JPH0238582B2 - - Google Patents

Info

Publication number
JPH0238582B2
JPH0238582B2 JP56043232A JP4323281A JPH0238582B2 JP H0238582 B2 JPH0238582 B2 JP H0238582B2 JP 56043232 A JP56043232 A JP 56043232A JP 4323281 A JP4323281 A JP 4323281A JP H0238582 B2 JPH0238582 B2 JP H0238582B2
Authority
JP
Japan
Prior art keywords
ester
catalyst
acid
esters
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56043232A
Other languages
Japanese (ja)
Other versions
JPS57158748A (en
Inventor
Shinsuke Fukuoka
Masazumi Chono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP56043232A priority Critical patent/JPS57158748A/en
Publication of JPS57158748A publication Critical patent/JPS57158748A/en
Publication of JPH0238582B2 publication Critical patent/JPH0238582B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、カルバミン酸エステル類を触媒の存
在下に熱分解してイソシアナートを製造する方法
に関するものである。 イソシアナート類はポリウレタンやカルバメー
ト系農薬などの原料として工業的に有用な物質で
あり、特にトリレンジイソシアナート(TDI)、
4,4′―ジフエニルメタンジイソシアナート
(MDI)、ヘキサメチレンジイソシアナート等は
大量に生産されている。これらのイソシアナート
類は通常、対応するアミン類とホスゲンとの反応
によつて製造されているが、猛毒性のホスゲンを
使用すること、および腐食性の塩化水素を大量に
副生することなどから、ホスゲンを用いないで比
較的簡単に、かつ安価にイソシアナート類を製造
する方法が望まれている。この一つの方法とし
て、カルバミン酸エステル類の熱分解による方法
が提案されている。 触媒を用いてカルバミン酸エステル類を熱分解
してイソシアナート類を製造する方法としては、
例えば塩化第二鉄などのルイス酸の存在下に400
〜600℃という高温の気相中で行なう方法(特公
昭46―17773)、重金属または重合属化合物を用い
る方法(特開昭51―19721)、B,B,A,
A,B,Bおよび族金属の化合物を溶媒
中に溶解させた触媒を用いる方法(特開昭52―
19624)、アルカリ土類金属または無機化合物を用
いる方法(特開昭54―88201)などが提案されて
いる。 しかしながら、これらの方法を用いた場合で
も、高沸点副生物が多い、材質の腐食が著しいな
どの欠点があり、また溶媒中に実質的に溶解させ
た金属化合物を触媒として用いる場合は、特に高
沸点イソシアナート類を製造する時など生成物と
触媒の分離が困難となるなどの欠点を有してい
る。 そこで、本発明者らは、カルバミン酸エステル
類を熱分解してイソシアナート類を製造する方法
において、生成物と触媒の分離が容易で、しかも
生成するイソシアナート類の副反応による高沸点
物質の生成を抑え、収率よくイソシアナートを得
る方法について鋭意検討した結果、本発明に到達
した。 すなわち、本発明は、 (a) チタン、ジルコニウム、ハフニウム、ケイ素
の炭化物、及び (b) チタン、ジルコニウム、ハフニウム、ケイ
素、ゲルマニウムの窒化物から選ばれた1種ま
たは2種以上の触媒の存在下に、イソシアナー
トに対して不活性で、かつ触媒を実質的に溶解
させない溶媒中で、カルバミン酸エステル類を
熱分解することを特徴とするイソシアナートの
製造法である。 本発明の原料として用いられるカルバミン酸エ
ステル類とは、一般式R(NHCOOR')oまたは
(R'NHCOO)oRあるいはR(NHCOSR')oまたは
(R'NHCOS)oRで表わされる化合物である。 ここで、Rはn価(nは1〜4の整数)の飽和
または不飽和の脂肪族基および脂環族基、芳香族
基、アラルキル基から選ばれた有機基を表わし、
R'は一価の飽和または不飽和の脂肪族基および
脂環族基、芳香族基、アラルキル基から選ばれた
有機基を表わす。また、これらの有機基はイソシ
アナート基と反応しない他の置換基、例えば、ハ
ロゲン原子、ニトロ基、シアノ基、アルキル基、
アルコキシ基、アシル基、アシロキシ基、カルバ
モイル基などを含んでいてもよいし、イソシアナ
ート基自身を含んでいてもよい。また、イソシア
ナート基と反応しない二価の官能基、例えば、エ
ーテル基、チオエーテル基、カルボニル基、カル
ボキシル基、スルホン基等を含んでいてもよい。 このようなカルバミン酸エステル類としては、
例えば、メチルカルバニレート、エチルカルバニ
レート、プロピルカルバニレート、ブチルカルバ
ニレート、シクロヘキシルカルバニレート、フエ
ニルカルバニレート等、式
The present invention relates to a method for producing isocyanates by thermally decomposing carbamate esters in the presence of a catalyst. Isocyanates are industrially useful substances as raw materials for polyurethane and carbamate pesticides, especially tolylene diisocyanate (TDI),
4,4'-diphenylmethane diisocyanate (MDI), hexamethylene diisocyanate, etc. are produced in large quantities. These isocyanates are usually produced by reacting the corresponding amines with phosgene, but this method is difficult to manufacture due to the use of highly toxic phosgene and the production of large amounts of corrosive hydrogen chloride. There is a need for a method for producing isocyanates relatively easily and inexpensively without using phosgene. As one method for this, a method using thermal decomposition of carbamate esters has been proposed. A method for producing isocyanates by thermally decomposing carbamate esters using a catalyst is as follows:
400 in the presence of a Lewis acid such as ferric chloride
A method conducted in a gas phase at a high temperature of ~600°C (Japanese Patent Publication No. 46-17773), a method using heavy metals or polymeric compounds (Japanese Patent Publication No. 51-19721), B, B, A,
A method using a catalyst in which compounds of group metals A, B, B and group metals are dissolved in a solvent (Japanese Patent Application Laid-Open No. 1986-
19624) and a method using an alkaline earth metal or an inorganic compound (Japanese Patent Application Laid-Open No. 1988-88201). However, even when these methods are used, there are drawbacks such as high boiling point by-products and significant corrosion of the material.Also, when a metal compound substantially dissolved in a solvent is used as a catalyst, the It has drawbacks such as difficulty in separating the product and catalyst when producing boiling point isocyanates. Therefore, the present inventors developed a method for producing isocyanates by thermally decomposing carbamate esters, which allows for easy separation of the product and catalyst, and also eliminates high-boiling substances due to side reactions of the produced isocyanates. As a result of extensive research into a method for suppressing the formation and obtaining isocyanate in good yield, the present invention was achieved. That is, in the presence of one or more catalysts selected from (a) carbides of titanium, zirconium, hafnium, and silicon, and (b) nitrides of titanium, zirconium, hafnium, silicon, and germanium, A method for producing isocyanates is characterized in that carbamate esters are thermally decomposed in a solvent that is inert to isocyanates and does not substantially dissolve the catalyst. Carbamate esters used as raw materials in the present invention are compounds represented by the general formula R(NHCOOR') o or (R'NHCOO) o R or R(NHCOSR') o or (R'NHCOS) o R. be. Here, R represents an organic group selected from an n-valent (n is an integer of 1 to 4) saturated or unsaturated aliphatic group, alicyclic group, aromatic group, and aralkyl group,
R' represents an organic group selected from monovalent saturated or unsaturated aliphatic groups, alicyclic groups, aromatic groups, and aralkyl groups. In addition, these organic groups may contain other substituents that do not react with the isocyanate group, such as halogen atoms, nitro groups, cyano groups, alkyl groups,
It may contain an alkoxy group, an acyl group, an acyloxy group, a carbamoyl group, etc., or may contain an isocyanate group itself. It may also contain divalent functional groups that do not react with isocyanate groups, such as ether groups, thioether groups, carbonyl groups, carboxyl groups, and sulfone groups. As such carbamate esters,
For example, methyl carbanilate, ethyl carbanilate, propyl carbanilate, butyl carbanilate, cyclohexyl carbanilate, phenyl carbanilate, etc.

【式】(R'は前記のとおり) で示されるカルバニレート類;o―またはm―ま
たはp―トリルカルバミン酸のメチルエステル、
エチルエステル、フエニルエステル等のトリルカ
ルバミン酸エステル類;o―またはm―またp―
フエニレンジカルバミン酸のジメチルエステル、
ジエチルエステル、ジフエニルエステル等のフエ
ニレンジカルバミン酸ジエステル類;2,4―ま
たは2,6―トリレンジカルバミン酸のジメチル
エステル、ジエチルエステル、ジブチルエステ
ル、ジフエニルエステル等のトリレンジカルバミ
ン酸ジエステル類;2,2'―または2,4'―また
は4,4'―メチレンビスフエニレンジカルバミン
酸のジメチルエステル、ジエチルエステル、ジブ
チルエステル、ジフエニルエステル等のメチレン
ビスフエニレンジカルバミン酸ジエステル類;式 (R'は前記のとおりで、mは1〜5の整数)で
示されるポリメリツク芳香族カルバミン酸のエス
テル類;1―または2―ナフチルカルバミン酸の
メチルエステル、エチルエステル、ブチルエステ
ル、フエニルエステル等のナフチルカルバミン酸
エステル類;1,4―または1,5―または1,
6―または2,6―ナフチレンジカルバミン酸の
ジメチルエステル、ジエチルエステル、ジブチル
エステル、ジフエニルエステル、等のナフチレン
ジカルバミン酸ジエステル類;エチレンビスカル
バニレート、プロピレンカルバニレート、グリセ
リルトリスカルバニレート、ペンタエリスリルテ
トラキスカルバニレート等の多価アルコールのカ
ルバニレート類;メチルカルバミン酸、エチルカ
ルバミン酸、プロピルカルバミン酸、ブチルカル
バミン酸、アミルカルバミン酸、ヘキシルカルバ
ミン酸、オクチルカルバミン酸、オクタデシルカ
ルバミン酸等のアルキルカルバミン酸のメチルエ
ステル、エチルエステル、プロピルエステル、ブ
チルエステル、フエニルエステル等のアルキルカ
ルバミン酸エステル類;シクロペンチルカルバミ
ン酸、シクロヘキシルカルバミン酸等のメチルエ
ステル、エチルエステル、フエニルエステル等の
脂環族カルバミン酸エステル類;エチレンジカル
バミン酸、トリメチレンジカルバミン酸、テトラ
メチレンジカルバミン酸、ペンタメチレンジカル
バミン酸、ヘキサメチレンジカルバミン酸、2,
2,4―または2,4,4―トリメチルヘキサメ
チレンジカルバミン酸等のジメチルエステル、ジ
エチルエステル、ジブチルエステル、ジフエニル
エステル等のアルキレンジカルバミン酸ジエステ
ル類;メチルシクロヘキサン―2,4―または
2,6―ジカルバミン酸、3―カルバミン酸メチ
ル―3,5,5―トリメチルシクロヘキシルカル
バミン酸、4,4'―メチレンビスシクロヘキシル
カルバミン酸等のジメチルエステル、ジエチルエ
ステル、ジフエニルエステル等の脂環族ジカルバ
ミン酸エステル類;キシリレンジカルバミン酸の
ジメチルエステル、ジエチルエステル、ジフエニ
ルエステル等のアラルキルジカルバミン酸ジエス
テル類;o―またはm―またはp―クロルフエニ
ルカルバミン酸、2,5―または3,4―または
3,5―ジクロルフエニルカルバミン酸等のメチ
ルエステル、、エチルエステル、フエニルエステ
ル等のハロゲン化フエニルカルバミン酸エステル
類;およびこれらの相当するチオールカルバミン
酸エステル類があげられる。これらのカルバミン
酸エステル類は単一のものでもよいし、2種以上
の混合物であつてもよい。 本発明において触媒として用いられるのは、 (a) チタン、ジルコニウム、ハフニウム、ケイ素
の炭化物、及び (b) チタン、ジルコニウム、ハフニウム、ケイ
素、ゲルマニウムの窒化物から選ばれたもので
あつて、より具体的には、TiC、ZrC、HfC、
Si―Cなどの炭化物類およびTiN、ZrN、
Zr3N2、HfN、Si2N3、SiN、Si3N4、Ge3N2
Ce3N4などの窒化物類が用いられる。 これらの炭化物および窒化物を触媒として用い
る場合、単独でもよいし、2種以上であつてもよ
い。さらに複合炭化物または複合窒化物であつて
もよい。また、これらの触媒とカルバミン酸エス
テルとの量比はいくらでもよいが、カルバミン酸
エステルに対して重量で、通常0.001〜100倍量の
触媒を用いるのが好ましい。 本発明の方法は、これらの触媒を実質的に溶解
させず、しかも生成するイソシアナートに対して
不活性な溶媒中で行なわれるが、本発明の触媒は
通常の有機溶媒にほとんどが実質的に不溶性であ
るため、イソシアナートに対して不活性な溶媒で
あれば大部分のものが使用できる。このような溶
媒としては、脂肪族、脂環族または芳香族の置換
または非置換の炭化水素類またはその混合物類が
あり、またエーテル、ケトンおよびエステルのよ
うなある種の酸素化化合物を含まれる。 好ましい溶媒としては、ヘキサン、ヘプタン、
オクタン、ノナン、デカン、n―ヘキサデカン、
n―オクタデカン、エイコサン、スクアラン等の
アルカン類およびこれらに相当するアルケン類;
ベンゼン、トルエン、キシレン、エチルベンゼ
ン、クメン、ジイソプロピルベンゼン、ジブチル
ベンゼン、ナフタリン、低級アルキル置換ナフタ
リン、ドデシルベンゼン等の芳香族炭化水素およ
びアルキル置換芳香族炭化水素類;クロルベンゼ
ン、ジクロルベンゼン、ブロムベンゼン、ジブロ
ムベンゼン、クロルナフタリン、ブロムナフタリ
ン、ニトロベンゼン、ニトロナフタリン等のニト
ロ基およびハロゲンによつて置換された芳香族化
合物類;ジフエニル、置換ジフエニル、ジフエニ
ルメタン、ターフエニル、アンスラセン、フエナ
ンスレン、ジベンジルトルエン各種異性体、トリ
フエニルメタン等の多還炭化水素化合物類;シク
ロヘキサン、エチルシクロヘキサン等の脂環族炭
化水素類;メチルエチルケトン、アセトフエノン
のようなケトン類;ジブチルフタレート、ジヘキ
シルフタレート、ジオクチルフタレート等のエス
テル類;ジフエニルエーテル、ジフエニルサルフ
アイド等のエーテルおよびチオエーテル類;ジメ
チルスルホキシド、ジフエニルスルホキシド等の
スルホキシド類;さらにはシリコン油などがあげ
られる。 本発明の方法は、触媒が実質的に反応容液に不
溶性であるため、生成物との分離が容易であるこ
とが一つの特徴である。このことは蒸留等により
留出させるのが困難な高沸点のイソシアナート類
を製造する場合には特に有利な方法となる。例え
ば、N―フエニルカルバミン酸エチルエステルを
酸触媒の存在下ホルムアルデヒド、トリオキサ
ン、メチラールなどのメチレン化試剤でメチレン
化する場合、メチレン―ビス―(4―フエニルカ
ルバミン酸エチル)以外にベンゼン環を三つ以上
含む多核体のポリカルバミン酸エステルが副生し
てくる。これらの混合カルバミン酸エステルを熱
分解すれば、工業的に重要なクルードMDIを製
造できるが、これらのイソシアナート類は沸点が
高く、触媒を含む反応液から蒸留等によつて留出
させて触媒成分と分離することは困難である。し
かしながら、本発明の方法によれば、反応液から
過などの簡単な操作により触媒成分を容易に分
離できるので、溶解性の金属化合物を触媒に使つ
た場合に起るような生成物への触媒成分の混入な
どは防ぐことができる。 また、本発明の触媒は、反応液中に実質的に溶
解しないため、触媒成分を固定床式にして反応さ
せることも可能であり、これは本発明の好ましい
実施態様の1つである。固定床式の反応の場合は
触媒成分と反応溶液との分離のための特別な操作
は不要なため、工業的に実施する場合には特に有
利である。 本発明の方法を実施する場合、カルバミン酸の
エステル類は対応するイソシアナートとアルコー
ル類に変換されるが、再結合してカルバミン酸エ
ステル類に戻ることを防ぐために、一方の成分を
反応系から除去していく必要がある。この場合、
反応の進行と共に生成してくるこれらの成分のう
ち、低沸点成分を蒸留等により除去分離するのが
好ましい。この分離を促進するために不活性ガ
ス、例えば、窒素、ヘリウム、アルゴン、炭酸ガ
ス、メタン、エタン、プロパン等を単独で、また
は混合して反応系中に導入することも好ましい方
法である。同様な作用をするものとして低沸点の
有機溶媒類、例えば、ジクロルメタン、クロロホ
ルム、四塩化炭素等のハロゲン化炭化水素類、ペ
ンタン、ヘキサン、ヘプタン等の低級炭化水素
類、テトラヒドロフラン、ジオキサン等のエーテ
ル類を用いることもできる。 本発明の方法は回分式でも連続式でも実施でき
る。反応温度は、通常100〜350℃が好ましく、さ
らには150〜300℃がより好ましい。反応時間は、
用いるカルバミン酸エステル類および触媒の種類
および反応温度等によつて異なるが、通常、数分
〜数十時間である。また本方法は通常、常圧で実
施されるが、必要に応じて加圧または減圧下で行
なつてもよい。 次に実施例により本発明をさらに詳細に説明す
るが、本発明は、これらの実施例に限定されるも
のではない。 実施例 1〜9 撹拌装置、温度計、液面以下に延びている窒素
導入口および空気冷却器を設けた4つ口フラスコ
に、溶媒としてブロムナフタリン100gと4,
4′―ジフエニルメタンジイソシアナート(MDIと
略記する)のジカルバミン酸ジエチルエステル10
gと所定の粉末状の触媒0.5gとを入れ、反応混
合物中に窒素を30/時で導入しながら、撹拌下
に250℃で2時間分解反応を行なつた。生成して
くるエタノールは、冷却器頂上よりドライアイス
トラツプに導き捕集した。反応液を高速液体クロ
マトグラフイー、ゲルパーミエーシヨンクロマト
グラフイーおよび赤外線吸収スペクトルにより分
析し、表1のような結果が得られた。
Carbanilate represented by [Formula] (R' is as above); methyl ester of o- or m- or p-tolylcarbamic acid,
Tolylcarbamate esters such as ethyl ester and phenyl ester; o- or m- or p-
dimethyl ester of phenylenedicarbamic acid,
Phenylene dicarbamic acid diesters such as diethyl ester and diphenyl ester; tolylene dicarbamic acid diesters such as dimethyl ester, diethyl ester, dibutyl ester and diphenyl ester of 2,4- or 2,6-tolylene dicarbamic acid ; Methylenebisphenylenedicarbamic acid diesters such as dimethyl ester, diethyl ester, dibutyl ester, diphenyl ester of 2,2'- or 2,4'- or 4,4'-methylenebisphenylenedicarbamic acid; formula (R' is as described above, m is an integer of 1 to 5) Polymeric aromatic carbamic acid esters; methyl ester, ethyl ester, butyl ester, phenyl ester of 1- or 2-naphthylcarbamic acid Naphthylcarbamate esters such as; 1,4- or 1,5- or 1,
Naphthylene dicarbamic acid diesters such as dimethyl ester, diethyl ester, dibutyl ester, diphenyl ester of 6- or 2,6-naphthylene dicarbamic acid; ethylene biscarbanilate, propylene carbanilate, glyceryl tricarbanilate, Carbanilates of polyhydric alcohols such as pentaerythryl tetrakis carbanilate; alkyl carbamates such as methylcarbamate, ethylcarbamate, propylcarbamate, butylcarbamate, amylcarbamate, hexylcarbamate, octylcarbamate, octadecylcarbamate, etc. Alkyl carbamate esters such as acid methyl ester, ethyl ester, propyl ester, butyl ester, phenyl ester; alicyclic carbamic acid such as methyl ester, ethyl ester, phenyl ester, etc. of cyclopentyl carbamate, cyclohexyl carbamate, etc. Esters; ethylenedicarbamic acid, trimethylenedicarbamic acid, tetramethylenedicarbamic acid, pentamethylenedicarbamic acid, hexamethylenedicarbamic acid, 2,
Alkylene dicarbamic acid diesters such as dimethyl ester, diethyl ester, dibutyl ester, diphenyl ester such as 2,4- or 2,4,4-trimethylhexamethylene dicarbamic acid; methylcyclohexane-2,4- or 2, Alicyclic dicarbamic acids such as dimethyl esters, diethyl esters, diphenyl esters such as 6-dicarbamic acid, methyl 3-carbamate-3,5,5-trimethylcyclohexylcarbamic acid, and 4,4'-methylenebiscyclohexylcarbamic acid Esters; aralkyl dicarbamic acid diesters such as dimethyl ester, diethyl ester, diphenyl ester of xylylene dicarbamic acid; o- or m- or p-chlorophenylcarbamic acid, 2,5- or 3,4- or Examples include methyl esters such as 3,5-dichlorophenylcarbamic acid, halogenated phenylcarbamate esters such as ethyl ester and phenyl ester; and thiolcarbamate esters corresponding to these. These carbamate esters may be a single type or a mixture of two or more types. The catalyst used in the present invention is selected from (a) carbides of titanium, zirconium, hafnium, and silicon, and (b) nitrides of titanium, zirconium, hafnium, silicon, and germanium. Specifically, TiC, ZrC, HfC,
Carbides such as Si-C, TiN, ZrN,
Zr 3 N 2 , HfN, Si 2 N 3 , SiN, Si 3 N 4 , Ge 3 N 2 ,
Nitrides such as Ce 3 N 4 are used. When these carbides and nitrides are used as catalysts, they may be used alone or in combination of two or more. Furthermore, it may be a composite carbide or a composite nitride. Moreover, although the quantitative ratio of these catalysts and the carbamate ester may be arbitrary, it is preferable to use the catalyst in an amount of usually 0.001 to 100 times the weight of the carbamate ester. The process of the present invention is carried out in a solvent that does not substantially dissolve these catalysts and is inert to the isocyanate produced. Since it is insoluble, most solvents that are inert to isocyanates can be used. Such solvents include aliphatic, cycloaliphatic or aromatic substituted or unsubstituted hydrocarbons or mixtures thereof, and also include certain oxygenated compounds such as ethers, ketones and esters. . Preferred solvents include hexane, heptane,
Octane, nonane, decane, n-hexadecane,
Alkanes such as n-octadecane, eicosane, squalane, and alkenes corresponding to these;
Aromatic hydrocarbons and alkyl-substituted aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, cumene, diisopropylbenzene, dibutylbenzene, naphthalene, lower alkyl-substituted naphthalene, dodecylbenzene; chlorobenzene, dichlorobenzene, bromobenzene, Aromatic compounds substituted with nitro groups and halogens such as dibromobenzene, chlornaphthalene, bromnaphthalene, nitrobenzene, nitronaphthalene; diphenyl, substituted diphenyl, diphenylmethane, terphenyl, anthracene, phenanthrene, various isomers of dibenzyltoluene , polycyclic hydrocarbon compounds such as triphenylmethane; alicyclic hydrocarbons such as cyclohexane and ethylcyclohexane; ketones such as methyl ethyl ketone and acetophenone; esters such as dibutyl phthalate, dihexyl phthalate, and dioctyl phthalate; diphenyl Examples include ethers and thioethers such as ether and diphenyl sulfide; sulfoxides such as dimethyl sulfoxide and diphenyl sulfoxide; and silicone oil. One feature of the method of the present invention is that the catalyst is substantially insoluble in the reaction solution, so that it can be easily separated from the product. This is a particularly advantageous method when producing high-boiling point isocyanates that are difficult to distill by distillation or the like. For example, when N-phenylcarbamate ethyl ester is methylenated with a methylenating reagent such as formaldehyde, trioxane, or methylal in the presence of an acid catalyst, a benzene ring is added in addition to methylene-bis-(4-phenylcarbamate ethyl). A polycarbamate containing three or more polycarbamates is produced as a by-product. Crude MDI, which is industrially important, can be produced by thermally decomposing these mixed carbamic acid esters. However, these isocyanates have a high boiling point, and are distilled from the reaction solution containing the catalyst by distillation. It is difficult to separate the components. However, according to the method of the present invention, the catalyst component can be easily separated from the reaction solution by a simple operation such as filtration, so that the catalyst component can be easily separated from the product by a simple process such as filtration. Contamination of ingredients can be prevented. Further, since the catalyst of the present invention is not substantially dissolved in the reaction solution, it is also possible to react the catalyst components in a fixed bed type, which is one of the preferred embodiments of the present invention. In the case of a fixed bed type reaction, no special operation is required for separating the catalyst component and the reaction solution, so it is particularly advantageous when carried out industrially. When carrying out the process of the present invention, esters of carbamic acid are converted into the corresponding isocyanates and alcohols, but one component is removed from the reaction system to prevent recombination back to carbamate esters. It needs to be removed. in this case,
Among these components produced as the reaction progresses, it is preferable to remove and separate low-boiling components by distillation or the like. In order to promote this separation, it is also a preferred method to introduce an inert gas such as nitrogen, helium, argon, carbon dioxide, methane, ethane, propane, etc., singly or in a mixture, into the reaction system. Low-boiling organic solvents that have similar effects include halogenated hydrocarbons such as dichloromethane, chloroform, and carbon tetrachloride, lower hydrocarbons such as pentane, hexane, and heptane, and ethers such as tetrahydrofuran and dioxane. You can also use The method of the invention can be carried out either batchwise or continuously. The reaction temperature is usually preferably 100 to 350°C, more preferably 150 to 300°C. The reaction time is
Although it varies depending on the type of carbamate used, catalyst, reaction temperature, etc., it is usually several minutes to several tens of hours. Further, although this method is usually carried out at normal pressure, it may be carried out under increased pressure or reduced pressure as necessary. EXAMPLES Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples. Examples 1 to 9 Into a four-necked flask equipped with a stirrer, a thermometer, a nitrogen inlet extending below the liquid level, and an air cooler, 100 g of bromnaphthalene as a solvent and 4,
Dicarbamic acid diethyl ester of 4′-diphenylmethane diisocyanate (abbreviated as MDI) 10
A decomposition reaction was carried out at 250° C. for 2 hours with stirring while nitrogen was introduced into the reaction mixture at a rate of 30/hour. The generated ethanol was introduced into a dry ice trap from the top of the cooler and collected. The reaction solution was analyzed by high performance liquid chromatography, gel permeation chromatography, and infrared absorption spectroscopy, and the results shown in Table 1 were obtained.

【表】 なお、これらの実施例の反応液を過した液
は、均一透明で実質的に触媒成分を含んでいなか
つた。実施例1の液からブロムナフタリンを留
去し、減圧蒸留を行なうことによつて、沸点195
〜200℃/5mmHgで留出するMDI6.9g(収率94
%)を得た。 実施例 10 ヘキサメチレンジイソシアナート(HMDI)
のジカルバミン酸ジメチルエステル10g、溶媒と
してn―ヘキサデカン50g、触媒としてSiC2g
を用いた以外は、実施例1と同様の方法により分
解反応を260℃で2時間行なつた。生成液をガス
クロマトグラフイーで分析することによつて、
HMDIを60%の収率で生成していることがわか
つた。なお、同じ分解反応を無触媒で行なつたと
ころ、22%しかHMDIが生成しておらず、大部
分は未分解であつた。 実施例 11 原料導入管、窒素導入管、カラム充填型真空ジ
ヤケツト式蒸留管(長さ30cm)、温度計および撹
拌装置を備えた100ml4つ口フラスコに、溶媒と
してジベンジルトルエン(沸点390℃)50ml、触
媒としてSi3N4粉末2gを仕込み、250℃に加熱
した。この温度で原料導入管からジエチルトリレ
ン―2,4―ジカルバメートのテトラヒドロフラ
ン溶液(0.1g/ml)を50ml/hrの速度でフラス
コ内に導入した。これと同時に窒素ガスを30/
hrの速度で導入管から反応液中に吹き込んだ。蒸
留管の上部から留出する液およびガスを空冷式冷
却管(80cm)で分縮してイソシアナート留分を捕
集し、次いでドライアイストラツプに導きエタノ
ールを捕集した。定常状態になつてから2時間
後、イソシアナート留分を高速液体クロマトグラ
フイーおよび赤外線吸収スペクトルで分析した結
果、トリレン―2,4―ジイソシアナート87%、
エチル―4―メチル―3―イソシアナートカルバ
ニレート5%の収率で得られており、未分解のジ
エチルトリレン―2,4―ジカルバメートが8%
含まれていた。エタノールの回収率は90%であつ
た。また反応液を過することによつて触媒を回
収し、同様な実験を操り返したが、上記とほぼ同
様の結果が得られ、触媒の劣化は認められなかつ
た。 触媒を使用せずに同様の分解反応を行なつたと
ころ、目的のトリレン―2,4―ジイソシアナー
トの収率は65%であつた。 実施例 12 で示されるトリカルバミン酸トリエチルエステル
およびMDIのジカルバミン酸ジエチルエステル
をモル比で1対1含む混合物15gを用いて、
TiC3gを触媒として実施例4と同様の方法によ
り熱分解を4時間行ない、生成液を赤外線吸収ス
ペクトルで分析したところ、ほぼ完全にイソシア
ナートに分解していることがわかつた。また、こ
の反応液を高速液体クロマトグラフイーで分析す
ると、トリイソシアナートとMDIが1対1で生
成していることがわかつた。 実施例 13 4,4'―ジフエニルメタンジイソシアナートの
ジカルバミン酸ジエチルエステルをオルトジクロ
ルベンゼンに10重量%溶解させた溶液を、150〜
160℃に予熱した後、240℃に保たれた内径2cm高
さ2mの分解反応装置の上部より10ml/分の速度
で導入した。反応管の内部には粒状SiCが充填さ
れており、反応管の下部からは予熱された窒素が
0.5N/分で導入された。分解反応は15Kg/cm2
の加圧下で連続的に実施された。その結果、未反
応のカルバミン酸エステルを含まないMDIのオ
ルトクロルベンゼン溶液が反応管の下部より得ら
れた。 実施例 14 撹拌装置、温度計、液面以下に延びている窒素
導入口および空気冷却器を設けた4つ口フラスコ
に、溶媒としてブロムナフタリン300gを入れ、
触媒としてSiC粉末2gを、カルバミン酸エステ
ルとしてN―フエニルカルバミン酸メチルを、酸
触媒の存在下でホルムアルヒドと反応させること
によつて得られたジフエニルメタンジカルバミン
酸ジメチルエステル20gと、3核体以上のポリメ
チレンポリフエニレンポリカルバミン酸メチルエ
ステル10gから成る混合物を入れた。50/時で
窒素を反応混合物中に導入しながら、撹拌下に
250℃で3時間分解反応を行つた。反応後、濾過
により触媒を分離し、ブロムナフタリンを減圧下
に留去した。次いで、減圧蒸留を行うことによつ
て、195〜200℃/5mmHgで留出するMDI7.2gを
得た。残液中にはMDIをさらに6.8g含んでおり、
PMPPIを含めそのNCO含量は30.8%であつた。 比較例 1 SiC粉末の代わりにナフテン酸コバルト0.5gを
用いる以外は、実施例14と全く同様の反応を行つ
た後、溶媒を圧下に留去した。次いで、全く同様
の方法によつて減圧蒸留を行い、MDI 6.5gを留
出させたが、残液は高粘度物質に変質しており、
MDIは3gほどしか存在しておらず、NCO含量
は15.8%であつた。このことは、蒸留操作中にイ
ソシアナート基が環化反応や重合反応によつて減
少すると共に、高分子量化したためであると考え
られる。なお、NCO含量とはイソシアナート化
合物中のNCO基の重量%を表す。(例えば、MDI
の場合、NCO含量は33.6%である。)
[Table] Note that the reaction solution of these Examples was uniformly transparent and substantially free of catalyst components. Bromnaphthalene was distilled off from the liquid of Example 1 and the boiling point was reduced to 195 by performing vacuum distillation.
6.9g of MDI distilled at ~200℃/5mmHg (yield 94
%) was obtained. Example 10 Hexamethylene diisocyanate (HMDI)
10g of dicarbamic acid dimethyl ester, 50g of n-hexadecane as a solvent, 2g of SiC as a catalyst
The decomposition reaction was carried out at 260°C for 2 hours in the same manner as in Example 1, except that . By analyzing the product liquid using gas chromatography,
It was found that HMDI was produced with a yield of 60%. When the same decomposition reaction was carried out without a catalyst, only 22% of HMDI was produced, and the majority remained undecomposed. Example 11 50 ml of dibenzyltoluene (boiling point 390°C) was added as a solvent to a 100 ml four-necked flask equipped with a raw material introduction tube, a nitrogen introduction tube, a column-filled vacuum jacket type distillation tube (length 30 cm), a thermometer, and a stirring device. 2 g of Si 3 N 4 powder was charged as a catalyst and heated to 250°C. At this temperature, a tetrahydrofuran solution (0.1 g/ml) of diethyltolylene-2,4-dicarbamate was introduced into the flask at a rate of 50 ml/hr from the raw material introduction tube. At the same time, nitrogen gas is
It was blown into the reaction solution from the inlet tube at a rate of hr. The liquid and gas distilled from the upper part of the distillation tube were condensed in an air-cooled cooling tube (80 cm) to collect an isocyanate fraction, and then led to a dry ice trap to collect ethanol. Two hours after the steady state was reached, the isocyanate fraction was analyzed by high performance liquid chromatography and infrared absorption spectroscopy, and the results showed that it was 87% tolylene-2,4-diisocyanate.
Obtained with a yield of 5% ethyl-4-methyl-3-isocyanatocarbanilate and 8% undecomposed diethyltolylene-2,4-dicarbamate.
It was included. The recovery rate of ethanol was 90%. The catalyst was recovered by filtering the reaction solution and the same experiment was repeated, but almost the same results as above were obtained, and no deterioration of the catalyst was observed. When a similar decomposition reaction was carried out without using a catalyst, the yield of the target tolylene-2,4-diisocyanate was 65%. Example 12 Using 15 g of a mixture containing tricarbamic acid triethyl ester shown by and MDI dicarbamic acid diethyl ester in a molar ratio of 1:1,
Thermal decomposition was carried out for 4 hours in the same manner as in Example 4 using 3 g of TiC as a catalyst, and the resulting liquid was analyzed by infrared absorption spectrum, and it was found that it was almost completely decomposed into isocyanate. Furthermore, when this reaction solution was analyzed by high performance liquid chromatography, it was found that triisocyanate and MDI were produced in a 1:1 ratio. Example 13 A solution in which 10% by weight of dicarbamic acid diethyl ester of 4,4'-diphenylmethane diisocyanate was dissolved in orthodichlorobenzene was dissolved at 150 to
After preheating to 160°C, it was introduced from the top of a decomposition reactor with an inner diameter of 2 cm and a height of 2 m maintained at 240°C at a rate of 10 ml/min. The inside of the reaction tube is filled with granular SiC, and preheated nitrogen is supplied from the bottom of the reaction tube.
It was introduced at 0.5N/min. Decomposition reaction is 15Kg/cm 2
It was carried out continuously under pressure. As a result, an orthochlorobenzene solution of MDI containing no unreacted carbamate ester was obtained from the lower part of the reaction tube. Example 14 Into a four-necked flask equipped with a stirrer, a thermometer, a nitrogen inlet extending below the liquid level, and an air cooler, 300 g of bromonaphthalene was placed as a solvent.
20 g of diphenylmethanedicarbamate dimethyl ester obtained by reacting 2 g of SiC powder as a catalyst and methyl N-phenylcarbamate as a carbamate ester with formalhyde in the presence of an acid catalyst; A mixture consisting of 10 g of polymethylene polyphenylene polycarbamic acid methyl ester was added to the core. under stirring while introducing nitrogen into the reaction mixture at 50/h.
The decomposition reaction was carried out at 250°C for 3 hours. After the reaction, the catalyst was separated by filtration, and the bromnaphthalene was distilled off under reduced pressure. Next, by performing vacuum distillation, 7.2 g of MDI distilled at 195-200°C/5 mmHg was obtained. The remaining liquid contains an additional 6.8g of MDI,
Its NCO content, including PMPPI, was 30.8%. Comparative Example 1 The same reaction as in Example 14 was carried out except that 0.5 g of cobalt naphthenate was used instead of SiC powder, and then the solvent was distilled off under pressure. Next, vacuum distillation was performed in exactly the same manner to distill 6.5 g of MDI, but the residual liquid had changed into a highly viscous substance.
Only about 3 g of MDI was present, and the NCO content was 15.8%. This is considered to be because the isocyanate groups were reduced by cyclization reaction or polymerization reaction during the distillation operation, and the molecular weight was increased. Note that the NCO content represents the weight percent of NCO groups in the isocyanate compound. (For example, MDI
In the case of , the NCO content is 33.6%. )

Claims (1)

【特許請求の範囲】 1 (a) チタン、ジルコニウム、ハフニウム、ケ
イ素の炭化物、及び (b) チタン、ジルコニウム、ハフニウム、ケイ
素、ゲルマニウムの窒化物から選ばれた1種ま
たは2種以上の触媒の存在下に、イソシアナー
トに対して不活性で、かつ触媒を実質的に溶解
させない溶媒中で、カルバミン酸エステル類を
熱分解することを特徴とするイソシアナートの
製造法。
[Claims] 1. Presence of one or more catalysts selected from (a) carbides of titanium, zirconium, hafnium, and silicon; and (b) nitrides of titanium, zirconium, hafnium, silicon, and germanium. Below, a method for producing isocyanates, which comprises thermally decomposing carbamate esters in a solvent that is inert to isocyanates and does not substantially dissolve the catalyst.
JP56043232A 1981-03-26 1981-03-26 Preparation of isocyanate Granted JPS57158748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56043232A JPS57158748A (en) 1981-03-26 1981-03-26 Preparation of isocyanate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56043232A JPS57158748A (en) 1981-03-26 1981-03-26 Preparation of isocyanate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP63028905A Division JPS63211257A (en) 1988-02-12 1988-02-12 Production of isocyanate

Publications (2)

Publication Number Publication Date
JPS57158748A JPS57158748A (en) 1982-09-30
JPH0238582B2 true JPH0238582B2 (en) 1990-08-31

Family

ID=12658159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56043232A Granted JPS57158748A (en) 1981-03-26 1981-03-26 Preparation of isocyanate

Country Status (1)

Country Link
JP (1) JPS57158748A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153962U (en) * 1983-03-31 1984-10-16 三菱重工業株式会社 folding machine
EP3626705B1 (en) 2017-05-15 2021-03-24 Asahi Kasei Kabushiki Kaisha Isocyanate production method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5119721A (en) * 1974-06-26 1976-02-17 Atlantic Richfield Co Karubameetokarano isoshianeetono seiho
JPS5219624A (en) * 1975-08-07 1977-02-15 Mitsui Toatsu Chem Inc Process for preparation of isocyanates

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5119721A (en) * 1974-06-26 1976-02-17 Atlantic Richfield Co Karubameetokarano isoshianeetono seiho
JPS5219624A (en) * 1975-08-07 1977-02-15 Mitsui Toatsu Chem Inc Process for preparation of isocyanates

Also Published As

Publication number Publication date
JPS57158748A (en) 1982-09-30

Similar Documents

Publication Publication Date Title
US3962302A (en) Production of isocyanates from esters of carbamic acids (urethanes)
JPH0260662B2 (en)
JPH035386B2 (en)
KR100421322B1 (en) Polycarbamate and polyisocyanate production method using the same
JP3083039B2 (en) Method for producing isocyanates
US3919280A (en) Recovery of solvents employed in the production of isocyanates from esters of carbamic acids
EP1323708B1 (en) Method for producing carbamates and method for producing isocyanates
JPH0238582B2 (en)
JPS6338986B2 (en)
JPS6344137B2 (en)
JPH0240062B2 (en)
JPH036136B2 (en)
JP3674642B2 (en) Process for producing isocyanates
JPH0240061B2 (en) ISOSHIANAATONORENZOKUTEKISEIZOHOHO
JP2962596B2 (en) Method for producing isocyanate
JP2019199422A (en) Method for producing isocyanate
JPH0426665A (en) Pyrolysis of carbamic acid ester
JPH07107042B2 (en) Process for producing isophorone diisocyanate from isophorone dicarbamyl ester using highly selective SnO2 or CuO catalyst
JPS6113463B2 (en)
JP2019199420A (en) Method for producing isocyanate
JP7165508B2 (en) Method for producing isocyanate
JP7165509B2 (en) Method for producing isocyanate
JP2019199418A (en) Method for producing isocyanate
JPH08277255A (en) Continuous production of urethane
JPH02295958A (en) Preparation of polyisocyanate