrane, comprising forming the membrane in a coagulation medium consisting of an aqueous solution containing a salt represented by IM-X. However, M-X is a salt in which M is an element of Group 1 or Group Ⅰ of the periodic table, X is a Brønsted acid residue, and has a solubility in water at 20° C. of at least 0.5 r/min. (2) The method for producing a heterogeneous porous membrane according to claim 1, wherein M-X is calcium, magnesium, zinc, copper, or aluminum, and X is halogen. 3. The method for producing a heterogeneous porous membrane according to claim 1 or 2, wherein (a) M-X has a solubility in water at 20° C. of at least 10 t/m. (41M-, X is calcium chloride. A method for producing a heterogeneous porous membrane according to claim 1. (6) The coagulation medium is an aqueous solution of a salt represented by M-X at a concentration of 5 to 20 weight. Claims 1, 2, and 3 are:
or the method for producing a heterogeneous porous membrane according to item 4. (6) The substantially water-insoluble polyvinyl alcohol copolymer is an ethylene-vinyl alcohol copolymer having an ethylene content of 10 to 70 mol and a saponification degree of 80 mol or more. Range 1st, 2nd, 3rd, 4th
Further, a method for producing a heterogeneous porous membrane according to Expanded Item 5. (Te) The method for producing a heterogeneous porous membrane according to claim 6, wherein the ethylene content is 15 to 60 mol. (8) The method for producing a heterogeneous porous membrane according to claim 5, wherein the substantially water-insoluble polyvinyl alcohol polymer is acetalized polyvinyl alcohol. . (9) The method for producing a heterogeneous porous membrane according to claims 1 to 8, wherein the heterogeneous porous membrane is a hollow fiber membrane.
JP14363481A 1981-09-10 1981-09-10 FUKINSHITSUTAKOMAKUNOSEIZOHO Expired - Lifetime JPH0239537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14363481A JPH0239537B2 (en) 1981-09-10 1981-09-10 FUKINSHITSUTAKOMAKUNOSEIZOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14363481A JPH0239537B2 (en) 1981-09-10 1981-09-10 FUKINSHITSUTAKOMAKUNOSEIZOHO

Publications (2)

Publication Number Publication Date
JPS5845239A true JPS5845239A (en) 1983-03-16
JPH0239537B2 JPH0239537B2 (en) 1990-09-06

Family

ID=15343316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14363481A Expired - Lifetime JPH0239537B2 (en) 1981-09-10 1981-09-10 FUKINSHITSUTAKOMAKUNOSEIZOHO

Country Status (1)

Country Link
JP (1) JPH0239537B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6514409B2 (en) 2000-02-04 2003-02-04 Kuraray Co., Ltd. Hollow fiber membrane made of an ethylene-vinyl alcohol polymer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6514409B2 (en) 2000-02-04 2003-02-04 Kuraray Co., Ltd. Hollow fiber membrane made of an ethylene-vinyl alcohol polymer

Also Published As

Publication number Publication date
JPH0239537B2 (en) 1990-09-06

Similar Documents

Publication Publication Date Title
EP0250337B1 (en) Semi-permeable hydrophilic polyvinylidene fluoride membranes suited for drying
US4075108A (en) Polycarbonate membranes and production thereof
US4220543A (en) Ethylene-vinyl alcohol membranes having improved properties and a method of producing the same
US4134837A (en) Ethylene-vinyl alcohol copolymer membranes having improved permeability characteristics and a method for producing the same
CN105120992A (en) Polyvinylidene fluoride hollow fiber membranes and preparation thereof
US4160791A (en) Polycarbonate membranes and production thereof
CA1073822A (en) Ethylene-vinyl alcohol copolymer membranes with improved permeability characteristics and a method for producing the same
IE55038B1 (en) Filtration membrane and process for producing the membrane
EP1134019B1 (en) Hollow fiber membrane and process for producing the same
JPS5825764B2 (en) Polyvinyl alcohol
US4608172A (en) Plasmapheresis membrane and process for the preparation thereof
JPH07289863A (en) Polysulfone hollow fiber membrane and its production
JPH0278425A (en) Hydrophilic and dryable semipermeable membrane based on polyvinylidene fluoride
US4983293A (en) Semipermeable membrane and process for preparing same
JPS5845239A (en) Preparation of heterogeneous porous film
EP0566754B1 (en) Heat-resisting porous membrane, hydrophilized heat-resisting porous membrane and production processes thereof
JP2020121263A (en) Composite semipermeable membrane
JPS5836602B2 (en) Ethylene-vinyl alcohol copolymer membrane and its manufacturing method
JPS62102801A (en) Selective permeable hollow composite fiber
JP3053266B2 (en) Ethylene-vinyl alcohol copolymer hollow fiber membrane
JP2006124714A (en) Contamination resistant material and contamination resistant semipermeable membrane
JPS60202702A (en) Dialysis membrane
USRE30856E (en) Polycarbonate membranes and production thereof
US20040102587A1 (en) Hydrophilic polymer membranes made of single phase polymer blends comprising polysulfones and hydrophilic copolymers
JPS60206404A (en) Permselective membrane and its prepration