JPH0238985A - Device for measuring distance by light wave - Google Patents

Device for measuring distance by light wave

Info

Publication number
JPH0238985A
JPH0238985A JP18990388A JP18990388A JPH0238985A JP H0238985 A JPH0238985 A JP H0238985A JP 18990388 A JP18990388 A JP 18990388A JP 18990388 A JP18990388 A JP 18990388A JP H0238985 A JPH0238985 A JP H0238985A
Authority
JP
Japan
Prior art keywords
distance
laser beam
semi
laser
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18990388A
Other languages
Japanese (ja)
Inventor
Akira Furuya
章 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18990388A priority Critical patent/JPH0238985A/en
Publication of JPH0238985A publication Critical patent/JPH0238985A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To improve accuracy and data rate by adding a laser interference device to a device for measuring a distance by a light wave. CONSTITUTION:The laser interference device is constituted of a laser diode 3b, a semi-transmissive mirror 5c, a photodide 9b, a collimator lens 23 and a semi-transmissive reference plate 31. The reflected light of a laser beam from the semi-transmissive reference plate 31 and the reflected light of a laser beam from a conrer cube prism 6 are superposed on the incident surface of the photodiode 9b and interfere each other, so that light detecting output from the photodiode 9b gets larger every time a distance to the corner cube prism 6 changes by the half of the wavelength of the laser beam. Therefore, the counted value of subtraction counter 25 gets smaller every time the distance to the corner cube prism 6 changes by the half of the wavelength of the laser beam. A reference distance signal from an average circuit 27 is initially set in the subtraction counter 25.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は例えば、宇宙でのランデブードツキング時に
、目標機までの距離を高精度で測定するために用いられ
ろ光波測距装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a light wave ranging device used to measure the distance to a target aircraft with high precision, for example, during rendezvous dotting in space. be.

〔従来の技術〕[Conventional technology]

第2図は、従来の光e測距装置の例を示す図であり2図
において(1)は基準発振器、(2)は駆動回路。
FIG. 2 is a diagram showing an example of a conventional optical e-range finder. In FIG. 2, (1) is a reference oscillator, and (2) is a drive circuit.

(3)はこの駆動口#1(23によって強度変調駆動さ
れろレーザダイオード、(4)は送信レンズ2(5)は
半透過ミラー、(6)は目標となるコーナキューブプリ
ズム。
(3) is a laser diode that is driven by intensity modulation by drive port #1 (23), (4) is a transmitting lens 2, (5) is a semi-transparent mirror, and (6) is a corner cube prism that is a target.

(7)はミラー2(8)は受信レンズ、(9)は受信レ
ンズ(8)の焦点位置に置かれたフォトダイオード20
■(よ増IIII器、c月)ば位相比較器、 (12)
は距離信号、 (J3)はバンドパスフィルタ、 (1
41は位相比較器(11)に入力される参照信号、 (
15)は位相測定入力信号である。第3図は位相比較器
(11)の構成例を示す図で、 (16a) 、 (I
fib)は二値化回路、 (17)はフリップフロップ
(19)に印加されるセット信号、 (1g)はリセッ
ト信号、 (20)は発振器、 (21)はフリップフ
ロップ(]9)の出力によって制御されろゲート、(2
2)はゲー) (21)から出力される発振1(20)
の出力パルスを計数するカウンタである。
(7) is the mirror 2, (8) is the receiving lens, and (9) is the photodiode 20 placed at the focal position of the receiving lens (8).
■(Yo increase III device, C month) phase comparator, (12)
is the distance signal, (J3) is the bandpass filter, (1
41 is a reference signal input to the phase comparator (11), (
15) is a phase measurement input signal. FIG. 3 is a diagram showing an example of the configuration of the phase comparator (11), (16a), (I
fib) is the binarization circuit, (17) is the set signal applied to the flip-flop (19), (1g) is the reset signal, (20) is the oscillator, (21) is the output of the flip-flop (]9) Be controlled gate, (2
2) is game) Oscillation 1 (20) output from (21)
This is a counter that counts the output pulses.

従来の光波測距装置は上記のように構成され以下の様に
動作する。レーザダイオード(3)は基準発振M (1
1から出力されろ周波数で強度変調されたし−ザ光を発
振する。送イiレンズ(4)によって照射角が絞られ半
透過ミラー(5)を通過したレーザ光は距aRgiれた
コーナキューブプリズム(6)に向って照射されろ。コ
ーナキューブプリズム(6)は光の入射角と出射角が等
しい性質を持っているため2反射されたレーザ光は再度
同じ光路を逆に戻り、半透過ミラー(5)で方向を変え
られミラー(7)を経てレーザ光の波長に適合したバン
ドパスフィルタ(13)を通過する。このバンドパスフ
ィルタ(13)の働きはpレーザ光以外の妨害光(例え
ば太陽光等)を光検出系に入れないことである。受信レ
ンズ(8)に入射したレーザ光はフォトダイオード(9
)の受光部に集められ、光電変換される。光電変換され
た信号は増幅器によって振幅を拡大され2位相比較器(
11)に加丸られる。位相比較!i (111に加えら
れる参照信号(14)と2位相測定入力信号(I5)は
二値化回路(16a) 、 (+6blにて二値化され
1両信号の位相ずれ時間のみゲート(21)を通過した
発振語(20)の出力パルスがカウンタ(22)で計数
されろことにより、基準発振器(1)から出力された波
形が上記で説明した系を通過してくるのに要する時間を
知ることができろ。この時間をTtとすると、下式の関
係がある。
A conventional light wave distance measuring device is configured as described above and operates as follows. The laser diode (3) has a reference oscillation M (1
The laser light is outputted from 1 and is intensity modulated at a frequency. The laser beam whose irradiation angle is narrowed down by the transmission lens (4) and passes through the semi-transparent mirror (5) is irradiated toward the corner cube prism (6) at a distance aRgi. Since the corner cube prism (6) has the property that the incident angle and the exit angle of the light are equal, the reflected laser beam returns again along the same optical path in the opposite direction, is changed direction by the semi-transparent mirror (5), and is redirected by the semi-transparent mirror (5). 7) and then passes through a bandpass filter (13) that matches the wavelength of the laser beam. The function of this bandpass filter (13) is to prevent interference light (such as sunlight) other than the p-laser light from entering the photodetection system. The laser beam incident on the receiving lens (8) is transmitted to the photodiode (9).
) is collected at the light receiving part and photoelectrically converted. The photoelectrically converted signal is amplified in amplitude by an amplifier and passed through a two-phase comparator (
11). Phase comparison! The reference signal (14) applied to i (111) and the two-phase measurement input signal (I5) are binarized by the binarization circuit (16a), (+6bl, and the gate (21) is used only for the phase difference time of the two signals. By counting the output pulses of the passed oscillator (20) by the counter (22), it is possible to know the time required for the waveform output from the reference oscillator (1) to pass through the system explained above. If this time is Tt, then the following equation holds.

Tt = 2 CR+To  −−−−−−−−(1ま
ただし、C:光 速 TO: 回路系の遅延時間 To、 Cは前もって知ることができるから(1)より
により、コーナキューブプリズム(6)までの距離がわ
かることになる。ゆえに、距離信号(12)は距離をあ
られしている乙とがわかる。
Tt = 2 CR+To −−−−−−−−(1, C: Speed of light TO: Circuit system delay time To, C can be known in advance, so from (1), corner cube prism (6) Therefore, the distance signal (12) can be used to determine the distance to the destination.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の様な従来の光波測距装置では、測定の誤差は位相
測定入力信号(15)に含まれる雑音量に主に因ってお
り、無視できない。上記雑音はフォトダイオード(91
と増幅器01から発生するランダム雑音なので、距離信
号(12)を長時間測定し、平均化することにより測定
誤差を小さくするのが一般的な手法であるが、その代わ
りデータレートが小さくなる。ところが、ランデブード
ツキングにおいては、近距離域での測距は高精度、高デ
ータレートが必要であり、従来の光波測距装置では十分
でなかった。
In the conventional light wave distance measuring device as described above, the measurement error is mainly caused by the amount of noise contained in the phase measurement input signal (15) and cannot be ignored. The above noise is caused by the photodiode (91
Since this is random noise generated from the amplifier 01, a common method is to measure the distance signal (12) over a long period of time and average it to reduce the measurement error, but at the cost of reducing the data rate. However, in rendezvous docking, distance measurement in a short range requires high accuracy and high data rate, and conventional light wave distance measuring devices are not sufficient.

この発明は、かかる課題を解決するためになされたもの
で、高い精度、高データレートの光波測距装置を得るこ
とを目的とする。
The present invention was made to solve this problem, and an object of the present invention is to obtain a light wave ranging device with high accuracy and high data rate.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る光波測距装置は、従来の光波測距装置に
レーザ干渉計を付加したものである。
A light wave ranging device according to the present invention is a conventional light wave ranging device with a laser interferometer added thereto.

〔作 用〕[For production]

この発明においては、レーザ干渉計の距離分解能はレー
ザ光波長の半分であるから距離分解能が従来例とくらべ
て非常に高くなる。またレーザ干渉計を用いることによ
り、処理回路は単純になるので、データレートも高くで
きる。
In this invention, the distance resolution of the laser interferometer is half the wavelength of the laser beam, so the distance resolution is much higher than that of the conventional example. Furthermore, by using a laser interferometer, the processing circuit becomes simple, so the data rate can be increased.

〔実施例〕〔Example〕

第1図はこの発明の実施例を示す図であ’)、11゜(
21、+41 、 (61、(81、Qα〜(12)は
上記従来の装置と全く同一のもノテあり、 (3a) 
(3b) 、 (5a) (5b) (5el p (
7al(7b) 、 (9m) (9b) 、 (J8
c)は上記従来装ご例の各々(3)。
Fig. 1 is a diagram showing an embodiment of the present invention.
21, +41, (61, (81, Qα~(12) are exactly the same as the above conventional device, (3a)
(3b) , (5a) (5b) (5el p (
7al(7b), (9m) (9b), (J8
c) is each of the above conventional mounting examples (3).

(51,(7]、(91,(16m) (18b)に相
当する部分である。
(51, (7), (91, (16m)) This is the part corresponding to (18b).

(23)はレーザダイオード(3b)の出力光を平行光
にするためのコリメータレンズで、これは受信光をフォ
トダイオード(9b)上に集光する作用もある。
(23) is a collimator lens for collimating the output light of the laser diode (3b), which also has the function of condensing the received light onto the photodiode (9b).

(24)はレーザダイオード(9b)の出力振幅を大き
くする増幅器、 (25)は減算カウンタ、 (26)
はレーザダイオード(3b)に電力を供給するレーザ電
源。
(24) is an amplifier that increases the output amplitude of the laser diode (9b), (25) is a subtraction counter, (26)
is a laser power supply that supplies power to the laser diode (3b).

(27)は校正指示信号(29)により所定のデータ数
の距離信号(I2)の平均を計算する平均回路、 (2
8)は基準距離信号、 (30)は精密距離信号、 (
31)は半透過平面参照板である。
(27) is an averaging circuit that calculates the average of distance signals (I2) of a predetermined number of data based on the calibration instruction signal (29);
8) is the reference distance signal, (30) is the precision distance signal, (
31) is a semi-transparent plane reference plate.

上記のように構成された光波測距装置においては、レー
ザダイオード(3bl、半透過ミラー(5e) 。
In the optical distance measuring device configured as described above, a laser diode (3bl) and a semi-transparent mirror (5e) are used.

フォトダイオード(9b)、コリメータレンズ(23)
Photodiode (9b), collimator lens (23)
.

半透過参照平面板(31)がレーザ干渉計を構成し。A semi-transparent reference plane plate (31) constitutes a laser interferometer.

フォトダイオード(9b)の入射面上で、半透過参照平
面板(31)からのレーザ光の反射光と、コーナキュー
ブプリズム(6)からのレーザ光の反射光が重なり合っ
て干渉し、コーナキューブプリズム(6)までの距離が
レーザ光波長の半分変化する毎にフォトダイオード(9
b)の光検知出力が大きくなる。ゆえにレーザ光波長の
半分、コーナキューブプリズム(6)までの距離が変化
する毎に減算カウンタ(25)の計数値は小さくなる。
On the incident surface of the photodiode (9b), the reflected light of the laser beam from the semi-transparent flat reference plate (31) and the reflected light of the laser beam from the corner cube prism (6) overlap and interfere, and the corner cube prism Every time the distance to (6) changes by half the laser wavelength, the photodiode (9
b) The photodetection output increases. Therefore, each time the distance to the corner cube prism (6) changes by half the wavelength of the laser beam, the count value of the subtraction counter (25) becomes smaller.

ランデブードツキング時には、コーナキューブプリズム
(6)までの距離は単調減少であり、減算カウンタ(2
5)の計数値の変化分は上記距離の変化分に対応してい
る。一方、レーザ干渉計では、絶対距離がわからないた
め、少なくとも1回、減算カウンタ(25)の初期値を
設定する必要がある。これ(よ校正指示信号(29)に
よって動作する平均回路(27)の出力である基準距離
信号(28)を減算カウンタ(25)に設定することに
よって行われる。なお、レーザダイオード(3a) 、
 (3b)の発振波長は互いに干渉を起さない様に別の
ものを選別しておく必要がある。
During rendezvous docking, the distance to the corner cube prism (6) is monotonically decreasing, and the subtraction counter (2
The change in the count value in 5) corresponds to the change in the distance. On the other hand, in a laser interferometer, since the absolute distance is not known, it is necessary to set the initial value of the subtraction counter (25) at least once. This is done by setting the reference distance signal (28), which is the output of the averaging circuit (27) operated by the calibration instruction signal (29), in the subtraction counter (25).
It is necessary to select different oscillation wavelengths (3b) so that they do not interfere with each other.

〔発明の効果〕〔Effect of the invention〕

この発明1ま2以上説明した通り、レーザ干渉計を付加
する(とにより、高精度、高データレートの光波測距装
置を実現できる効果がある。
As described above in Inventions 1 and 2, the addition of a laser interferometer has the effect of realizing a high-precision, high-data-rate optical distance measuring device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例を示す図、第2図は従来
の光波測距装置を示す図、第3図は第2図中の位相比較
fit(11)の構成例を示す図である。 図において、(1)は基準発振醪、(2+は駆動回路。 (31、(3a) 、 (3blはレーザ!jイオ F
、(411f送(gレンズ、 (51、(5m) 、 
(5b) 、 (5e)は半透過ミラー、(6)はコー
ナキューブプリズム、(71,(7息)、(7blばミ
ラー、(8)は受信レンズ、 +91 、 (9ml 
、 (9b)はフォトダイオード。 aOlは増幅器、 (11)lよ位相比較器、 (12
)は距離信号。 (13)、 (13m)、 (13b)はバンドパスフ
ィルタ、 (14)は参照信号、(15)は位相測定信
号入力、 (lea) 、 (18bl 。 (16c)は二値化回路、 (17)ばセット信号、 
(18)はリセット信号、  (191はフリップフロ
ップ、  (20)は発振器、 (21)はゲート、 
 (22)はカウンタ、 (23)はコリメータレンズ
、 (24)は増幅器、 (25)は減算カウンタ、 
 (261はレーザ電源、 (27)lよ平均回路、 
 (28)ば基準距離信号、 (29)は校正指示信号
、 (30)は精密距離信号、 (31)は半透過平面
参照板である。 なお、各図中、同一符号は同一また(よ相当部分を示す
FIG. 1 is a diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing a conventional optical distance measuring device, and FIG. 3 is a diagram showing a configuration example of the phase comparison fit (11) in FIG. 2. It is. In the figure, (1) is the reference oscillation power, (2+ is the drive circuit. (31, (3a), (3bl is the laser!
, (411f feed (g lens, (51, (5m),
(5b), (5e) are semi-transparent mirrors, (6) are corner cube prisms, (71, (7 breath), (7bl mirrors, (8) are receiving lenses, +91, (9ml)
, (9b) is a photodiode. aOl is an amplifier, (11) l is a phase comparator, (12
) is a distance signal. (13), (13m), (13b) are band pass filters, (14) are reference signals, (15) are phase measurement signal inputs, (lea), (18bl), (16c) are binarization circuits, (17) ) set signal,
(18) is a reset signal, (191 is a flip-flop, (20) is an oscillator, (21) is a gate,
(22) is a counter, (23) is a collimator lens, (24) is an amplifier, (25) is a subtraction counter,
(261 is the laser power supply, (27) l is the average circuit,
(28) is a reference distance signal, (29) is a calibration instruction signal, (30) is a precision distance signal, and (31) is a semi-transparent plane reference plate. In each figure, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] コーナキューブプリズム又は平面反射鏡までの距離を測
定するための光波測距装置において、コーナキューブプ
リズム又は平面反射鏡に対向して、レーザ平行光を照射
する手段と、上記レーザ平行光の上記コーナキューブプ
リズム又は平面反射鏡による反射光を検出する手段と、
上記レーザ平行光と反射光の光路の共通部分に配置され
る半透過平面参照板とを備えたことを特徴とする光波測
距装置。
In a light wave distance measuring device for measuring a distance to a corner cube prism or a plane reflecting mirror, means for irradiating parallel laser light to the corner cube prism or the plane reflecting mirror; means for detecting reflected light from a prism or a plane reflecting mirror;
A light wave ranging device characterized by comprising a semi-transparent plane reference plate disposed in a common part of the optical paths of the parallel laser beam and the reflected light.
JP18990388A 1988-07-29 1988-07-29 Device for measuring distance by light wave Pending JPH0238985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18990388A JPH0238985A (en) 1988-07-29 1988-07-29 Device for measuring distance by light wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18990388A JPH0238985A (en) 1988-07-29 1988-07-29 Device for measuring distance by light wave

Publications (1)

Publication Number Publication Date
JPH0238985A true JPH0238985A (en) 1990-02-08

Family

ID=16249129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18990388A Pending JPH0238985A (en) 1988-07-29 1988-07-29 Device for measuring distance by light wave

Country Status (1)

Country Link
JP (1) JPH0238985A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068854A (en) * 2007-09-10 2009-04-02 Honda Motor Co Ltd Measuring system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068854A (en) * 2007-09-10 2009-04-02 Honda Motor Co Ltd Measuring system

Similar Documents

Publication Publication Date Title
US20230280463A1 (en) Chirped coherent laser radar system and method
US4660980A (en) Apparatus for measuring thickness of object transparent to light utilizing interferometric method
JPH07181007A (en) Measuring device wherein interferometer is applied
JPH03115977A (en) Anemometer for intermediate altitude
US20210389436A1 (en) Feedback control for lidar using principles of direct atomic vapor absorption
US5719673A (en) Interferometer arrangement with adjustable optical path length difference for detecting a distance between different layers of an eye
US4655597A (en) Micro-displacement measuring apparatus using a semiconductor laser
US4729654A (en) Laser interferometer
JPS6162885A (en) Distance/speed meter
US3708229A (en) System for measuring optical path length across layers of small thickness
EP0222907A4 (en) A laser based gaging system and method of using same
JPH0238985A (en) Device for measuring distance by light wave
JP3241857B2 (en) Optical rangefinder
JPH02216492A (en) Range-finding device by light wave
CN110865396A (en) Frequency sweep calibration device and method for high spectral resolution laser radar
JPH08105971A (en) Ranging method using multi-pulse and device therefor
RU1768967C (en) Surface roughness tester
KR100935781B1 (en) Double edge optical apparatus for measuring velocity using single etalon
JPH10132507A (en) Interferometer
JP2003270346A (en) Pulse signal generation circuit and distance ranging device
JPH08146136A (en) Light wave distance measuring device
SU431126A1 (en) DEVICE FOR THE CONTROL OF NON-Parallelism of Glass Edge
SU1032375A1 (en) Optical surface reflection coefficient measuring method
JP3260484B2 (en) Measurement target position measuring device
SU1499122A2 (en) Arrangement for checking linear displacements