JPH0260662B2 - - Google Patents

Info

Publication number
JPH0260662B2
JPH0260662B2 JP56043231A JP4323181A JPH0260662B2 JP H0260662 B2 JPH0260662 B2 JP H0260662B2 JP 56043231 A JP56043231 A JP 56043231A JP 4323181 A JP4323181 A JP 4323181A JP H0260662 B2 JPH0260662 B2 JP H0260662B2
Authority
JP
Japan
Prior art keywords
ester
catalyst
acid
esters
isocyanates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56043231A
Other languages
Japanese (ja)
Other versions
JPS57158747A (en
Inventor
Shinsuke Fukuoka
Masazumi Chono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP56043231A priority Critical patent/JPS57158747A/en
Publication of JPS57158747A publication Critical patent/JPS57158747A/en
Publication of JPH0260662B2 publication Critical patent/JPH0260662B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、カルバミン酸エステル類を触媒の存
在下に熱分解してイソシアナート類を製造する方
法に関するものである。 イソシアナート類はポリウレタンやカルバメー
ト系農薬などの原料として工業的に有用な物質で
あり、特にトリレンジイソシアナート(TDI)、
4,4′−ジフエニルメタンジイソシアナート
(MDI)、ヘキサメチレンジイソシアナート等は
大量に生産されている。これらのイソシアナート
類は通常、対応するアミン類とホスゲンとの反応
によつて製造されているが、猛毒性のホスゲンを
使用すること、および腐食性の塩化水素を大量に
副生することなどから、ホスゲンを用いないで比
較的簡単に、かつ安価にイソシアナート類を製造
する方法が望まれている。この一つの方法とし
て、カルバミン酸エステルの熱分解による方法が
提案されている。 触媒を用いてカルバミン酸エステル類を熱分解
してイソシアナート類を製造する方法としては、
例えば塩化第二鉄などのルイス酸の存在下に400
〜600℃という高温の気相中で行なう方法(特公
昭46−17773)、重金属または重金属化合物を用い
る方法(特開昭51−19721)、B、B、A、
A、B、Bおよび族金属の化合物を溶媒
中に溶解させた触媒を用いる方法(特開昭52−
19624)、アルカリ土類金属またはその無機化合物
を用いる方法(特開昭54−88201)などが提案さ
れている。 しかしながら、これらの方法を用いた場合で
も、高沸点副生物が多い、材質の腐食が著しいな
どの欠点があり、また溶媒中に実質的に溶解させ
た金属化合物を触媒として用いる場合は、特に高
沸点イソシアナート類を製造する時など、生成物
と触媒の分離が困難となるなどの欠点を有してい
る。 そこで、本発明者らは、カルバミン酸エステル
類を熱分解してイソシアナート類を製造する方法
において、生成物と触媒の分離が容易で、しかも
生成するイソシアナート類の副反応による高沸点
物質の生成を抑え、収率よくイソシアナート類を
得る方法について鋭意検討した結果、本発明に到
達した。 すなわち、本発明は、下記の(a)群、及び(b)群の
中から選ばれた1種または2種以上の触媒の存在
下に、イソシアナート類に対して不活性で、かつ
触媒を1ppm以上溶解させない溶媒中で、カルバ
ミン酸エステル類を熱分解することを特徴とする
イソシアナート類の製造法である。 (a) ケイ素、ゲルマニウム、ジルコニウムから選
ばれた単体 (b) アルミニウム、ケイ素、ゲルマニウム、チタ
ン、ジルコニウムから選ばれた元素の酸化物及
び複合酸化物 本発明に原料として用いられるカルバミン酸エ
ステル類とは、一般式R(NHCOOR′)oまたは
(R′NHCOO)oRあるいはR(NHCOSR′)oまたは
(R′NHCOS)oRで示される化合物である。 ここで、Rはn価(nは1〜4の整数)の飽和
または不飽和の脂肪族基および脂環族基、芳香族
基、アラルキル基から選ばれた有機基を表わし、
R′は一価の飽和または不飽和の脂肪族基および
脂環族基、芳香族基、アラルキル基から選ばれた
有機基を表わす。また、これらの有機基はイソシ
アナート基と反応しない他の置換基、例えばハロ
ゲン原子、ニトロ基、シアノ基、アルキル基、ア
ルコキシ基、アシル基、アシロキシ基、カルバモ
イル基などを含んでいてもよいし、イソシアナー
ト基自身を含んでいてもよい。また、イソシアナ
ート基と反応しない二価の官能基、例えば、エー
テル基、チオエーテル基、カルボニル基、カルボ
キシル基、スルホン基等を含んでいてもよい。 このようなカルバミン酸エステル類としては、
例えば、メチルカルバニレート、エチルカルバニ
レート、プロピルカルバニレート、ブチルカルバ
ニレート、シクロヘキシルカルニレート、フエニ
ルカルバニレート等、式
The present invention relates to a method for producing isocyanates by thermally decomposing carbamate esters in the presence of a catalyst. Isocyanates are industrially useful substances as raw materials for polyurethane and carbamate pesticides, especially tolylene diisocyanate (TDI),
4,4'-diphenylmethane diisocyanate (MDI), hexamethylene diisocyanate, etc. are produced in large quantities. These isocyanates are usually produced by reacting the corresponding amines with phosgene, but this method is difficult to manufacture due to the use of highly toxic phosgene and the production of large amounts of corrosive hydrogen chloride. There is a need for a method for producing isocyanates relatively easily and inexpensively without using phosgene. As one method for this, a method using thermal decomposition of carbamate ester has been proposed. A method for producing isocyanates by thermally decomposing carbamate esters using a catalyst is as follows:
400 in the presence of a Lewis acid such as ferric chloride
A method conducted in a gas phase at a high temperature of ~600°C (Japanese Patent Publication No. 46-17773), a method using heavy metals or heavy metal compounds (Japanese Patent Publication No. 51-19721), B, B, A,
A method using a catalyst in which compounds of A, B, B, and group metals are dissolved in a solvent (Japanese Unexamined Patent Application Publication No. 1983-1999)
19624) and a method using an alkaline earth metal or its inorganic compound (Japanese Patent Application Laid-Open No. 1988-88201). However, even when these methods are used, there are drawbacks such as high boiling point by-products and significant corrosion of the material.Also, when a metal compound substantially dissolved in a solvent is used as a catalyst, the It has drawbacks such as difficulty in separating the product and catalyst when producing boiling point isocyanates. Therefore, the present inventors developed a method for producing isocyanates by thermally decomposing carbamate esters, which allows for easy separation of the product and catalyst, and also eliminates high-boiling substances due to side reactions of the produced isocyanates. As a result of extensive research into a method for suppressing the formation and obtaining isocyanates in good yield, the present invention was achieved. That is, the present invention provides a catalyst that is inactive with respect to isocyanates and in the presence of one or more catalysts selected from the following groups (a) and (b). This is a method for producing isocyanates, which is characterized by thermally decomposing carbamate esters in a solvent that does not dissolve 1 ppm or more. (a) Elements selected from silicon, germanium, and zirconium (b) Oxides and composite oxides of elements selected from aluminum, silicon, germanium, titanium, and zirconium What are the carbamate esters used as raw materials in the present invention? , a compound represented by the general formula R(NHCOOR') o or (R'NHCOO) o R or R(NHCOSR') o or (R'NHCOS) o R. Here, R represents an organic group selected from an n-valent (n is an integer of 1 to 4) saturated or unsaturated aliphatic group, alicyclic group, aromatic group, and aralkyl group,
R' represents an organic group selected from monovalent saturated or unsaturated aliphatic groups, alicyclic groups, aromatic groups, and aralkyl groups. Further, these organic groups may contain other substituents that do not react with the isocyanate group, such as a halogen atom, a nitro group, a cyano group, an alkyl group, an alkoxy group, an acyl group, an acyloxy group, a carbamoyl group, etc. , may contain the isocyanate group itself. It may also contain divalent functional groups that do not react with isocyanate groups, such as ether groups, thioether groups, carbonyl groups, carboxyl groups, and sulfone groups. As such carbamate esters,
For example, methyl carbanilate, ethyl carbanilate, propyl carbanilate, butyl carbanilate, cyclohexyl carbanilate, phenyl carbanilate, etc.

【式】(R′は前記のとおり) で示されるカルバニレート類;o−またはm−ま
たはp−トリルカルバミン酸のメチルエステル、
エチルエステル、フエニルエステル等のトリルカ
ルバミン酸エステル類;o−またはm−またはp
−フエニレンジカルバミン酸のジメチルエステ
ル、ジエチルエステル、ジフエニルエステル等の
フエニレンジカルバミン酸ジエステル類;2,4
−または2,6−トリレンジカルバミン酸のジメ
チルエステル、ジエチルエステル、ジブチルエス
テル、ジフエニルエステル等のトリレンジカルバ
ミン酸ジエステル類;2,2′−または2,4′−ま
たは4,4′−メチレンビスフエニレンジカルバミ
ン酸のジメチルエステル、ジエチルエステル、ジ
ブチルエステル、ジフエニルエステル等のメチレ
ンビスフエニレンジカルバミン酸ジエステル類;
式 K0261 (R′は前記のとおりで、mは1〜5の整数)で
示されているポリメリツク芳香族カルバミン酸の
エステル類;1−または2−ナフチルカルバミン
酸のメチルエステル、エチルエステル、ブチルエ
ステル、フエニルエステル等のナフチルカルバミ
ン酸エステル類;1,4−または1,5−または
1,6−または2,6−ナフチレンジカルバミン
酸のジメチルエステル、ジエチルエステル、ジブ
チルエステル、ジフエニルエステル等のナフチレ
ンジカルバミン酸ジエステル類;エチレンビスカ
ルバニレート、プロピレンビスカルバニレート、
グリセリルトリスカルバニレート、ペンタエリス
リルテトラキスカルバニレート等の多価アルコー
ルのカルバニレート類;メチルカルバミン酸、エ
チルカルバミン酸、プロピルカルバミン酸、ブチ
ルカルバミン酸、アミルカルバミン酸、ヘキシル
カルバミン酸、オクチルカルバミン酸、オクタデ
シルカルバミン酸等のアルキルカルバミン酸のメ
チルエステル、エチルエステル、プロピルエステ
ル、ブチルエステル、フエニルエステル等のアル
キルカルバミン酸エステル類;シクロペンチルカ
ルバミン酸、シクロヘキシルカルバミン酸等のメ
チルエステル、エチルエステル、フエニルエステ
ル等の脂環族カルバミン酸エステル類;エチレン
ジカルバミン酸、トリメチレンジカルバミン酸、
テトラメチレンジカルバミン酸、ペンタメチレン
ジカルバミン酸、ヘキサメチレンジカルバミン
酸、2,2,4−または2,4,4−トリメチル
ヘキサメチレンジカルバミン酸等のジメチルエス
テル、ジエチルエステル、ジブチルエステル、ジ
フエニルエステル等のアルキレンジカルバミン酸
ジエステル類;メチルシクロヘキサン−2,4−
または2,6−ジカルバミン酸、3−カルバミン
酸メチル−3,5,5−トリメチルシクロヘキシ
ルカルバミン酸、4,4′−メチレンビスシクロヘ
キシルカルバミン酸等のジメチルエステル、ジエ
チルエステル、ジフエニルエステル等の脂環族ジ
カルバミン酸ジエステル類;キシリレンジカルバ
ミン酸のジメチルエステル、ジエチルエステル、
ジフエニルエステル等のアラルキルジカルバミン
酸ジエステル類;o−またはm−またはp−クロ
ルフエニルカルバミン酸、2,5−または3,4
−または3,5−ジクロルフエニルカルバミン酸
等のメチルエステル、エチルエステル、フエニル
エステル等のハロゲン化フエニルカルバミン酸エ
ステル類;およびこれらの相当するチオールカル
バミン酸エステル類があげられる。これらのカル
バミン酸エステル類は単一のものでもよいし、2
種以上の混合物であつてもよい。 本発明において触媒として用いられるのは、 (a) ケイ素、ゲルマニウム、ジルコニウムから選
ばれた単体 (b) アルミニウム、ケイ素、ゲルマニウム、チタ
ン、ジルコニウムから選ばれた元素の酸化物及
び複合酸化物 から選ばれたものである。(b)群のより具体的な化
合物としては、Al2O3、SiO、SiO2、GeO、
GeO2、TiO、TiO2、Ti2O3、ZrO2などの酸化物
類;ZnO−SiO2、ZnO−Al2O3、Al2O3−ZrO2
ZnO−ZnO2、SiO2−Al2O3、SiO2−Ga2O3、SiO2
−ZrO2、SiO2−TiO2、ZrO2−CdO、TiO2
CuO、TiO2−ZnO、TiO2−CdO、TiO2−Al2O3
TiO2−ZrO2、TiO2−PbO、PbO−SiO2などの複
合酸化物類が挙げられる。 これらの単体、酸化物、硫化物を触媒として用
いる場合、単独でもよいし、2種以上であつても
よい。 また、これらの触媒とカルバミン酸エステルと
の量比はいくらでもよいが、カルバミン酸エステ
ルに対して、重量で通常0.0001〜100倍量の触媒
を用いるのが好ましい。 本発明の方法は、これらの触媒を1ppm以上に
溶解させず、しかも生成するイソシアナートに対
して不活性な溶媒中で行なわれるが、本発明の触
媒は通常の有機溶媒にほとんどが1ppm以上溶解
しない不溶性であるため、イソシアナートに対し
て不活性な溶媒であれば大部分のものが使用でき
る。このような溶媒としては、脂肪族、脂環族ま
たは芳香族の置換または非置換の炭化水素類また
はその混合物類があり、またエーテル、ケトンお
よびエステルのようなある種の酸素化化合物も含
まれる。 好ましい溶媒としては、ヘキサン、ヘプタン、
オクタン、ノナン、デカン、n−ヘキサデカン、
n−オクタデカン、エイコサン、スクアラン等の
アルカン類およびこれらに相当するアルケン類;
ベンゼン、トルエン、キシレン、エチルベンゼ
ン、クメン、ジイソプロピルベンゼン、ジブチル
ベンゼン、ナフタリン、低級アルキル置換基ナフ
タリン、ドデシルベンゼン等の芳香族炭化水素お
よびアルキル置換芳香族炭化水素類;クロルベン
ゼン、ジクロルベンゼン、ブロムベンゼン、ジブ
ロムンゼン、クロルナフタリン、ブロムナフタリ
ン、ニトロンゼン、ニトロナフタリン等のニトロ
基およびハロゲンによつて置換された芳香族化合
物類;ジフエニル、置換ジフエニル、ジフエニル
メタン、ターフエニルアンスラセン、フエナンス
レン、ベンジルトルエン各種異性体、トリフエニ
ルメタン等の多環炭化水素化合物類;シクロヘキ
サン、エチルシクロヘキサン等の脂環族炭化水素
類;メチルエチルケトン、アセトフエノンのよう
なケトン類;ジブチルフタレート、ジヘキシルフ
タレート、ジオクチルフタレート等のエステル
類;ジフエニルエーテル、ジフエニルサルフアイ
ド等のエーテルおよびチオエーテル類;ジメチル
スルホキシド、ジフエニルスルホキシド等のスル
ホキシド類;さらにはシリコン油などがあげられ
る。 本発明の方法は、触媒が実質的に反応溶液に不
溶性であるため、生成物との分離が容易であるこ
とが一つの特徴である。このことは蒸留等により
留出させるのが困難な高沸点のイソシアナート類
を製造する場合には特に有利な方法となる。例え
ば、N−フエニルカルバミン酸エチルエステル酸
触媒の存在下ホルムアルデヒド、トリオキサン、
メチラールなどのメチレン化試剤でメチレン化す
る場合、メチレン−ビス−(4−フエニルカルバ
ミン酸エチル)以外にベンゼン環を三つ以上含む
多核体のポリカルバミン酸エステルが副生してく
る。これらの混合カルバミン酸エステルを熱分解
すれば、工業的に重要なクルードMDIを製造で
きるが、これらのイソシアナート類は沸点が高
く、触媒を含む反応液から蒸留等によつて留出さ
せて触媒成分と分離することは困難である。しか
しながら、本発明の方法によれば、反応液から
過などの簡単な操作により触媒成分を容易に分離
できるので、溶解性の金属化合物を触媒に使つた
場合に起るような生成物への触媒成分の混入など
は防ぐことができる。 また、本発明の触媒は反応液中に実質的に溶解
しないため、触媒成分を固定床式にして反応させ
ることも可能であり、これは本発明の好ましい実
施態様の1つである。固定床式の反応の場合は、
触媒成分と反応溶液との分離のための特別な操作
は不要なため、工業的に実施する場合には、特に
有利である。 本発明の方法を実施する場合、カルバミン酸の
エステル類は対応するイソシアナート類とアルコ
ール類に変換されるが、再結合してカルバミン酸
エステル類に戻ることを防ぐために、一方の成分
を反応系から除去していく必要がある。この場
合、反応の進行と共に生成してくるこれらの成分
のうち、低沸点成分を蒸留等により除去分離する
のが好ましい。この分離を促進するために不活性
ガス、例えば、窒素、ヘリウム、アルゴン、炭酸
ガス、メタン、エタン、プロパン等を単独で、ま
たは混合して反応系中に導入することも好ましい
方法である。同様な作用をするものとして低沸点
の有機溶媒類、例えば、ジクロルメタン、クロロ
ホルム、四塩化炭素等のハロゲン化炭化水素類、
ペンタン、ヘキサン、ヘプタン等の低級炭化水素
類、テトラヒドロフラン、ジオキサン等のエーテ
ル類を用いることもできる。 本発明の方法は回分式でも連続式でも実施でき
る。反応温度は、通常100〜350℃が好ましく、さ
らには150〜300℃がより好ましい。反応時間は、
用いるカルバミン酸エステル類および触媒の種類
および反応温度等によつて異なるが、通常、数分
〜数十時間である。また本方法は、通常、常圧で
実施されるが、必要に応じて加圧または減圧下で
行なつてもよい。 次に実施例により本発明をさらに詳細に説明す
るが、本発明は、これらの実施例に限定されるも
のではない。 実施例 1〜13 撹拌装置、温度計、液面以下に延びている窒素
導入口および空気冷却器を設けた4つ口フラスコ
に、溶媒としてブロムナフタリン100gと4,
4′−ジフエニルメタンジイソシアナート(MDIと
略記する)のジカルバミン酸ジエチルエステル10
gと所定の粉末状の触媒0.5gとを入れ、反応混
合物中に窒素を30/時で導入しながら、撹拌下
に250℃で2時間分解反応を行なつた。生成して
くるエタノールは、冷却器頂上よりドライアイス
トラツプに導き捕集した。反応液を高速液体クロ
マトグラフイー、ゲルパーミエーシヨンクロマト
グラフイーおよび赤外線吸収スペクトルにより分
析し、表1の
Carbanilate represented by [Formula] (R' is as above); methyl ester of o- or m- or p-tolylcarbamic acid;
Tolylcarbamate esters such as ethyl ester and phenyl ester; o- or m- or p
- phenylenedicarbamic acid diesters such as dimethyl ester, diethyl ester, diphenyl ester of phenylenedicarbamic acid; 2,4
- or tolylene dicarbamic acid diesters such as dimethyl ester, diethyl ester, dibutyl ester, diphenyl ester of 2,6-tolylene dicarbamate; 2,2'- or 2,4'- or 4,4'-methylene Methylenebisphenylenedicarbamic acid diesters such as dimethyl ester, diethyl ester, dibutyl ester, and diphenyl ester of bisphenylenedicarbamic acid;
Esters of polymeric aromatic carbamic acids represented by the formula K0261 (R' is as described above, m is an integer of 1 to 5); methyl ester, ethyl ester, butyl ester of 1- or 2-naphthylcarbamic acid , phenyl ester, and other naphthylcarbamic acid esters; 1,4- or 1,5- or 1,6- or 2,6-naphthylenedicarbamic acid dimethyl ester, diethyl ester, dibutyl ester, diphenyl ester, etc. Naphthylene dicarbamic acid diesters; ethylene biscarbanilate, propylene biscarbanilate,
Carbanilates of polyhydric alcohols such as glyceryl tricarbanilate and pentaerythryl tetrakiscarbanilate; methylcarbamate, ethylcarbamate, propylcarbamate, butylcarbamate, amylcarbamate, hexylcarbamate, octylcarbamate, octadecyl Alkyl carbamate esters such as methyl ester, ethyl ester, propyl ester, butyl ester, phenyl ester of alkyl carbamate such as carbamic acid; methyl ester, ethyl ester, phenyl ester, etc. of cyclopentyl carbamate, cyclohexyl carbamate, etc. alicyclic carbamic acid esters; ethylenedicarbamic acid, trimethylenedicarbamic acid,
Dimethyl esters, diethyl esters, dibutyl esters, diphenyls such as tetramethylene dicarbamic acid, pentamethylene dicarbamic acid, hexamethylene dicarbamic acid, 2,2,4- or 2,4,4-trimethylhexamethylene dicarbamic acid Alkylene dicarbamic acid diesters such as esters; methylcyclohexane-2,4-
Or alicyclic esters such as dimethyl ester, diethyl ester, diphenyl ester, etc. of 2,6-dicarbamic acid, methyl 3-carbamate-3,5,5-trimethylcyclohexylcarbamate, 4,4'-methylenebiscyclohexylcarbamic acid, etc. Group dicarbamic acid diesters; dimethyl ester, diethyl ester of xylylene dicarbamic acid,
Aralkyl dicarbamic acid diesters such as diphenyl esters; o- or m- or p-chlorophenylcarbamic acid, 2,5- or 3,4
- or halogenated phenylcarbamate esters such as methyl ester, ethyl ester, and phenyl ester such as 3,5-dichlorophenylcarbamate; and thiolcarbamate esters corresponding to these. These carbamate esters may be a single type, or two
It may be a mixture of more than one species. The catalyst used in the present invention is (a) an element selected from silicon, germanium, and zirconium; and (b) an oxide and composite oxide of an element selected from aluminum, silicon, germanium, titanium, and zirconium. It is something that More specific compounds of group (b) include Al 2 O 3 , SiO, SiO 2 , GeO,
Oxides such as GeO2 , TiO, TiO2 , Ti2O3 , ZrO2 ; ZnO- SiO2 , ZnO- Al2O3 , Al2O3 - ZrO2 ,
ZnO− ZnO2 , SiO2Al2O3 , SiO2Ga2O3 , SiO2
−ZrO 2 , SiO 2 −TiO 2 , ZrO 2 −CdO, TiO 2
CuO, TiO2 -ZnO, TiO2 - CdO, TiO2 - Al2O3 ,
Composite oxides such as TiO2 - ZrO2 , TiO2 -PbO, and PbO- SiO2 can be mentioned. When these single substances, oxides, and sulfides are used as catalysts, they may be used alone or in combination of two or more kinds. Further, although the quantitative ratio between these catalysts and the carbamate ester may be arbitrary, it is preferable to use the catalyst in an amount usually 0.0001 to 100 times the weight of the carbamate ester. The method of the present invention is carried out in a solvent that does not dissolve these catalysts above 1 ppm and is inert to the isocyanate produced. However, most of the catalysts of the present invention are dissolved in common organic solvents at a concentration of 1 ppm or above. Most solvents can be used as long as they are inert to isocyanates. Such solvents include aliphatic, cycloaliphatic or aromatic substituted or unsubstituted hydrocarbons or mixtures thereof, and also certain oxygenated compounds such as ethers, ketones and esters. . Preferred solvents include hexane, heptane,
Octane, nonane, decane, n-hexadecane,
Alkanes such as n-octadecane, eicosane, squalane, and alkenes corresponding to these;
Aromatic hydrocarbons and alkyl-substituted aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, cumene, diisopropylbenzene, dibutylbenzene, naphthalene, lower alkyl substituent naphthalene, dodecylbenzene; chlorobenzene, dichlorobenzene, bromobenzene , dibromunzene, chlornaphthalene, bromnaphthalene, nitronzene, nitronaphthalene, and other aromatic compounds substituted with nitro groups and halogens; diphenyl, substituted diphenyl, diphenylmethane, terphenylanthracene, phenanthrene, various isomers of benzyltoluene, Polycyclic hydrocarbon compounds such as triphenylmethane; Alicyclic hydrocarbons such as cyclohexane and ethylcyclohexane; Ketones such as methyl ethyl ketone and acetophenone; Esters such as dibutyl phthalate, dihexyl phthalate, and dioctyl phthalate; diphenyl ether , ethers and thioethers such as diphenyl sulfide; sulfoxides such as dimethyl sulfoxide and diphenyl sulfoxide; and silicone oil. One of the characteristics of the method of the present invention is that the catalyst is substantially insoluble in the reaction solution, so that it can be easily separated from the product. This is a particularly advantageous method when producing high-boiling point isocyanates that are difficult to distill by distillation or the like. For example, formaldehyde, trioxane, N-phenylcarbamic acid ethyl ester in the presence of an acid catalyst,
In the case of methylenation using a methylenation reagent such as methylal, a polycarbamate ester of a polynuclear substance containing three or more benzene rings is produced as a by-product in addition to methylene-bis-(ethyl 4-phenylcarbamate). Crude MDI, which is industrially important, can be produced by thermally decomposing these mixed carbamic acid esters. However, these isocyanates have a high boiling point, and are distilled from the reaction solution containing the catalyst by distillation. It is difficult to separate the components. However, according to the method of the present invention, the catalyst component can be easily separated from the reaction solution by a simple operation such as filtration, so that the catalyst component can be easily separated from the product by a simple process such as filtration. Contamination of ingredients can be prevented. Further, since the catalyst of the present invention is not substantially dissolved in the reaction solution, it is also possible to react the catalyst components in a fixed bed type, which is one of the preferred embodiments of the present invention. For fixed bed reactions,
Since no special operation is required to separate the catalyst component and the reaction solution, this method is particularly advantageous when carried out industrially. When carrying out the process of the invention, esters of carbamic acid are converted into the corresponding isocyanates and alcohols, but one component is removed from the reaction system to prevent recombination back to carbamate esters. It is necessary to remove it from In this case, it is preferable to remove and separate low boiling point components by distillation or the like among these components that are generated as the reaction progresses. In order to promote this separation, it is also a preferred method to introduce an inert gas such as nitrogen, helium, argon, carbon dioxide, methane, ethane, propane, etc., singly or in combination, into the reaction system. Organic solvents with a similar effect include low-boiling point organic solvents, such as halogenated hydrocarbons such as dichloromethane, chloroform, and carbon tetrachloride;
Lower hydrocarbons such as pentane, hexane and heptane, and ethers such as tetrahydrofuran and dioxane can also be used. The method of the invention can be carried out either batchwise or continuously. The reaction temperature is usually preferably 100 to 350°C, more preferably 150 to 300°C. The reaction time is
Although it varies depending on the type of carbamate used, catalyst, reaction temperature, etc., it is usually several minutes to several tens of hours. Further, although this method is usually carried out at normal pressure, it may be carried out under increased pressure or reduced pressure as necessary. EXAMPLES Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples. Examples 1 to 13 Into a four-necked flask equipped with a stirrer, a thermometer, a nitrogen inlet extending below the liquid level, and an air cooler, 100 g of bromnaphthalene as a solvent and 4,
Dicarbamic acid diethyl ester of 4'-diphenylmethane diisocyanate (abbreviated as MDI) 10
A decomposition reaction was carried out at 250° C. for 2 hours with stirring while nitrogen was introduced into the reaction mixture at a rate of 30/hour. The generated ethanol was introduced into a dry ice trap from the top of the cooler and collected. The reaction solution was analyzed by high performance liquid chromatography, gel permeation chromatography, and infrared absorption spectrum, and the results shown in Table 1 were obtained.

【表】【table】

【表】 ような結果が得られた。 なお、これらの実施例の反応溶液を過によつ
て分離したものは、均一透明で実質的に触媒成分
を含んでいなかつた。 実施例5の液からブロムナフタリンを留去
し、減圧蒸留を行なうことによつて、沸点195〜
200℃/5mmHgcm2で留出するMDI6.5g(収率90
%)を得た。 実施例 14 ヘキサメチレンジイソシアナート(HMDI)
のジカルバミン酸ジメチルエステル10g、溶媒と
してn−ヘキサデカン50g、触媒として粉末状の
Al2O32gを用いた以外は、実施例1と同様の方
法により分解反応を260℃で2時間行なつた。
過によりAl2O3を分離した生成液をガスクロマト
グラフイーで分析することによつて、HMDIを
68%の収率で生成していることがわかつた。な
お、同じ分解反応を無触媒で行なつたところ、22
%しかHMDIが生成しておらず、大部分は未分
解であつた。 実施例 15 原料導入管、窒素導入管、カラム充填型真空ジ
ヤケツト式蒸留管(長さ30cm)、温度計および撹
拌装置を備えた100ml4つ口フラスコに溶媒とし
てジベンジルトルエン(沸点390℃)50ml、触媒
としてゲルマニウム粉末1gを仕込み、250℃に
加熱した。この温度で原料導入管から、ジエチル
トリレン−2,4−ジカルバメートのテトラヒド
ロフラン溶液(0.1g/ml)を50ml/hrの速度で
フラスコ内に導入した。これと同時に窒素ガスを
30/hrの速度で導入管から反応液中に吹き込ん
だ。蒸留管の上部から留出する液およびガスを空
冷式冷却管(80cm)で分縮してイソシアナート留
分を捕集し、次いでドライアイストラツプに導き
エタノールを捕集した。定常状態になつてから2
時間後、イソシアナート留分を高速液体クロマト
グラフイーおよび赤外線吸収スペクトルで分析し
た結果、トリレン−2,4−ジイソシアナート92
%、エチル−4−メチル−3−イソシアナートカ
ルバニレート6.5%の収率で得られており、未分
解のジエチルトリレン−2,4−ジカルバメート
が1.5%含まれていた。エタノールの回収率は94
%であつた。また、反応液を過することによつ
て触媒を回収し、同様な実験を繰り返したが、上
記とほぼ同様の結果が得られ、触媒の劣化は認め
られなかつた。 触媒を使用せずに同様の分解反応を行なつたと
ころ、目的のトリレン−2,4−ジイソシアナー
トの収率は65%であつた。 実施例 16 式 K0262 で示されるトリカルバミン酸トリエチルエステル
およびMDIのジカルバミン酸ジエチルエステル
をモル比で1対1含む混合物15gを用いて、
SiO21gを触媒として、実施例4と同様の方法に
より熱分解を4時間行ない、触媒を別後、生成
液を赤外線吸収スペクトルで分析したところ、ほ
ぼ完全にイソシアナートに分解していることがわ
かつた。また、この反応液を高速液体クロマトグ
ラフイーで分析すると、トリイソシアナートと
MDIが1対1で生成していることがわかつた。
この反応液から溶媒を留去することによつてイソ
シアナートの混合物が得られた。 実施例 17 4,4−ジフエニルメタンジイソシアナートの
ジカルバミン酸ジエチルエステルをオリトジクロ
ルベンゼンに10重量%溶解させた溶液を、150〜
160℃に予熱した後、240℃に保たれた内径2cm、
高さ2mの分解反応装置の上部より10ml/分の速
度で導入した。反応管の内部には粒状Geが充填
されており、反応管の下部からは予熱された窒素
が0.5N/分で導入された。分解反応は15Kg/
cm2の加圧下で連続的に実施された。その結果、未
反応のカルバミン酸エステルを含まないMDIの
オルトジクロルベンゼン溶液が反応管の下部より
得られた。 実施例 18 撹拌装置、温度計、液面下に延びている窒素導
入口および空気冷却器を設けた4つ口フラスコ
に、溶媒としてブロムナフタリン300gを入れ、
触媒としてジルコニウム粉末2gを、カルバミン
酸エステルとしてN−フエニルカルバミン酸メチ
ルを、酸触媒の存在下でホルムアルデヒドと反応
させることによつて得られたジフエニルメタンジ
カルバミン酸ジメチルエステル20gと、3核体以
上のポリメチレンポリフエニレンポリカルバミン
酸メチルエステル10gから成る混合物を入れた。
50/時で窒素を反応混合物中に導入しながら、
撹拌下に250℃で3時間分解反応を行つた。反応
後、過により触媒を分離し、ブロムナフタリン
を減圧下に留去した。次いで、減圧蒸留を行うこ
とによつて、195〜200℃/5mmHgで留出する
MDI7gを得た。残液中にはMDIをさらに7g含
んでおり、PMPPIを含めそのNCO含量は30.5%
であつた。 比較例 1 ジルコニウム粉体の代りにナフテン酸コバルト
0.5gを用いる以外は、実施例34と全く同様の反
応を行つた後、溶媒を減圧下に留去した。次い
で、全く同様の方法によつて減圧蒸留を行い、
MDI6.5gを留出させたが、残液は高粘度物質に
変質しており、MDIは3gほどしか存在してお
らず、NCO含量は15.8%であつた。このことは、
蒸留操作中にイソシアナート基が環化反応や重合
反応によつて減少すると共に、高分子量化したた
めであると考えられる。なお、NCO含量とはイ
ソシアナート化合物中のNCO基の重量%を表わ
す。(例えば、MDIの場合、NCO含量は33.6%で
ある)
[Table] The following results were obtained. The reaction solutions of these Examples were separated by filtration and were homogeneous and transparent and substantially free of catalyst components. Bromnaphthalene was distilled off from the liquid of Example 5 and the boiling point was reduced to 195-195 by performing vacuum distillation.
6.5g of MDI distilled at 200℃/ 5mmHgcm2 (yield 90
%) was obtained. Example 14 Hexamethylene diisocyanate (HMDI)
10g of dicarbamic acid dimethyl ester, 50g of n-hexadecane as a solvent, powdered as a catalyst
A decomposition reaction was carried out at 260° C. for 2 hours in the same manner as in Example 1 except that 2 g of Al 2 O 3 was used.
HMDI was determined by gas chromatography analysis of the product liquid from which Al 2 O 3 was separated by filtration.
It was found that the product was produced at a yield of 68%. Furthermore, when the same decomposition reaction was carried out without a catalyst, 22
Only % of HMDI was produced, and most of it remained undegraded. Example 15 In a 100 ml four-necked flask equipped with a raw material introduction tube, a nitrogen introduction tube, a column-filled vacuum jacket distillation tube (length 30 cm), a thermometer, and a stirring device, 50 ml of dibenzyltoluene (boiling point 390°C) was added as a solvent. 1 g of germanium powder was charged as a catalyst and heated to 250°C. At this temperature, a tetrahydrofuran solution (0.1 g/ml) of diethyltolylene-2,4-dicarbamate was introduced into the flask at a rate of 50 ml/hr from the raw material introduction tube. At the same time, nitrogen gas
It was blown into the reaction solution from the inlet tube at a rate of 30/hr. The liquid and gas distilled from the upper part of the distillation tube were condensed in an air-cooled cooling tube (80 cm) to collect an isocyanate fraction, and then led to a dry ice trap to collect ethanol. After reaching steady state 2
After a period of time, the isocyanate fraction was analyzed by high performance liquid chromatography and infrared absorption spectroscopy, and it was found that tolylene-2,4-diisocyanate 92
%, ethyl-4-methyl-3-isocyanatocarbanilate with a yield of 6.5%, and contained 1.5% of undecomposed diethyltolylene-2,4-dicarbamate. Ethanol recovery rate is 94
It was %. Further, the catalyst was recovered by filtering the reaction solution and the same experiment was repeated, but almost the same results as above were obtained, and no deterioration of the catalyst was observed. When a similar decomposition reaction was carried out without using a catalyst, the yield of the target tolylene-2,4-diisocyanate was 65%. Example 16 Using 15 g of a mixture containing tricarbamic acid triethyl ester represented by the formula K0262 and dicarbamic acid diethyl ester of MDI in a molar ratio of 1:1,
Using 1 g of SiO 2 as a catalyst, thermal decomposition was carried out for 4 hours in the same manner as in Example 4. After separating the catalyst, the resulting liquid was analyzed by infrared absorption spectrum, and it was found that it had been almost completely decomposed into isocyanates. I understand. Furthermore, when this reaction solution was analyzed by high performance liquid chromatography, it was found that triisocyanate was detected.
It turns out that MDI is generated on a one-to-one basis.
A mixture of isocyanates was obtained by distilling off the solvent from this reaction solution. Example 17 A solution of 10% by weight of dicarbamic acid diethyl ester of 4,4-diphenylmethane diisocyanate dissolved in oligodichlorobenzene was added to
Inner diameter 2cm, kept at 240℃ after preheating to 160℃,
It was introduced from the top of a 2 m high decomposition reactor at a rate of 10 ml/min. The inside of the reaction tube was filled with granular Ge, and preheated nitrogen was introduced from the bottom of the reaction tube at a rate of 0.5 N/min. Decomposition reaction is 15Kg/
It was carried out continuously under pressure of cm 2 . As a result, an orthodichlorobenzene solution of MDI containing no unreacted carbamate ester was obtained from the lower part of the reaction tube. Example 18 Into a four-necked flask equipped with a stirrer, a thermometer, a nitrogen inlet extending below the liquid surface, and an air cooler, 300 g of bromonaphthalene was placed as a solvent.
20 g of diphenylmethane dicarbamate dimethyl ester obtained by reacting 2 g of zirconium powder as a catalyst and methyl N-phenylcarbamate as a carbamate ester with formaldehyde in the presence of an acid catalyst, and 3-nuclear A mixture consisting of 10 g of polymethylene polyphenylene polycarbamic acid methyl ester was added.
while introducing nitrogen into the reaction mixture at 50/hr.
The decomposition reaction was carried out at 250°C for 3 hours with stirring. After the reaction, the catalyst was separated by filtration, and the bromnaphthalene was distilled off under reduced pressure. Then, by performing vacuum distillation, it is distilled at 195-200℃/5mmHg.
Obtained 7g MDI. The residual liquid contains an additional 7g of MDI, and its NCO content including PMPPI is 30.5%.
It was hot. Comparative example 1 Cobalt naphthenate instead of zirconium powder
The reaction was carried out in exactly the same manner as in Example 34, except that 0.5 g was used, and then the solvent was distilled off under reduced pressure. Next, vacuum distillation was performed in exactly the same manner,
Although 6.5 g of MDI was distilled out, the residual liquid had changed into a highly viscous substance, with only about 3 g of MDI present and an NCO content of 15.8%. This means that
This is thought to be because the isocyanate groups were reduced by cyclization and polymerization reactions during the distillation operation and the molecular weight increased. Note that the NCO content represents the weight percent of NCO groups in the isocyanate compound. (For example, for MDI, the NCO content is 33.6%)

Claims (1)

【特許請求の範囲】 1 下記の(a)群、及び(b)群の中から選ばれた1種
または2種以上の触媒の存在下に、イソシアナー
ト類に対して不活性で、かつ触媒を1ppm以上溶
解させない溶媒中で、カルバミン酸エステル類を
熱分解することを特徴とするイソシアナート類の
製造法。 (a) ケイ素、ゲルマニウム、ジルコニウムから選
ばれた単体 (b) アルミニウム、ケイ素、ゲルマニウム、チタ
ン、ジルコニウムから選ばれた元素の酸化物及
び複合酸化物。
[Scope of Claims] 1. In the presence of one or more catalysts selected from the following groups (a) and (b), the catalyst is inert to isocyanates and A method for producing isocyanates, which comprises thermally decomposing carbamate esters in a solvent that does not dissolve 1 ppm or more of isocyanates. (a) Elements selected from silicon, germanium, and zirconium (b) Oxides and composite oxides of elements selected from aluminum, silicon, germanium, titanium, and zirconium.
JP56043231A 1981-03-26 1981-03-26 Preparation of isocyanate Granted JPS57158747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56043231A JPS57158747A (en) 1981-03-26 1981-03-26 Preparation of isocyanate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56043231A JPS57158747A (en) 1981-03-26 1981-03-26 Preparation of isocyanate

Publications (2)

Publication Number Publication Date
JPS57158747A JPS57158747A (en) 1982-09-30
JPH0260662B2 true JPH0260662B2 (en) 1990-12-17

Family

ID=12658131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56043231A Granted JPS57158747A (en) 1981-03-26 1981-03-26 Preparation of isocyanate

Country Status (1)

Country Link
JP (1) JPS57158747A (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153962U (en) * 1983-03-31 1984-10-16 三菱重工業株式会社 folding machine
DE3850647T2 (en) * 1987-01-13 1994-11-17 Daicel Chem METHOD FOR PRODUCING ISOCYANATE COMPOUNDS.
JPH0780830B2 (en) * 1987-01-13 1995-08-30 ダイセル化学工業株式会社 Method for producing isocyanate compound
DE3828033A1 (en) * 1988-08-18 1990-03-08 Huels Chemische Werke Ag CIRCUIT PROCESS FOR PRODUCING (CYCLO) ALIPHATIC DIISOCYANATES
JPH04221356A (en) * 1990-12-20 1992-08-11 Mitsubishi Gas Chem Co Inc Production of xylylene diisocyanate
JP3083039B2 (en) * 1994-03-18 2000-09-04 三菱瓦斯化学株式会社 Method for producing isocyanates
CN101066978A (en) * 2007-06-01 2007-11-07 张家港市华盛化学有限公司 Prepn process of alkyl silane isocyanate
CN102276501A (en) * 2009-12-31 2011-12-14 中国科学院成都有机化学有限公司 Method for preparing isocyanate through catalytic decomposition of aryl (alkyl) carbamic acid ester
JP5643517B2 (en) * 2010-02-04 2014-12-17 三井化学株式会社 Catalyst treatment method
KR20130089233A (en) * 2010-06-22 2013-08-09 바스프 에스이 Heterogeneously catalysed carbamate dissociation for synthesis of isocyanates over solid lewis acids
CN103687847B (en) * 2011-07-13 2019-04-02 宇部兴产株式会社 The manufacturing method of isocyanate compound
EP3626705B1 (en) 2017-05-15 2021-03-24 Asahi Kasei Kabushiki Kaisha Isocyanate production method
CN110467546B (en) * 2018-05-10 2021-03-19 中国科学院过程工程研究所 Method for preparing m-xylylene diisocyanate
CN108993501A (en) * 2018-08-09 2018-12-14 苏州汉力新材料有限公司 A kind of silver-silver oxide-zinc oxide photocatalysis material preparation method
CN110423208A (en) * 2019-08-15 2019-11-08 中国科学院过程工程研究所 A kind of preparation method of '-diphenylmethane diisocyanate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5119721A (en) * 1974-06-26 1976-02-17 Atlantic Richfield Co Karubameetokarano isoshianeetono seiho
JPS5219624A (en) * 1975-08-07 1977-02-15 Mitsui Toatsu Chem Inc Process for preparation of isocyanates
JPS5488201A (en) * 1977-12-22 1979-07-13 Mitsubishi Chem Ind Ltd Preparation of isocyanate from carbamic acid esters
JPS5665857A (en) * 1979-10-20 1981-06-03 Basf Ag Manufacture of arylisocyanate by arylurethane thermal decomposition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5119721A (en) * 1974-06-26 1976-02-17 Atlantic Richfield Co Karubameetokarano isoshianeetono seiho
JPS5219624A (en) * 1975-08-07 1977-02-15 Mitsui Toatsu Chem Inc Process for preparation of isocyanates
JPS5488201A (en) * 1977-12-22 1979-07-13 Mitsubishi Chem Ind Ltd Preparation of isocyanate from carbamic acid esters
JPS5665857A (en) * 1979-10-20 1981-06-03 Basf Ag Manufacture of arylisocyanate by arylurethane thermal decomposition

Also Published As

Publication number Publication date
JPS57158747A (en) 1982-09-30

Similar Documents

Publication Publication Date Title
JPH0260662B2 (en)
CA1225997A (en) Multiple-step process for the preparation of 3- isocyanatomethyl-3,5,5-trimethylcyclohexylisocyanate
US3962302A (en) Production of isocyanates from esters of carbamic acids (urethanes)
KR100421322B1 (en) Polycarbamate and polyisocyanate production method using the same
CA1048523A (en) Recovery of solvents employed in the production of isocyanates from esters of carbamic acids (urethanes)
JPH035386B2 (en)
CA1049029A (en) Production of isocyanates from lower alkyl esters of mononuclear aromatic carbamic acids
EP1323708B1 (en) Method for producing carbamates and method for producing isocyanates
US4163019A (en) Production of 4,4'-alkylidene diphenyl diisocyanate
JPH0238582B2 (en)
JP3674642B2 (en) Process for producing isocyanates
JPS6338986B2 (en)
EP0244620B1 (en) Process for the preparation of isophorone diisocyanate from isophorone dicarbamyl esters using highly selective sno2 or cuo catalysts
JPH02295959A (en) Preparation of polyisocyanate
JPH036136B2 (en)
JPH0240062B2 (en)
JPH0426665A (en) Pyrolysis of carbamic acid ester
JP2019199422A (en) Method for producing isocyanate
JP2962596B2 (en) Method for producing isocyanate
JPH02295958A (en) Preparation of polyisocyanate
JP2019199420A (en) Method for producing isocyanate
JPH0240061B2 (en) ISOSHIANAATONORENZOKUTEKISEIZOHOHO
JP7165509B2 (en) Method for producing isocyanate
JP7165508B2 (en) Method for producing isocyanate
JPH115773A (en) Production of isocyanate