JPH0238933A - Temperature detector - Google Patents

Temperature detector

Info

Publication number
JPH0238933A
JPH0238933A JP63190807A JP19080788A JPH0238933A JP H0238933 A JPH0238933 A JP H0238933A JP 63190807 A JP63190807 A JP 63190807A JP 19080788 A JP19080788 A JP 19080788A JP H0238933 A JPH0238933 A JP H0238933A
Authority
JP
Japan
Prior art keywords
pyroelectric
current
pyroelectric element
electrodes
counter electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63190807A
Other languages
Japanese (ja)
Other versions
JPH0758228B2 (en
Inventor
Nobuhiro Ito
信宏 伊藤
Yasunobu Yoneda
康信 米田
Yukio Sakabe
行雄 坂部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP63190807A priority Critical patent/JPH0758228B2/en
Publication of JPH0238933A publication Critical patent/JPH0238933A/en
Publication of JPH0758228B2 publication Critical patent/JPH0758228B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve detecting sensitivity by making a pyroelectric element a laminate type having plural pairs of counter electrodes positioned in one pyroelectric body. CONSTITUTION:The pyroelectric element 11 is provided with the pyroelectric body 13 having a structure obtained by laminating plural pyroelectric material layers 12, the plural pairs of counter electrodes 14 and 15 which are opposed to each other through the pyroelectric material layers 12 respectively and a pair of terminal electrodes 16 and 17 respectively connected to what is related to the counter electrodes 14 and 15 so that the counter electrodes 14 and 15 which are alternately positioned may be connected. Output from the pyroelectric element 11 is fetched from an OP amplifier connected to the terminal electrodes 16 and 17.

Description

【発明の詳細な説明】 〔産業上の利用分野] この発明は、温度変化を生じる被検知体の温度変化率を
、焦電体の魚雷効果を利用して、電気信号として取出す
、温度検知器に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a temperature detector that extracts the rate of temperature change of a detected object, which causes a temperature change, as an electrical signal by using the torpedo effect of a pyroelectric substance. It is related to.

[関連技術の説明] 本件出願人は、先に出願した特願昭62−102478
号「温度検知器」 (昭和62年4月25日出願)にお
いて、たとえば、Ni−Cd電池に代表される2次電池
の充電完了を検知するための検知器として、焦電体の焦
電効果を利用して、充電完了時の電池温度上昇を検知す
るのに適した温度検知器を提案している。この温度検知
器は、第4図に示すような構成を有している。
[Description of related technology] The applicant has previously filed patent application No. 102478/1983.
No. ``Temperature Detector'' (filed on April 25, 1986), for example, the pyroelectric effect of a pyroelectric material is used as a detector to detect the completion of charging of a secondary battery such as a Ni-Cd battery. We have proposed a temperature detector suitable for detecting the rise in battery temperature when charging is completed. This temperature sensor has a configuration as shown in FIG.

第4図において、被検知体(図示せず)の温度変化を受
けるように配置された焦電素子1は、被検知体の温度変
化率に相当する大きさの焦電流を発生する。この焦電流
は、電界効果トランジスタ2、ゲート抵抗Rgおよびソ
ース抵抗Rsからなるインピーダンス変換回路によって
電圧信号に変換され、この電圧信号は、Vout@子と
GND端子との間から取出される。
In FIG. 4, a pyroelectric element 1 arranged to receive a temperature change of an object to be detected (not shown) generates a pyroelectric current having a magnitude corresponding to the rate of temperature change of the object to be detected. This pyrocurrent is converted into a voltage signal by an impedance conversion circuit consisting of a field effect transistor 2, a gate resistance Rg, and a source resistance Rs, and this voltage signal is taken out from between the Vout@ terminal and the GND terminal.

[発明が解決しようとする課題] 第4図に示すような構成を有する温度検知器において、
検知感度を上げるためには、 ■ 焦電素子1の検知面精を大きくする。
[Problem to be solved by the invention] In a temperature sensor having a configuration as shown in FIG.
In order to increase the detection sensitivity, ■ Increase the detection surface precision of the pyroelectric element 1.

■ 電界効果トランジスタ2としてドレイン飽和電流の
大きなものを用いる。なぜなら、このドレイン飽和電流
によって、検知電圧レベルが左右されるためである。
(2) Use a transistor with a large drain saturation current as the field effect transistor 2. This is because the detected voltage level is influenced by this drain saturation current.

■ 熱結合効率を高める。■ Increase thermal coupling efficiency.

などの方策がある。There are such measures.

しかしながら、上記した方策には、いずれも、解決され
なければならない間居点がある。すなわち、■によれば
、温度検知器が大型化する。■によれば、電界効果トラ
ンジスタ2のドレイン飽和電流のばらつきが大きくなり
、その管理が煩雑となるとともに、ばらつきのためにか
えって検知感度を下げる結果をもたらす場合がある。■
は、焦電素子1の厚みを薄くすることによって達成され
るが、このように厚みを薄くすると、機械的強度が低下
するばかりでなく、 焦電素子1の容量が上がり、応答
性が悪くなる。
However, all of the above measures have drawbacks that must be resolved. That is, according to (2), the temperature sensor becomes larger. According to (2), the variation in the drain saturation current of the field effect transistor 2 becomes large, and its management becomes complicated, and the variation may even result in a reduction in detection sensitivity. ■
is achieved by reducing the thickness of the pyroelectric element 1, but reducing the thickness in this way not only reduces the mechanical strength but also increases the capacity of the pyroelectric element 1, resulting in poor response. .

そこで、この発明は、上述した問題点に遭遇することな
く、検知感度が高められた温度検知器を提供しようとす
るものである。
Therefore, the present invention aims to provide a temperature sensor with improved detection sensitivity without encountering the above-mentioned problems.

〔課題を解決するための手段〕[Means to solve the problem]

この発明は、温度変化を生じる被検知体の温度変化率を
、焦電体の焦電効果を利用して、電気信号として取出す
、温度検知器に向けられるものであって、前述した関連
技術と同様、被検知体の温度変化を受ける焦電素子と、
前記焦電素子に生じた焦電流を電圧信号に変換する手段
とを備えるものであるが、上述した技術的課題を解決す
るため、次のような構成を備えることが特徴である。
The present invention is directed to a temperature sensor that extracts the rate of temperature change of a detected object, which causes a temperature change, as an electrical signal by using the pyroelectric effect of a pyroelectric material, and is in addition to the related technology described above. Similarly, a pyroelectric element that receives temperature changes in the detected object,
The device is equipped with means for converting the pyroelectric current generated in the pyroelectric element into a voltage signal, and is characterized by having the following configuration in order to solve the above-mentioned technical problem.

すなわち、前記焦電素子は、複数の焦電材f−1層の積
層構造を有する焦電体と、前記焦電材料層の各々を介し
て互いに対向する複数対の対向電極と、前記対向電極の
交互に位置するものを互いに接続するように前記対向電
極の関連のものに接続される1対の端子電極とを備える
。また、前記焦電流を電圧信号に変換する手段は、OP
アンプを含む電流−電圧変換回路を備える。
That is, the pyroelectric element includes a pyroelectric material having a laminated structure of a plurality of pyroelectric material f-1 layers, a plurality of pairs of counter electrodes facing each other via each of the pyroelectric material layers, and a plurality of pairs of counter electrodes. and a pair of terminal electrodes connected to related ones of the opposing electrodes so as to connect alternately located terminal electrodes to each other. Further, the means for converting the pyroelectric current into a voltage signal includes an OP
A current-voltage conversion circuit including an amplifier is provided.

[発明の作用および効果] この発明において、焦電素子は、1個の焦電体内に位置
する曳数対の対向電極を有する、いわゆる積層型とされ
る。従って、1gの焦電素子において熱を受ける電極の
有効面積が、同じ体積の焦電体を有する従来のものに比
べて、増加する。ところで、所定の温度勾配を印加した
とき、焦電素子から発生する焦電流rpは、次の式で表
わされる。
[Operations and Effects of the Invention] In the present invention, the pyroelectric element is of a so-called laminated type having a pair of opposing electrodes located within one pyroelectric element. Therefore, the effective area of the electrode that receives heat in a 1 g pyroelectric element is increased compared to a conventional one having the same volume of pyroelectric body. Incidentally, when a predetermined temperature gradient is applied, the pyroelectric current rp generated from the pyroelectric element is expressed by the following equation.

I p=PXsX  (dT/d t)上記式中、Pは
焦電材料の焦電係数、Sは焦電素子の電極の有効面積、
(dT/dt)は温度勾配値である。従って、(dT/
dt)およびPが同一ならば、たとえば、9X10mm
の単層の焦電素子と同一の電極有効面積を得るためには
、3×3mmの対向電極を有する焦電材料層を10枚積
層すればよいことになる。すなわち、同じ温度勾配値に
対して、同じ焦電流を得ようとする場合には、焦電素子
の小型化を図ることができ、他方、同じ大きさの焦電素
子とした場合には、同じ温度勾配に対して、より大きな
焦電流を得ることができる。また、焦電素子は、積層型
であるので、機械的強度を高めることもできる。
I p=PXsX (dT/d t) In the above formula, P is the pyroelectric coefficient of the pyroelectric material, S is the effective area of the electrode of the pyroelectric element,
(dT/dt) is the temperature gradient value. Therefore, (dT/
dt) and P are the same, for example, 9X10mm
In order to obtain the same effective electrode area as a single-layer pyroelectric element, it is sufficient to laminate ten pyroelectric material layers each having a 3×3 mm counter electrode. In other words, when trying to obtain the same pyroelectric current for the same temperature gradient value, the pyroelectric element can be made smaller; on the other hand, when the pyroelectric element is the same size, A larger pyroelectric current can be obtained with respect to temperature gradients. Furthermore, since the pyroelectric element is of a laminated type, its mechanical strength can also be increased.

上述のように、この発明によれば、焦電素子から得られ
る焦電流を大きくすることができるので、前述した先願
において開示された関連技術のように、インピーダンス
変換回路を用いることなく、OPアンプを含む電流−電
圧変換回路によって、焦電流を電圧信号に変換すること
ができる。従って、インピーダンス変換回路のように、
検知電圧レベルが電界効果トランジスタのドレイン飽和
電流に左右されないため、ダイナミックレンジを広くと
ることができる。
As described above, according to the present invention, the pyroelectric current obtained from the pyroelectric element can be increased, so unlike the related technology disclosed in the above-mentioned earlier application, the OP A current-to-voltage conversion circuit including an amplifier can convert the pyroelectric current into a voltage signal. Therefore, like an impedance conversion circuit,
Since the detection voltage level is not affected by the drain saturation current of the field effect transistor, a wide dynamic range can be achieved.

[実施例の説明] 第1図は、この発明の一実施例の温度検知器を示す回路
図である。第2図は、第1図に示された焦電素子11の
構造を示す断面図である。
[Description of Embodiment] FIG. 1 is a circuit diagram showing a temperature sensor according to an embodiment of the present invention. FIG. 2 is a cross-sectional view showing the structure of the pyroelectric element 11 shown in FIG.

まず、第2図を参照して、焦電素子11の構造について
説明する。焦電素子11は、複数の焦電材料層12の積
層構造を有する焦電体13と、焦電材料層12の各々を
介して互いに対向する複数対の対向電極14.15と、
対向電極14.15の交互に位置するものを互いに接続
するように対向電極14.15の関連のものにそれぞれ
接続される1対の端子電極16.17とを備える。すな
わち、一方の端子電極16は、対をなす一方の対向電極
14に接続され、他方の対向電極17は、対をなす他方
の対向電極15に接続される。このようにして、各対を
なす対向電極14.15およびそれらの間に位置する焦
電材料層12をもって構成された単位素子は、端子電極
16.17によって電気的に並列接続される。第1図に
おいて、このような単位素子は、「18」で示されてい
る。
First, the structure of the pyroelectric element 11 will be explained with reference to FIG. The pyroelectric element 11 includes a pyroelectric body 13 having a laminated structure of a plurality of pyroelectric material layers 12, a plurality of pairs of opposing electrodes 14 and 15 facing each other with each of the pyroelectric material layers 12 interposed therebetween,
A pair of terminal electrodes 16.17 are provided, each connected to an associated one of the counter electrodes 14.15 so as to connect alternately located ones of the counter electrodes 14.15 to each other. That is, one terminal electrode 16 is connected to one opposing electrode 14 of the pair, and the other opposing electrode 17 is connected to the other opposing electrode 15 of the pair. In this way, the unit elements constituted by each pair of counter electrodes 14.15 and the pyroelectric material layer 12 located between them are electrically connected in parallel by the terminal electrodes 16.17. In FIG. 1, such a unit element is indicated by "18".

上述した焦電素子11は、より具体的には、次のように
得ることができる。たとえば、PZT焦屯材料に宵機バ
インダと分散剤を混合し、ドクターブレードによってで
シートを成形する。このシートを矩形状にカットし、対
向電極14.15となるべきAg−Pd、ワニスおよび
溶剤からなる電極ペーストをスクリーン印刷する。次に
、これらを積重ねて熱圧着する。そして、これをカット
して、1100℃〜1200℃で焼成する。このように
して、まず、対向電極14.15を形成した焦電体13
が得られる。次に、端子電極16゜17となるべき銀ペ
ーストを焦電体13の両端部に塗布し、次いで焼付ける
。その後、適当な直流電界をかけて、焦電体13の分極
操作を行なう。
More specifically, the above-mentioned pyroelectric element 11 can be obtained as follows. For example, a PZT core material is mixed with a binder binder and a dispersant, and a sheet is formed using a doctor blade. This sheet is cut into a rectangular shape, and an electrode paste consisting of Ag--Pd, varnish, and solvent, which will become the counter electrodes 14 and 15, is screen printed. Next, these are stacked and bonded by thermocompression. Then, this is cut and fired at 1100°C to 1200°C. In this way, first, the pyroelectric body 13 on which the counter electrodes 14 and 15 were formed
is obtained. Next, silver paste, which is to become the terminal electrodes 16 and 17, is applied to both ends of the pyroelectric body 13, and then baked. Thereafter, a suitable DC electric field is applied to polarize the pyroelectric body 13.

このようにして、焦電素子11が得られる。In this way, the pyroelectric element 11 is obtained.

第1図を参照して、焦電素子11の端子電極16.17
は、それぞれ、OPアンプ19の入力端子に接続される
。OPアンプ1つには、電源として、たとえば+5Vの
電圧が印加される。また、OPアンプ19の出力端子V
outと一方の入力端子との間には、帰還抵抗Rfおよ
び帰還容量Cfが接続される。また、OPアンプ19の
電源端子間には、分圧抵抗R1,R2が接続される。こ
のようにして、焦電素子11において発生した焦電流は
、OPアンプ19によって電圧信号に変換され、出力端
子Voutから取出される。
With reference to FIG. 1, the terminal electrodes 16 and 17 of the pyroelectric element 11
are connected to the input terminals of the OP amplifier 19, respectively. For example, a voltage of +5V is applied to one OP amplifier as a power supply. In addition, the output terminal V of the OP amplifier 19
A feedback resistor Rf and a feedback capacitor Cf are connected between out and one input terminal. Furthermore, voltage dividing resistors R1 and R2 are connected between the power supply terminals of the OP amplifier 19. In this way, the pyroelectric current generated in the pyroelectric element 11 is converted into a voltage signal by the OP amplifier 19 and taken out from the output terminal Vout.

第1図に示した温度検知器は、たとえば第3図に概略的
に示すように、絶縁基板20上で組立てられる。すなわ
ち、絶縁基板20の一方面には、焦電素子11が実装さ
れ、同じく他方面には、OPアンプ19、チップコンデ
ンサ21およびリード端子22等を含む回路要素が実装
される。この他方面には、図示しないが、抵抗体となる
べき印刷抵抗が形成される。なお、絶縁基板2oの一方
面に実装された焦電素子11と同じく他方面に実装され
た回路要素とは、互いにスルーホール23を介して電気
的に接続される。
The temperature sensor shown in FIG. 1 is assembled on an insulating substrate 20, for example as schematically shown in FIG. That is, the pyroelectric element 11 is mounted on one side of the insulating substrate 20, and circuit elements including an OP amplifier 19, a chip capacitor 21, a lead terminal 22, etc. are mounted on the other side. Although not shown, a printed resistor serving as a resistor is formed on the other surface. Note that the pyroelectric element 11 mounted on one side of the insulating substrate 2o and the circuit element similarly mounted on the other side are electrically connected to each other via the through hole 23.

このように、絶縁基板20によって、焦電素子11と他
の回路要素とを分離すれば、焦電素子11に与えられる
熱的影響を、回路要素に伝わることを有利に防fヒでき
る。なお、絶縁基板2oとしては、たとえばアルミナ基
板のほが、ポリイミド系樹脂からなるフレキシブル基板
を用いてもよい。
By separating the pyroelectric element 11 and other circuit elements by the insulating substrate 20 in this way, it is possible to advantageously prevent the thermal influence exerted on the pyroelectric element 11 from being transmitted to the circuit elements. Note that as the insulating substrate 2o, for example, an alumina substrate or a flexible substrate made of polyimide resin may be used.

さらに、防湿対策として、第3図に示した構造物を樹脂
コーティングしてもよい。
Furthermore, as a moisture-proof measure, the structure shown in FIG. 3 may be coated with a resin.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例の温度検知器を示す回路
図である。第2図は、第1図に示した魚雷素子11の具
体的構造を示す断面図である。第3図は、第1図に示し
た温度検知器の具体的構造を示す正面図である。第4図
は、この発明にとって関連ある先願において開示された
温度検知器を示す回路図である。 図において、11は焦7i!素子、12は焦電材料層、
13は焦電体、14.15は対向電極、16゜17は端
子電極、19はOPアンプである。 第1 図 f 第3 図
FIG. 1 is a circuit diagram showing a temperature sensor according to an embodiment of the present invention. FIG. 2 is a sectional view showing a specific structure of the torpedo element 11 shown in FIG. FIG. 3 is a front view showing the specific structure of the temperature sensor shown in FIG. 1. FIG. 4 is a circuit diagram showing a temperature sensor disclosed in a prior application related to the present invention. In the figure, 11 is Jiao 7i! element, 12 is a pyroelectric material layer;
13 is a pyroelectric body, 14, 15 is a counter electrode, 16° and 17 are terminal electrodes, and 19 is an OP amplifier. Figure 1 f Figure 3

Claims (1)

【特許請求の範囲】 温度変化を生じる被検知体の温度変化率を、焦電体の焦
電効果を利用して、電気信号として取出す、温度検知器
であって、 被検知体の温度変化を受ける焦電素子と、 前記焦電素子に生じた焦電流を電圧信号に変換する手段
と、 を備え、 前記焦電素子は、複数の焦電材料層の積層構造を有する
焦電体と、前記焦電材料層の各々を介して互いに対向す
る複数対の対向電極と、前記対向電極の交互に位置する
ものを互いに接続するように前記対向電極の関連のもの
にそれぞれ接続される1対の端子電極とを備え、 前記焦電流を電圧信号に変換する手段は、OPアンプを
含む電流−電圧変換回路を備える、ことを特徴とする、
温度検知器。
[Scope of Claims] A temperature sensor that extracts the rate of temperature change of a detected object that causes a temperature change as an electrical signal by using the pyroelectric effect of a pyroelectric material, a pyroelectric element that receives the pyroelectric current, and a means for converting the pyroelectric current generated in the pyroelectric element into a voltage signal; a plurality of pairs of opposing electrodes that face each other through each of the pyroelectric material layers; and a pair of terminals each connected to a related one of the opposing electrodes so as to connect alternately located opposing electrodes to each other. an electrode, and the means for converting the pyroelectric current into a voltage signal includes a current-voltage conversion circuit including an OP amplifier,
Temperature detector.
JP63190807A 1988-07-29 1988-07-29 Temperature detector Expired - Lifetime JPH0758228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63190807A JPH0758228B2 (en) 1988-07-29 1988-07-29 Temperature detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63190807A JPH0758228B2 (en) 1988-07-29 1988-07-29 Temperature detector

Publications (2)

Publication Number Publication Date
JPH0238933A true JPH0238933A (en) 1990-02-08
JPH0758228B2 JPH0758228B2 (en) 1995-06-21

Family

ID=16264075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63190807A Expired - Lifetime JPH0758228B2 (en) 1988-07-29 1988-07-29 Temperature detector

Country Status (1)

Country Link
JP (1) JPH0758228B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011141509A1 (en) * 2010-05-12 2011-11-17 Pyreos Ltd. Pin-compatible infrared light detector having improved thermal stability

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51107879A (en) * 1975-02-18 1976-09-24 Minnesota Mining & Mfg

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51107879A (en) * 1975-02-18 1976-09-24 Minnesota Mining & Mfg

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011141509A1 (en) * 2010-05-12 2011-11-17 Pyreos Ltd. Pin-compatible infrared light detector having improved thermal stability
CN103109167A (en) * 2010-05-12 2013-05-15 派洛斯有限公司 Pin-compatible infrared light detector having improved thermal stability
US8878131B2 (en) 2010-05-12 2014-11-04 Pyreos Ltd. Pin-compatible infrared light detector having improved thermal stability

Also Published As

Publication number Publication date
JPH0758228B2 (en) 1995-06-21

Similar Documents

Publication Publication Date Title
US3971250A (en) Electret sensing medium having plural sensing units
JP2540344B2 (en) Active force sensor for cardiac pacemaker
US4328441A (en) Output circuit for piezoelectric polymer pressure sensor
US3940974A (en) Electrically compensated sensor
CN109425774B (en) Easy-to-install current sensor adopting magnetoelectric composite material
JPS5991371A (en) Current sensor
JPS59232472A (en) Temperature compensating method of element of function of flowing current in sensitivity and circuit
EP0310101B1 (en) Temperature sensor
US4367408A (en) Pyroelectric type infrared radiation detecting device
US6121615A (en) Infrared radiation sensitive device
JPH0238933A (en) Temperature detector
US6360603B1 (en) Acceleration sensor and acceleration detecting device
US20050127785A1 (en) Method and apparatus for measurement using piezoelectric sensor
JPS6361125A (en) Pyroelectric sensor
KR20180102050A (en) Sensors and methods for measuring pressure
JPS60196659A (en) Resistance measuring electrode for sensor
US20120211658A1 (en) Compact infrared light detector and method for producing the same, and an infrared light detector system comprising the infrared light detector
CN111211218A (en) Non-contact human sleep physiological parameter detection sensor transduction unit
JPH0519970B2 (en)
JPS56160198A (en) Electroacoustic transducer
JPS6442460U (en)
RU2110778C1 (en) Pressure and temperature sensitive element
JP4894363B2 (en) Acceleration sensor
JP3419408B2 (en) Strain detector
JPS62153765A (en) Laminated type piezoelectric ceramic element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080621

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 14