JPH02216492A - Range-finding device by light wave - Google Patents

Range-finding device by light wave

Info

Publication number
JPH02216492A
JPH02216492A JP3759689A JP3759689A JPH02216492A JP H02216492 A JPH02216492 A JP H02216492A JP 3759689 A JP3759689 A JP 3759689A JP 3759689 A JP3759689 A JP 3759689A JP H02216492 A JPH02216492 A JP H02216492A
Authority
JP
Japan
Prior art keywords
corner cube
laser
cube prism
laser beam
light wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3759689A
Other languages
Japanese (ja)
Inventor
Akira Furuya
章 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3759689A priority Critical patent/JPH02216492A/en
Publication of JPH02216492A publication Critical patent/JPH02216492A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To improve range resolution by providing a means for irradiating with the collimated beam of laser light facing to a corner cube prism or a plane reflection mirror and a means for detecting the reflected light beam from the corner cube prism or the plane reflection mirror. CONSTITUTION:As to a range-finding device by light wave, a laser interferometer is constituted of a laser diode 3b, semitransparent mirrors 5c and 5d, a photodiode 9b, a collimator lens 23 and a plane mirror 31. In this case, the reflected light beam of the laser beam from the plane mirror 31 and the reflected light beam of the laser beam from the corner cube prism 6 overlap and interfere each other on the incident surface of the photodiode 9b and the light beam detecting output of the photodiode 9b becomes larger every time the distance to the corner cube prism 6 changes by the half of the wavelength of the laser beam. Thus, the range-finding device by light wave with high accuracy and high data rate can be accomplished.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は例えば、宇宙でのランチツートッキング時に
、目標機までの距離を高精度で測定するために用いられ
る光波測距装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a light wave ranging device used for measuring the distance to a target aircraft with high precision, for example, during a lunch-to-doing in space.

〔従来の技術〕[Conventional technology]

第2図は、従来の光波測距装置の例を示す因であ〕1図
におりて(13は基準発振器、(2)は駆動回路。
FIG. 2 shows an example of a conventional optical distance measuring device. In FIG. 1, 13 is a reference oscillator, and (2) is a drive circuit.

(3)はこの駆動回路(21によって強度変調駆動され
るレーザダイオード、(4)は送信レンズ、(5)は半
透過ミラー、(6)は目標となるコーナキューブプリズ
ム。
(3) is a laser diode driven by intensity modulation by this drive circuit (21), (4) is a transmitting lens, (5) is a semi-transparent mirror, and (6) is a corner cube prism that is a target.

(71#iミラー (8)は受信レンズ、(9)は受信
レンズ(8)の焦点位置に置かれたフォトダイオード、
αGは増幅器、αυは位相比較器、azは距離信号、a
3はバンドパスフィルタ、  (14は位相比較器+1
11に入力される膠照信号、α9は位相測定入力信号で
ある。第3図は位相比較器(+11の構成例を示す図で
、  (16a)、(16b)は二値化回路、aηはフ
リップフロップa9に印加されるセット信号、aSはリ
セット信号、翰は発振器、 anはフリップフロップa
9の出力によって制御されるゲート、■はゲートQDか
ら出力される発振器■の出力パルスを計数するカウンタ
である。
(71#i mirror (8) is the receiving lens, (9) is the photodiode placed at the focal position of the receiving lens (8),
αG is an amplifier, αυ is a phase comparator, az is a distance signal, a
3 is a band pass filter, (14 is a phase comparator +1
α9 is a phase measurement input signal. Figure 3 is a diagram showing an example of the configuration of the phase comparator (+11), (16a) and (16b) are the binarization circuits, aη is the set signal applied to the flip-flop a9, aS is the reset signal, and the wire is the oscillator. , an is a flip-flop a
Gate QD controlled by the output of QD is a counter that counts the output pulses of the oscillator Q outputted from the gate QD.

従来の光波測距装置tけ上記のように構成され以下の様
に動作する。レーザダイオード(3)は基準発振器il
+から出力される周波数で強度変調されたレーザ光を発
振する。送信レンズ(4)によって照射角が絞られ半透
過ミラー(5)を通過したレーザ光は距離R離れたコー
ナキューブプリズム(6)に向って照射される。コーナ
キューブプリズム(6)は光の入射角と出射角が等しい
性質を持っているため1反射されたレーザ光は再度同じ
光路を逆に戻シ、半透過ミラー(5)で方向を変えられ
ミラー171を経てレーザ光の波長に適合(−たバンド
パスフィルタαjを通過する。このバンドパスフィルタ
αコの働きは、レーザ光以外の妨害光(例えば太陽光等
)を光検出系に入れないことである。受信レンズ(8)
に入射したレーザ光はフォトダイオード(91の受光部
に集められ、光電変換される。光電変換された信号は増
幅器によって振幅を拡大され2位相比較器allに加え
られる。位相比較器αBに加えられる参照信号Iと9位
相測定入力信号(L!gは二値化回路(16a) 、 
(16b)にて二値代書れ6内借号の位相ずれ時間のみ
ゲートc+nを通過した発振器■の出力パルスがカウン
タ@で計数きれることによn、 M単発振器c区1から
出力された波形が上記で観明した系を通過してぐるのに
要する時間を知ることができる。この時間をTtとする
と、下式の関係がある。
The conventional light wave distance measuring device is constructed as described above and operates as follows. The laser diode (3) is the reference oscillator il
oscillates laser light whose intensity is modulated at the frequency output from +. The laser beam whose irradiation angle is narrowed down by the transmission lens (4) and passes through the semi-transmissive mirror (5) is irradiated toward a corner cube prism (6) which is a distance R away. Since the corner cube prism (6) has the property that the incident angle and the output angle of light are equal, the reflected laser beam returns again along the same optical path and is redirected by the semi-transparent mirror (5). 171, and passes through a bandpass filter αj that matches the wavelength of the laser beam.The function of this bandpass filter α is to prevent interference light other than the laser beam (such as sunlight) from entering the photodetection system. .Receiving lens (8)
The laser light incident on the photodiode (91) is collected at the light receiving part and photoelectrically converted. The photoelectrically converted signal is amplified in amplitude by an amplifier and applied to two phase comparators all. It is applied to a phase comparator αB. Reference signal I and 9 phase measurement input signals (L!g is the binarization circuit (16a),
In (16b), the output pulse of the oscillator ■ that passed through the gate c + n only during the phase shift time of the borrowed sign in the binary substitution 6 can be counted by the counter @, so that the waveform output from the single oscillator c section 1 of n, M is obtained. We can find out the time it takes for a to pass through the system observed above. Letting this time be Tt, the following equation holds.

Tt=2OR+To     ・・・・・・・・・・・
−・・  (1)ただし、C:光速 TO:回路系の遅延時間 To、  Oは前もって知ることができるから(1)よ
シC によシワコーナキューブプリズム(6)までの距離力わ
かることになる。ゆえに2距離信号figは距離をあら
れしていることがわかる。
Tt=2OR+To・・・・・・・・・・・・
-... (1) However, C: Speed of light TO: The delay time To, O of the circuit system can be known in advance. Become. Therefore, it can be seen that the two distance signals fig represent the distance.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の様な従来の光波測距装置では、測定の誤差は位相
測定入力信号αりに含まれる雑音量に主に因っておシ、
無視できない。上記雑音はフォトダイオード(91と増
幅器αGから発生するランダム雑音なので、距離信号a
Zを長時間測定し、平均化することにより測定誤差を小
さくするのが一般的な手法であるが、その代わ夛データ
レートが小さくなる。ところが、ランデブードツキング
においては。
In conventional light wave ranging devices such as those described above, measurement errors are mainly caused by the amount of noise contained in the phase measurement input signal α.
Can't be ignored. The above noise is random noise generated from the photodiode (91) and the amplifier αG, so the distance signal a
A common method is to measure Z over a long period of time and average it to reduce the measurement error, but at the cost of this, the data rate becomes smaller. However, in Rendezvous Dotsking.

近距離域での測距は高精度、高データレートが必要であ
シ、従来の光波測距装置では十分でなかった。
Distance measurement in short range areas requires high accuracy and high data rate, and conventional light wave ranging devices are not sufficient.

この発明は、かかる課題を解決するためになされたもの
で、高い精度、高データレートの光波測距装置を得るこ
とを目的とする。
The present invention was made to solve this problem, and an object of the present invention is to obtain a light wave ranging device with high accuracy and high data rate.

〔課題を解決する念めの手段〕[A precautionary measure to solve the problem]

との%明に係る光波測距装置は、従来の光波測距装置に
レーザ干渉計を付加したものである。
The light wave distance measuring device according to this invention is a conventional light wave distance measuring device with a laser interferometer added thereto.

〔作用〕[Effect]

この発明においては、レーザ干渉計の距離分解能はレー
ザ光波長の半分であるから距離分解能が従来例とくらべ
て非常に高くなる。またレーザ干渉計を用いることによ
り、処理回路は単純になるので、データレートも高くで
きる。
In this invention, the distance resolution of the laser interferometer is half the wavelength of the laser beam, so the distance resolution is much higher than that of the conventional example. Furthermore, by using a laser interferometer, the processing circuit becomes simple, so the data rate can be increased.

〔実施例〕〔Example〕

第1図はこの発明の実施例を示す図であシ、 (II。 FIG. 1 is a diagram showing an embodiment of the present invention (II.

+21. +41. (61,(71,(81,αυ〜
鰺は上記従来装置例と全く同一のものであり、  (5
a)、(3b)、(sa)、(sb)(5c)、 (5
d)、 (9a) 、(9b)、(16c ’) If
i上記従来装償例の各々(3)j(51,171,(9
1,(t6a)、(t6b)に相当する部分である。υ
はレーザダイオード(5b)の出力光を平行光にするた
めのコリメータレンズで。
+21. +41. (61, (71, (81, αυ~
The mackerel is exactly the same as the conventional device example above, (5
a), (3b), (sa), (sb) (5c), (5
d), (9a), (9b), (16c') If
i Each of the above conventional compensation examples (3) j (51, 171, (9
1, (t6a), and (t6b). υ
is a collimator lens that converts the output light of the laser diode (5b) into parallel light.

これは受信光をフォトダイオード(9b)上に集光する
作用もある。−はレーザダイオード(9b)の出力蛋幅
を大きくする増幅器、@は減算カウンタ。
This also has the effect of focusing the received light onto the photodiode (9b). - is an amplifier that increases the output amplitude of the laser diode (9b), @ is a subtraction counter.

(2)はレーザダイオード(3b)に電力を供給するレ
ーザ電源、@は校正指示信号−により所定のデータ数の
距離信号a2の平均を計算する平均回路、(至)は基準
距離信号、(至)は精密距離信号、 allは平面ミラ
ーである。
(2) is a laser power supply that supplies power to the laser diode (3b), @ is an averaging circuit that calculates the average of distance signals a2 of a predetermined number of data based on the calibration instruction signal, (to) is a reference distance signal, (to is ) is a precision distance signal, and all is a plane mirror.

上記のように構成された光波測距装置においては、レー
ザダイオード(3b)、  半透過ミラー(5C) 。
The optical distance measuring device configured as described above includes a laser diode (3b) and a semi-transparent mirror (5C).

(5d)、  7オトダイオード(9b)、コリメータ
レンズ(ハ)、平面ミラー011がレーザ干渉計を構成
し、フォトダイオード(9b)の入射面上で、平面ミラ
ーCa1lからのレーザ光の反射光と、コーナキューブ
プリズム(6)からのレーザ光の反射光が重なり合って
干渉し、コーナキューブプリズム(6)までの距離がレ
ーザ光波長の半分変化する毎にフォトダイオード(9b
)の光検知出力が大きくなる。ゆえにレーザ光波長の半
分、コーナキューブプリズム(6)までの距離が変化す
る毎に減算カウンタ(ハ)の計数値は小さくなる。ラン
デブ、ドツキング時には、コーナキューブプリズム(6
)までの距離は単調減少であプ、減算カウンターの計数
値の変化分は上記距離の変化分に対応している。一方、
レーザ干渉計では、絶対距離がわからなりため、少くと
も1回。
(5d), a 7-otodiode (9b), a collimator lens (c), and a plane mirror 011 constitute a laser interferometer, and on the incident surface of the photodiode (9b), the reflected light of the laser beam from the plane mirror Ca1l and the , the reflected laser beams from the corner cube prism (6) overlap and interfere, and each time the distance to the corner cube prism (6) changes by half the wavelength of the laser beam, the photodiode (9b)
) increases the light detection output. Therefore, each time the distance to the corner cube prism (6) changes by half the wavelength of the laser beam, the count value of the subtraction counter (c) becomes smaller. When rendezvous and docking, corner cube prisms (6
) is a monotonically decreasing value, and the change in the count value of the subtraction counter corresponds to the change in the distance. on the other hand,
With a laser interferometer, the absolute distance is not known, so at least once.

減算カウンタ(ハ)の初期値を設定する必要がある。It is necessary to set the initial value of the subtraction counter (c).

これは校正指示信号(2)によって動作する平均回路@
の出力である基準距離信号(至)を減算カウンタ(至)
に設定することによって行われる。なおレーザダイオー
ド(’ a) t (s b )の発振波長は互いに干
渉を起さなり様に別のものを選別しておく必要がある。
This is an average circuit operated by the calibration instruction signal (2) @
Subtract the reference distance signal (to) which is the output of the counter (to)
This is done by setting it to . Note that it is necessary to select different oscillation wavelengths of the laser diodes (' a ) t (s b ) so that they do not interfere with each other.

〔発明の効果〕〔Effect of the invention〕

この発明は1以上説明した通シ、レーザ干渉計を付加す
ることによ)、高精度、高データレートの光波測距装置
を実現できる効果がある。
The present invention has the effect of realizing a high-precision, high-data-rate optical distance measuring device by adding a laser interferometer to the above-described system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例を示す図、第2図は従来
の光波測距装置を示す図、第3図#:を第2図中の位相
比較器Uの構成例を示す図である。 図において(1)は基準発振器、(2)は駆動回路、 
 (31゜(3a)、(5b)はレーザダイオード、(
4)は送信レンズ& ”’j(”) *(5b)*(5
C)、(sa)は半透過ミラー(6)はコーナキューブ
プリズム、(7)はミラー (8)は受信レンズ、 (
91,(9a)t(9b)はフォトダイオード、鱒は増
幅器、αflは位相比較器、 03は距離信号。 as、  (13a)、(txb)は/< ン)”/<
 スフ イルfi 、 Q4!d参照信号、 (1!9
は位相測定信号入力、  (16a)、(16b)。 (16C)は二値化回路、 D71はセット信号、a秒
はリセット信号、 (ailはフリップフロップ、(イ
)は発振器。 Qllはゲート、@はカウンタ、r23はコリメータレ
ンズ、L2Aは増幅器、@は減算カウンタ、@はレーザ
電源、鰭は平均回路、@は基準距離信号、@は校正指示
信号、(l[lは精密距醗信号、0])は平面ミラーで
ある。 なお、各図中同一符号は同一または相当部分を示す。
FIG. 1 is a diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing a conventional light wave distance measuring device, and FIG. 3 is a diagram showing an example of the configuration of the phase comparator U in FIG. 2. It is. In the figure, (1) is the reference oscillator, (2) is the drive circuit,
(31° (3a), (5b) are laser diodes, (
4) is the transmission lens &"'j(") *(5b)*(5
C), (sa) are semi-transparent mirrors (6) are corner cube prisms, (7) are mirrors (8) are receiving lenses, (
91, (9a)t (9b) are photodiodes, trout is an amplifier, αfl is a phase comparator, and 03 is a distance signal. as, (13a), (txb) is /<n)”/<
Sufil fi, Q4! d reference signal, (1!9
are phase measurement signal inputs, (16a) and (16b). (16C) is a binary circuit, D71 is a set signal, a second is a reset signal, (ail is a flip-flop, (A) is an oscillator, Qll is a gate, @ is a counter, r23 is a collimator lens, L2A is an amplifier, @ is a subtraction counter, @ is a laser power supply, fin is an average circuit, @ is a reference distance signal, @ is a calibration instruction signal, (l [l is a precision distance signal, 0]) is a plane mirror. Note that in each figure The same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims]  コーナキユーブプリズム又は平面反射鏡までの距離を
測定するための光波測距装置において、コーナキユーブ
プリズム又は平面反射鏡に対向して、レーザ平行光を照
射する手段と、上記レーザ平行光の上記コーナキユーブ
プリズム又は平面反射鏡による反射光を検出する手段と
、上記レーザ平行光と反射光の光路の共通部分に光軸に
対して傾けて配置された半透過ミラーと、前記半透過ミ
ラーによつて分岐される上記レーザ平行光の光路中に光
軸と直交して配置された平面ミラーとを備えたことを特
徴とする光波測距装置。
In a light wave distance measuring device for measuring a distance to a corner cube prism or a plane reflecting mirror, a means for irradiating parallel laser light to a corner cube prism or a plane reflecting mirror, means for detecting reflected light from a corner cube prism or a plane reflecting mirror; a semi-transmissive mirror disposed at a common portion of the optical path of the collimated laser beam and the reflected light at an angle with respect to the optical axis; A light wave distance measuring device comprising: a plane mirror disposed perpendicularly to the optical axis in the optical path of the parallel laser beam that is split by the laser beam.
JP3759689A 1989-02-17 1989-02-17 Range-finding device by light wave Pending JPH02216492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3759689A JPH02216492A (en) 1989-02-17 1989-02-17 Range-finding device by light wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3759689A JPH02216492A (en) 1989-02-17 1989-02-17 Range-finding device by light wave

Publications (1)

Publication Number Publication Date
JPH02216492A true JPH02216492A (en) 1990-08-29

Family

ID=12501941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3759689A Pending JPH02216492A (en) 1989-02-17 1989-02-17 Range-finding device by light wave

Country Status (1)

Country Link
JP (1) JPH02216492A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012002735A (en) * 2010-06-18 2012-01-05 Panasonic Electric Works Co Ltd Spatial information detection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012002735A (en) * 2010-06-18 2012-01-05 Panasonic Electric Works Co Ltd Spatial information detection device

Similar Documents

Publication Publication Date Title
US20230280463A1 (en) Chirped coherent laser radar system and method
US5309212A (en) Scanning rangefinder with range to frequency conversion
CN108594257B (en) Speed measuring sensor based on Doppler effect and calibration method and measuring method thereof
US3615135A (en) Laser ranging with polarization modulation
JPS6162885A (en) Distance/speed meter
GB1082069A (en) Velocity determination
JPH06174844A (en) Laser distance measuring apparatus
JPH02216492A (en) Range-finding device by light wave
US20220291381A1 (en) Distance Measurement by Means of an Active Optical Sensor System
KR102500953B1 (en) Optical parametric oscill and laser desigator and rangefinder having the same
JP3241857B2 (en) Optical rangefinder
JP2006053055A (en) Laser measuring apparatus
JPH06186337A (en) Laser distance measuring equipment
JPH05232229A (en) Pulse signal detector and optical distance meter
JPH0238985A (en) Device for measuring distance by light wave
JPH08105971A (en) Ranging method using multi-pulse and device therefor
JP2003270346A (en) Pulse signal generation circuit and distance ranging device
RU2698699C1 (en) Method of reproducing a unit of length in laser range finders based on a michelson interferometer
US20230161018A1 (en) Optoelectronic sensor and method for the alignment of an optoelectronic sensor
JP3260484B2 (en) Measurement target position measuring device
JPH08146136A (en) Light wave distance measuring device
SU1551985A1 (en) Photoelectric autocollimator
SU408145A1 (en) DESCRIPTION OF THE INVENTION
SU411316A1 (en)
RU1702844C (en) Device for amplifying optical signals