JPS62153765A - Laminated type piezoelectric ceramic element - Google Patents

Laminated type piezoelectric ceramic element

Info

Publication number
JPS62153765A
JPS62153765A JP60294863A JP29486385A JPS62153765A JP S62153765 A JPS62153765 A JP S62153765A JP 60294863 A JP60294863 A JP 60294863A JP 29486385 A JP29486385 A JP 29486385A JP S62153765 A JPS62153765 A JP S62153765A
Authority
JP
Japan
Prior art keywords
piezoelectric ceramic
layers
layer
electrodes
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60294863A
Other languages
Japanese (ja)
Other versions
JPH0246907B2 (en
Inventor
Tokiji Nishida
西田 時次
Susumu Sakurai
桜井 進
Teruo Shimizu
輝夫 清水
Atsushi Kawai
淳 河合
Katsuhiro Mizoguchi
勝大 溝口
Takeshi Nishizawa
猛 西沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON DENKI SANEI KK
NEC Corp
NEC Avio Infrared Technologies Co Ltd
Original Assignee
NIPPON DENKI SANEI KK
NEC Corp
NEC Avio Infrared Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON DENKI SANEI KK, NEC Corp, NEC Avio Infrared Technologies Co Ltd filed Critical NIPPON DENKI SANEI KK
Priority to JP60294863A priority Critical patent/JPS62153765A/en
Publication of JPS62153765A publication Critical patent/JPS62153765A/en
Publication of JPH0246907B2 publication Critical patent/JPH0246907B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pressure Sensors (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

PURPOSE:To make it possible to simply apply polarizing processing to a piezoelectric ceramic element by a pair of polarizable electrodes, by constituting the piezoelectric ceramic element by alternately laminating a piezoelectric ceramic layer and a layer of an insulating material having no or weak piezoelectric property. CONSTITUTION:Hollow cylindrical piezoelectric ceramic layers 11 having different diameters and insulating layers 15 having different diameters are laminated in a concentric circular state to constitute a laminated type piezoelectric ceramic element. Each inner electrode 12 for electric output is present on the surface of each piezoelectric ceramic layer 11 contacted with the insulating layer 15 and each inner electrode 12 is connected using a pair of outer electrodes 13 so as to make the piezoelectric ceramic layers 11 parallel. The inner electrodes 12 are connected to the outer electrodes 13 every other one by insulating protective films 14 and lead wires 5 for guiding electric output to the outside are connected to the outer electrodes 13.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、せん新型加速度センサー等に用いて好適の積
層型圧電セラミック素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a laminated piezoelectric ceramic element suitable for use in a torsional type acceleration sensor and the like.

〔従来の技術〕[Conventional technology]

従来のせん新型加速度センサーの一例を第7図に示す。 An example of a conventional acceleration sensor is shown in Fig. 7.

同図Aは一部切開上面図、同図Bは−fH(j。Figure A is a partially cutaway top view, and Figure B is -fH(j.

断面正面図である。これらの図におい′ζ、(1)は圧
電セラミック素子、(2)は錘(おもり)、t3+は支
持体で、+11〜(3)は同心円状に取付けられている
。電極は圧電セラミック素子(11の内外の側面にあり
、分極処理は素子面さくZ)方向に電界を加えて行なわ
れる。Z方向の加速度が加わると、せん断応力が錘(2
)によって素子(11に作用し、素子(11が面内ずれ
歪みを生じるため電極のある面に電1−Iを発4−し、
電荷は電極からり一部111f51を通してコネクタ(
4)に運ばれ、外部へ電気信号として取出される。
It is a cross-sectional front view. In these figures, 'ζ, (1) is a piezoelectric ceramic element, (2) is a weight, t3+ is a support, and +11 to (3) are attached concentrically. The electrodes are located on the inner and outer sides of the piezoelectric ceramic element (11), and polarization is performed by applying an electric field in the direction of the element surface (Z). When acceleration in the Z direction is applied, the shear stress increases with the weight (2
) acts on the element (11), and since the element (11 causes in-plane displacement distortion, an electric current 1-I is generated on the surface where the electrode is located,
The charge is passed through the connector (111f51) from the electrode (
4) and taken out as an electrical signal to the outside.

錘(2)と素子(11、素子(11と支持体(3)は、
通當接着により固定される。
The weight (2) and the element (11), the element (11 and the support body (3)) are
It is fixed by continuous adhesive.

第8図は、第7図のせん新型加速度センサーに用いられ
る圧電セラミック素子の一例を示すものである。同図A
にネオように、出力電極(9)は上述の如く中空円筒状
素子(1)内外の側面に形成され、同図Bにネオように
、分極用電極頭を素子(1)の上面と底面に配しP方向
の電界を加えて分極を行なう。上述の圧電セラミック素
子は、1ikjであるため感度が低く静電容量が小さい
ことから、電気的ノイズ等に影響され易い。加えて、素
子(11と錘(2)の固定には基本的に接着剤を用いる
ため、構造上接着部分が特に弱くなっており、感度を向
上させる目的で錘(2)の重量を増加させることは、共
振周波数の低下だけでな(接着部分の一1dの強度低下
を引き起こし、耐加速度ifr’l性を小さくしたり加
速度センサーのサイズや正量の増大等の欠点を生じさせ
る。
FIG. 8 shows an example of a piezoelectric ceramic element used in the sliding type acceleration sensor shown in FIG. 7. Same figure A
As shown in Neo in Figure B, the output electrodes (9) are formed on the inner and outer sides of the hollow cylindrical element (1) as described above, and as shown in Neo in Figure B, the polarization electrodes are placed on the top and bottom surfaces of the element (1). Polarization is performed by applying an electric field in the P direction. The piezoelectric ceramic element described above has low sensitivity and small capacitance because it is 1 ikj, and is therefore easily affected by electrical noise and the like. In addition, because adhesive is basically used to fix the element (11) and the weight (2), the adhesive part is particularly weak due to the structure, so the weight of the weight (2) is increased in order to improve sensitivity. This not only causes a decrease in the resonant frequency, but also causes a decrease in the strength of the bonded portion, resulting in disadvantages such as a decrease in acceleration resistance and an increase in the size and mass of the acceleration sensor.

上述の方法に対し、積層型圧電セラミック素子を用いて
感度を向上させる方法は、上記欠点を伴わずに済む。第
4及び第5図に、せん新型加速度センザーに用いる積層
型圧電セラミック素子の一例をンIりず。この積層型圧
電セラミック素子は、適当形状の圧電セラミックス(1
1)を複数枚積み車ねたもので、各層に施しである出力
用電極(12)を並列接続することにより、感度は単層
のものに比べ積層枚数に比例して高くなる。第4図の素
子は中空円筒状の圧電セラミックスを同心円状に積層し
たもので、同図Aは上面図、同図Bは一部切断斜視図で
ある。分極処理は、同図Bに矢印で示すように、素子の
上面及び底面に垂直な方向に行なわれており隣接層では
分極方向は反対である。
In contrast to the above-mentioned methods, the method of improving sensitivity using a laminated piezoelectric ceramic element does not have the above-mentioned drawbacks. Figures 4 and 5 show an example of a laminated piezoelectric ceramic element used in a new type acceleration sensor. This laminated piezoelectric ceramic element is made of piezoelectric ceramics (1
1) is stacked in multiple layers, and by connecting output electrodes (12) in parallel to each layer, the sensitivity increases in proportion to the number of layers stacked compared to a single layer. The element shown in FIG. 4 is made by laminating hollow cylindrical piezoelectric ceramics concentrically, and FIG. 4A is a top view, and FIG. 4B is a partially cutaway perspective view. The polarization process is performed in a direction perpendicular to the top and bottom surfaces of the element, as indicated by the arrows in FIG. B, and the polarization direction is opposite in adjacent layers.

各圧電セラミックス(11)の電気出力を得るための内
部電極(12)は、各圧電セラミックス(11)の間の
接合面に設けられる。内部電極(12)が露出した積層
端面において、絶縁保護III(14)で内部電極(1
2)を1つおきに被覆した後、例えば銀ペースト等の導
電性材料をその上に塗布して内部電極(12)を1つお
きに接続し、1対の外部電極(13)とする。1対の外
部電極(13)は互いに異なる極性の内部電極に接続し
、積層数に比例した電気出力を得るようにする。
An internal electrode (12) for obtaining the electrical output of each piezoelectric ceramic (11) is provided on the joint surface between each piezoelectric ceramic (11). At the stacked end face where the internal electrode (12) is exposed, the internal electrode (12) is covered with insulation protection III (14).
After coating every other electrode (2), a conductive material such as silver paste is applied thereon to connect every other internal electrode (12) to form a pair of external electrodes (13). A pair of external electrodes (13) are connected to internal electrodes of mutually different polarities so as to obtain an electrical output proportional to the number of laminated layers.

第5図の素子は同一リング形状の圧電セラミックスを高
さ方向に複数枚積み重ねたもので、同図Aは上面図、同
図Bは一部切断斜視図である。内部電極(12)は各圧
電セラミックス(11)の間の接合面にあり、内部電極
の接続方法等は第4図の場合と同様である。このように
、せん新型加速度センサーに用いる積層型圧電セラミッ
ク素子は、分極軸方向と電気軸方向が同じでなり9o°
直交しており、パイロ電気出力の影響が少ないため周囲
温度変化による電気的ノイズの少ない商感度の加速度セ
ンサーが得られる反面、分極処理に出方用の内部電極の
ほかに分極用の電、極を設ける必要がある。
The element shown in FIG. 5 is made by stacking a plurality of piezoelectric ceramics having the same ring shape in the height direction, and FIG. 5A is a top view, and FIG. 5B is a partially cutaway perspective view. The internal electrodes (12) are located on the joint surfaces between the piezoelectric ceramics (11), and the method of connecting the internal electrodes is the same as that shown in FIG. In this way, the laminated piezoelectric ceramic element used in the shear type acceleration sensor has the polarization axis direction and the electric axis direction the same, and has an angle of 9°.
Since they are orthogonal to each other and are less affected by the pyroelectric output, it is possible to obtain an acceleration sensor with low electrical noise caused by changes in ambient temperature and commercial sensitivity. It is necessary to provide

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

単層の圧電セラミック素子では、例えば第8図Aのよう
に出力電極(9)を設けると共にこれと直交する面に第
8図Bのように分極用電極αωを設け°C分極処理すれ
ばよい。しかし、積層型圧電セラミック素子の場合は、
例えば第5図Bのように分極する方向を1層おきに逆に
する必要があるので、第6図に示すように、各層ごとに
分極用電極(101を取付は各層について分極を行なわ
なければならない。同図中、Pl及びP2は逆の分極方
向を示す。
In the case of a single-layer piezoelectric ceramic element, for example, an output electrode (9) may be provided as shown in FIG. 8A, and a polarization electrode αω may be provided on a plane perpendicular to this as shown in FIG. 8B, and polarization treatment may be performed at °C. . However, in the case of laminated piezoelectric ceramic elements,
For example, as shown in Figure 5B, it is necessary to reverse the direction of polarization for every other layer, so as shown in Figure 6, polarization electrodes (101) must be attached to each layer for each layer. In the figure, Pl and P2 indicate opposite polarization directions.

また、隣接する層に加える電圧が逆になるので、成る圧
電セラミックス層に加える分極電圧が隣接する圧電セラ
ミックス層に影響を及ぼす。特に、グリーンシーI・法
等によって製造された積層型圧電セラミック素子の圧電
セラミックス1層の厚さは0.5m以下と薄いため、そ
の1屑ごとに分極用電極を均一に施すことは困難である
Furthermore, since the voltages applied to adjacent layers are reversed, the polarization voltage applied to the piezoelectric ceramic layer affects the adjacent piezoelectric ceramic layer. In particular, since the thickness of a single layer of piezoelectric ceramic in a multilayer piezoelectric ceramic element manufactured by the Green Sea I method is as thin as 0.5 m or less, it is difficult to uniformly apply polarizing electrodes to each scrap. be.

また、圧電セラミックスを積み重ねる前に分極処理する
ことは、接着による積層の場合、圧電セラミックスのキ
ュリ一点以下の温度で硬化して分極を消失させないこと
、1層の厚さを余り薄くできないこと等の制約を受ける
。特に、グリーンシート法等による積層の場合、積層化
方法として熱プレスを用いるため高温にさらされて分極
が消失してしまうので、せん断効果を利用することがで
きなかった。
In addition, polarization treatment before stacking piezoelectric ceramics is important because, in the case of lamination by adhesive, the piezoelectric ceramics do not harden at a temperature below one Curie point and lose their polarization, and the thickness of one layer cannot be made too thin. subject to restrictions. In particular, in the case of lamination by the green sheet method or the like, since a hot press is used as the lamination method, polarization disappears due to exposure to high temperatures, so it has not been possible to utilize the shear effect.

(問題点を解決するための手段〕 本発明は、圧′市セラミックスの1−と1上電11のな
い又は弱い絶縁材料の層(以上「絶縁)−」という。)
を交JT−に積み市ねて積Ivi型圧電セラミック素子
とするごとにより、上述の問題点を解決した。
(Means for Solving the Problems) The present invention provides a layer of insulating material (hereinafter referred to as "insulation") with no or weak electrical conductor 11 on the 1- and 1-layers of pressure-sensitive ceramics.
The above-mentioned problems were solved by stacking the above-mentioned piezoelectric ceramic elements into a multilayer Ivi type piezoelectric ceramic element.

〔作用〕[Effect]

」二記の構成とすれば、1対の分極性電極で簡単に圧死
セラミック素子を分極処理することが弓部となる。
If the configuration described in 2 is adopted, the bow part will be to simply polarize the crushed ceramic element with a pair of polarizable electrodes.

〔実hfti例〕[Actual hfti example]

第1図は、本発明の第1の実施例を示す一部断面斜視図
である。本例は、径の異なる中空円筒状の圧電セラミッ
クス層と絶縁層を同心円状に積み比ねた積層型圧電セラ
ミック素子である。電気出力用の内部塩&(12)は絶
縁Jti(15)と接する圧電セラミックス層(11)
の表面にあり、各内部電極の接続は、1対の外部′電極
(I3)を用いて各1−の圧電セラミックス(11)が
1層列になるように接続する。すなわち、一方の外部゛
電極には内11電極の一方の極同士を、他方の外部電極
には内部′!i極の他方の極同士を接続する。外部電極
(13)には、従来と同様に絶縁保護膜(14)により
内部塩41t(12)を1つおきに接続する。また、外
部電極(13)には電気出力を外部に導(ためリート線
(5)が接続される。このような構造の++:奄セクセ
ラミック素子、せん断効果による電気出力を得るための
分極処理は、1層おきに分極方向を逆にする必要がない
ので、素子の上面と底面に着脱iJ能な分極用電極を取
付は直流電圧を印加するだけでよい。
FIG. 1 is a partially sectional perspective view showing a first embodiment of the present invention. This example is a laminated piezoelectric ceramic element in which hollow cylindrical piezoelectric ceramic layers and insulating layers having different diameters are stacked concentrically. Internal salt for electrical output & (12) is piezoelectric ceramic layer (11) in contact with insulation Jti (15)
The internal electrodes are connected using a pair of external electrodes (I3) so that each 1- piezoelectric ceramic (11) is connected in one layer. That is, one of the 11 inner electrodes is connected to one external electrode, and the internal electrode is connected to the other external electrode. Connect the other poles of the i-pole. Every other internal salt 41t (12) is connected to the external electrode (13) by an insulating protective film (14) as in the conventional case. In addition, a rieet wire (5) is connected to the external electrode (13) in order to conduct the electrical output to the outside. Since there is no need to reverse the polarization direction for every other layer, it is only necessary to attach removable polarization electrodes to the top and bottom surfaces of the device by applying a DC voltage.

第1図中の矢印が分極方向をボし、圧電セラミックス(
11)は同方向に分極され、絶縁層(15)には分揃は
生じないか又は生じたとしても弱い分極が生じるだけで
ある。分極時の分極用電掩は、内部塩&(12)と直接
接触しないように素子の上面及び底面を絶縁被覆(コー
ティング)するか絶縁板を挾むなどして絶縁保護してお
き、内部電極(12)を通して分極用電極同士が短絡し
ないようにする。
The arrows in Figure 1 indicate the direction of polarization, and piezoelectric ceramics (
11) are polarized in the same direction, and polarization does not occur in the insulating layer (15), or even if it occurs, only weak polarization occurs. During polarization, the polarization shield should be insulated and protected by coating the top and bottom surfaces of the element to avoid direct contact with the internal salt & (12), or by sandwiching an insulating plate. (12) to prevent the polarization electrodes from shorting each other.

第2図は、本発明の第2の実施例を示す一部断面斜視図
である0本例は、同一の薄いリング状の圧電セラミック
ス層と絶縁層を几さ方向に交互に積み重ねた積層型圧電
セラミック素子である。第1図と対応する部分には同一
の符号を付して説明を省略する。このような構造の素子
の分極は、素子の内壁と外壁に4説弓部な分極用電極を
取付けて、図中矢印で示すように放射状の方向に電界を
加えるだけでよい。ただし、分極用電極を取付ける素子
の内外壁には、第1図の場合と同様な理由により絶縁保
護をしておく。
FIG. 2 is a partially cross-sectional perspective view showing a second embodiment of the present invention. This embodiment is a laminated type in which thin ring-shaped piezoelectric ceramic layers and insulating layers are alternately stacked in the direction of thickness. It is a piezoelectric ceramic element. Components corresponding to those in FIG. 1 are designated by the same reference numerals, and their explanation will be omitted. To polarize an element having such a structure, it is sufficient to attach polarization electrodes to the inner and outer walls of the element and apply an electric field in the radial direction as shown by the arrows in the figure. However, the inner and outer walls of the element to which the polarization electrodes are attached are provided with insulation protection for the same reason as in the case of FIG.

第3図は、本発明による積層型圧電セラミック素子を用
いたせん凹型加速度センサーの一例をポし、同図Aは上
面図、同図Bは一部断面正面図である。絶縁層(15)
と圧電セラミックスハ!(11)が交JLに積層され、
電気出力を取出すための内!’lS電極(12)は積層
面にあり、内部電極(12)に挟まれた圧電セラミック
スjti(11)を並列に接続するため、内部電極(1
2)の端面を絶縁保護膜(14)で1層おきに環い、そ
の上に外部電極(13)を設けである。最外部と最内部
の絶縁層(15)は他層より厚めとし、外部電極(13
)と錘(2)、外部′ai極(13)と支持体(3)が
接触しないように余裕をもたせる。上述の代わりに、外
部電極(13)を形成後、睡(2)及び支持体(3)に
接触する外部!1(13)の部分を絶縁保護してもよい
。リード線(5)の一方はベース(8)に接続して接地
し、他方はコネクタ(4)に接続する。図のZ方向に加
速度が加わると、電気出力を発生しこれを信号として外
部に伝える。
FIG. 3 shows an example of a recessed acceleration sensor using a laminated piezoelectric ceramic element according to the present invention, in which FIG. 3A is a top view and FIG. 3B is a partially sectional front view. Insulating layer (15)
And piezoelectric ceramics ha! (11) is stacked on the intersection JL,
Inside to take out electrical output! The 'lS electrode (12) is located on the laminated surface and connects the piezoelectric ceramic jti (11) sandwiched between the internal electrodes (12) in parallel.
The end face of 2) is surrounded every other layer with an insulating protective film (14), and an external electrode (13) is provided thereon. The outermost and innermost insulating layers (15) are thicker than other layers, and the outer electrode (13)
) and the weight (2), and the external 'ai electrode (13) and the support (3), so that there is enough room to prevent them from coming into contact with each other. Instead of the above, after forming the external electrode (13), the external! 1 (13) may be insulated and protected. One of the lead wires (5) is connected to the base (8) and grounded, and the other is connected to the connector (4). When acceleration is applied in the Z direction in the figure, an electrical output is generated and transmitted as a signal to the outside.

なお、本発明による積層型圧電セラミック素子は、圧電
セラミックス層と絶縁層とを交互に積層するものであれ
ば、その形状を上述の実施例に限る必要はない。
Note that the shape of the laminated piezoelectric ceramic element according to the present invention does not need to be limited to the above-described embodiments, as long as piezoelectric ceramic layers and insulating layers are alternately laminated.

〔発明の効果〕〔Effect of the invention〕

以上説明したとおり、本発明によれば、1対の分極用電
極で素子全体を一度に分1できるので、分極用fi極の
取付けや分極処理に要する時間を石縮できるばかりでな
く、層の厚さが薄い場合でも分極’41を度を落とすこ
となく分極処理ができる利点がある。
As explained above, according to the present invention, the entire device can be divided into one part at a time with a pair of polarizing electrodes, which not only reduces the time required for attaching the polarizing fi electrodes and polarizing process, but also reduces the amount of time required for the polarization process. Even when the thickness is thin, there is an advantage that polarization processing can be performed without reducing the degree of polarization '41.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例を示す図、第2図は本発明
の第2実施例を丞す図、第3図は本発明を用いたせん置
型加速度センサーの例を示す図、第4及び第5図は従来
の積層型圧電セラミック素子の2つの例を示す図、第6
図は第5図の素子の分極状況をボず説明図、第7図は従
来のせん凹型加速度センサーの例を示す図、第8図は第
7図のものに用いられる圧電セラミック素子の例を示す
図である。 (11)・・・圧電セラミックス層、(15)・・・絶
縁材料の層(絶縁層)、(12)・・・内部電極、(1
3)・・・外部電極。 イし埋入 伊藤 貞 同  松隈秀盛
FIG. 1 is a diagram showing a first embodiment of the present invention, FIG. 2 is a diagram showing a second embodiment of the present invention, and FIG. 3 is a diagram showing an example of a stationary acceleration sensor using the present invention. 4 and 5 are diagrams showing two examples of conventional laminated piezoelectric ceramic elements, and FIG.
The figure is an explanatory diagram of the polarization state of the element in Figure 5, Figure 7 is a diagram showing an example of a conventional recessed acceleration sensor, and Figure 8 is an example of a piezoelectric ceramic element used in the one in Figure 7. FIG. (11)...Piezoelectric ceramic layer, (15)...Insulating material layer (insulating layer), (12)...Internal electrode, (1
3)...External electrode. Implantation Sadado Ito Hidemori Matsukuma

Claims (1)

【特許請求の範囲】 1、複数の圧電セラミックスの層と複数の絶縁材料の層
を交互に積み重ね、上記各セラミックス層と上記絶縁層
の接する面に内部電極を形成し、上記セラミックス層と
上記絶縁層の積層面に露出した内部電極のうち、互いに
異なる内部電極を1つおきに接続した1対の外部電極を
設けたことを特徴とする積層型圧電セラミック素子。 2、上記複数の圧電セラミックス層と上記複数の絶縁層
は互いに径の異なる中空円筒状であり、上記セラミック
ス層と上記絶縁層の積層端面に上記内部電極が露出した
特許請求の範囲1項記載の積層型圧電セラミック素子。 3、上記複数の圧電セラミックス層と上記複数の絶縁層
は同一の薄いリング状であり、上記セラミックス層と上
記絶縁層の積層側面に上記内部電極が露出した特許請求
の範囲1項記載の積層型圧電セラミック素子。
[Claims] 1. A plurality of layers of piezoelectric ceramics and a plurality of layers of insulating material are stacked alternately, an internal electrode is formed on a surface where each of the ceramic layers and the insulating layer are in contact with each other, and the ceramic layer and the insulating layer are stacked alternately. A multilayer piezoelectric ceramic element characterized in that a pair of external electrodes are provided in which different internal electrodes among the internal electrodes exposed on the laminated surface of the layers are connected to every other internal electrode. 2. The plurality of piezoelectric ceramic layers and the plurality of insulating layers are hollow cylindrical shapes having different diameters, and the internal electrode is exposed at the end surface of the lamination of the ceramic layer and the insulating layer. Laminated piezoelectric ceramic element. 3. The multilayer type according to claim 1, wherein the plurality of piezoelectric ceramic layers and the plurality of insulating layers have the same thin ring shape, and the internal electrode is exposed on the side surface of the laminated layer of the ceramic layer and the insulating layer. Piezoelectric ceramic element.
JP60294863A 1985-12-27 1985-12-27 Laminated type piezoelectric ceramic element Granted JPS62153765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60294863A JPS62153765A (en) 1985-12-27 1985-12-27 Laminated type piezoelectric ceramic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60294863A JPS62153765A (en) 1985-12-27 1985-12-27 Laminated type piezoelectric ceramic element

Publications (2)

Publication Number Publication Date
JPS62153765A true JPS62153765A (en) 1987-07-08
JPH0246907B2 JPH0246907B2 (en) 1990-10-17

Family

ID=17813228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60294863A Granted JPS62153765A (en) 1985-12-27 1985-12-27 Laminated type piezoelectric ceramic element

Country Status (1)

Country Link
JP (1) JPS62153765A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016080612A (en) * 2014-10-21 2016-05-16 セイコーエプソン株式会社 Force detection device and robot
JP2017534895A (en) * 2014-09-02 2017-11-24 エーエスエムエル ネザーランズ ビー.ブイ. Sensor, object positioning system, lithographic apparatus, and device manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011001515A1 (en) * 2009-06-30 2012-12-10 富士通株式会社 Acceleration sensor, vibration power generation device, and method of manufacturing acceleration sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53120478A (en) * 1977-03-29 1978-10-20 Kobayashi Rigaku Kenkiyuushiyo Acceleration type oscillation pick up

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53120478A (en) * 1977-03-29 1978-10-20 Kobayashi Rigaku Kenkiyuushiyo Acceleration type oscillation pick up

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017534895A (en) * 2014-09-02 2017-11-24 エーエスエムエル ネザーランズ ビー.ブイ. Sensor, object positioning system, lithographic apparatus, and device manufacturing method
US10061213B2 (en) 2014-09-02 2018-08-28 Asml Netherlands B.V. Sensor, object positioning system, lithographic apparatus and device manufacturing method
JP2016080612A (en) * 2014-10-21 2016-05-16 セイコーエプソン株式会社 Force detection device and robot

Also Published As

Publication number Publication date
JPH0246907B2 (en) 1990-10-17

Similar Documents

Publication Publication Date Title
US4704774A (en) Ultrasonic transducer and method of manufacturing same
GB1521189A (en) Stacks of piezo-electric ceramic laminations
US6834419B2 (en) Method of producing sensor element
JPS58196068A (en) Electrostrictive effect element
JPH04253382A (en) Electrostrictive effect element
JPH11341838A (en) Laminated-type piezoelectric actuator
JPS62153765A (en) Laminated type piezoelectric ceramic element
JP2001291906A (en) Flexible piezoelectric element
JPH0740613B2 (en) Method for manufacturing laminated piezoelectric material
JPS62211974A (en) Laminated piezoelectric element and manufacture thereof
JPS60196659A (en) Resistance measuring electrode for sensor
JPS61103399A (en) Ultrasonic probe and its manufacture
JPS6310594B2 (en)
JP3250918B2 (en) Multilayer piezoelectric element
JPH06224483A (en) Laminated piezoelectric element
JPS5855756Y2 (en) Languevent type vibrator
JPH03106082A (en) Laminated piezoelectric actuator element
JP2613408B2 (en) Multilayer piezoelectric actuator
JPS61102078A (en) Laminated piezo-electric element
JPH0657080B2 (en) Ultrasonic probe and method of manufacturing the same
JPH02125674A (en) Electrostrictive element
JPH09162451A (en) Piezo-electric multilayered body
JPH02164085A (en) Electrostriction effect element
JPH0314058Y2 (en)
JPH09331685A (en) Laminated piezoelectric actuator