JPH0238494Y2 - - Google Patents
Info
- Publication number
- JPH0238494Y2 JPH0238494Y2 JP1982114869U JP11486982U JPH0238494Y2 JP H0238494 Y2 JPH0238494 Y2 JP H0238494Y2 JP 1982114869 U JP1982114869 U JP 1982114869U JP 11486982 U JP11486982 U JP 11486982U JP H0238494 Y2 JPH0238494 Y2 JP H0238494Y2
- Authority
- JP
- Japan
- Prior art keywords
- surface acoustic
- acoustic wave
- aluminum
- electrode
- wave resonator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000010897 surface acoustic wave method Methods 0.000 claims description 34
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 15
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 14
- 229910052782 aluminium Inorganic materials 0.000 claims description 14
- WPPDFTBPZNZZRP-UHFFFAOYSA-N aluminum copper Chemical compound [Al].[Cu] WPPDFTBPZNZZRP-UHFFFAOYSA-N 0.000 claims description 13
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 9
- 229910052802 copper Inorganic materials 0.000 claims description 9
- 239000010949 copper Substances 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 7
- 239000000758 substrate Substances 0.000 claims description 6
- 230000007774 longterm Effects 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Landscapes
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Description
【考案の詳細な説明】
〔考案の技術分野〕
本考案は弾性表面波デバイスに係り、特に弾性
表面波デバイスの電極構造に関するものである。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a surface acoustic wave device, and particularly relates to an electrode structure of a surface acoustic wave device.
第1図を参照して弾性表面波デバイスのうちた
とえば弾性表面波共振子を説明する。圧電性基板
1の鏡面加工された主面に、インターデイジタル
電極5(以下IDTと称す)と、このIDT5を挾む
一対のグレーテイング反射電極6,6からなる弾
性表面波共振子7で構成されている。
Among the surface acoustic wave devices, for example, a surface acoustic wave resonator will be explained with reference to FIG. A surface acoustic wave resonator 7 consisting of an interdigital electrode 5 (hereinafter referred to as IDT) and a pair of grating reflective electrodes 6, 6 sandwiching the IDT 5 is formed on the mirror-finished main surface of the piezoelectric substrate 1. ing.
この2つのグレーテイング反射電極6,6の間
において、IDT5から励振放射された表面波の定
在波を起こして共振させ、Qの高い共振子として
作用させている。 Between these two grating reflective electrodes 6, 6, a standing wave of a surface wave excited and radiated from the IDT 5 is caused to resonate, thereby acting as a high-Q resonator.
ところが、IDT5とグレーテイング反射電極
6,6とは一般にアルミニウムで形成されてお
り、長時間弾性表面波共振子7を動作させると、
反射面の劣化により共振損失レベルがしだいに劣
化し、弾性表面波共振子7の機能が著しく劣化す
る問題がある。 However, the IDT 5 and the grating reflective electrodes 6, 6 are generally made of aluminum, and when the surface acoustic wave resonator 7 is operated for a long time,
There is a problem that the resonance loss level gradually deteriorates due to the deterioration of the reflecting surface, and the function of the surface acoustic wave resonator 7 deteriorates significantly.
そこで、この長時間の共振損失の劣化防止のた
めにIDT5とグレーテイング反射電極6との銅の
含有組成比が0.1〜5.0%のアルミニウム一銅合金
を使用する例が提案されている。しかし、この弾
性表面波共振子は長時間の動作で共振特性はアル
ミニウムから形成されたIDT,グレーテイング反
射電極を用いたものよりも改善されているが、初
期特性は逆に低下しているのが確認された。たと
えば、圧電基板1の厚さが0.3〜0.5mmで、IDT5
とグレーテイング反射電極6との厚さが1.0〜
1.5μmの弾性表面波共振子を共振周波数100MHz
帯で用いると初期特性は0.2〜0.5dB程度劣化して
いる。 Therefore, in order to prevent the long-term resonance loss from deteriorating, an example has been proposed in which the IDT 5 and the grating reflective electrode 6 are made of an aluminum-copper alloy with a copper content ratio of 0.1 to 5.0%. However, although the resonance characteristics of this surface acoustic wave resonator are improved over long-term operation than those using IDTs made of aluminum and grating reflective electrodes, the initial characteristics are on the contrary deteriorated. was confirmed. For example, if the thickness of piezoelectric substrate 1 is 0.3 to 0.5 mm, IDT5
and the grating reflective electrode 6 have a thickness of 1.0~
1.5μm surface acoustic wave resonator with resonance frequency of 100MHz
When used in the band, the initial characteristics deteriorate by about 0.2 to 0.5 dB.
この原因はアルミニウム一銅合金を用いると
IDT5とグレーテイング反射電極6との電極エツ
ヂはアルミニウムで形成したものよりも凹凸が多
くなるので、弾性表面波の反射が少なくなるため
と考えられる。 The cause of this is when using an aluminum-copper alloy.
This is thought to be because the electrode edges of the IDT 5 and the grating reflective electrode 6 have more irregularities than those formed of aluminum, which reduces reflection of surface acoustic waves.
本考案は上述の問題点に鑑みてなされたもの
で、初期特性において共振損失が少なくかつ長時
間の実使用に対し劣下しない弾性表面波デバイス
を提供するものである。
The present invention has been devised in view of the above-mentioned problems, and is intended to provide a surface acoustic wave device that has low resonance loss in its initial characteristics and does not degrade over long periods of actual use.
本考案は、インターデイジタル電極と反射電極
とを銅の重量組成比が0.1〜5.0であるアルミニウ
ム一銅合金とアルミニウムとの2層から形成する
ことにより、初期特性において共振損失が少なく
かつ長時間の実使用に対し劣下の少ない弾性表面
波デバイスである。
In this invention, by forming the interdigital electrode and reflective electrode from two layers of aluminum and copper alloy with a copper weight composition ratio of 0.1 to 5.0, the initial characteristics have low resonance loss and long-term resistance. This is a surface acoustic wave device with little deterioration in actual use.
第2図および第3図を参照して本考案の一実施
例を説明する。ここでは、弾性表面波デバイスの
うち実施例としてたとえば弾性表面波共振子を説
明する。また第2図および第3図は本考案の一実
施例を説明するためにIDTとグレーテイング反射
電極とを拡大した弾性表面波共振子の模式図であ
る。なお、IDTとグレーテイング反射電極との電
極構造を除いて弾性表面波共振子の構造は第1図
の弾性表面波共振子と同様なので詳細な説明は省
略する。
An embodiment of the present invention will be described with reference to FIGS. 2 and 3. Here, a surface acoustic wave resonator, for example, will be described as an example of the surface acoustic wave device. Further, FIGS. 2 and 3 are schematic diagrams of a surface acoustic wave resonator in which an IDT and a grating reflective electrode are enlarged to explain an embodiment of the present invention. Note that the structure of the surface acoustic wave resonator is the same as that of the surface acoustic wave resonator shown in FIG. 1 except for the electrode structure of the IDT and the grating reflective electrode, so a detailed explanation will be omitted.
第2図および第3図において、厚さが0.3mmの
圧電性基板1上に高さh2即ち厚さ5000Åアルミニ
ウム電極11が形成されている。またアルミニウ
ム電極11上には高さh1即ち厚さ5000Åで重量組
成比が略2%の銅を含有するアルミニウム一銅合
金電極10が形成されている。このアルミニウム
電極11とアルミニウム一銅合金の2層構造で
IDT5とグレーテイング反射電極6,6とが構成
されている。 In FIGS. 2 and 3, an aluminum electrode 11 having a height h 2 or a thickness of 5000 Å is formed on a piezoelectric substrate 1 having a thickness of 0.3 mm. Further, on the aluminum electrode 11, an aluminum-copper alloy electrode 10 having a height h1 , that is, a thickness of 5000 Å and containing copper in a weight composition ratio of approximately 2% is formed. This two-layer structure of aluminum electrode 11 and aluminum-copper alloy
An IDT 5 and grating reflective electrodes 6, 6 are configured.
この弾性表面波共振子7の製造方法を簡単に述
べると、厚さが0.3mmのLiTa08単結晶ウエーハに
厚さが5000Åほどのアルミニウムを蒸着する。そ
の上に銅を2wt%含有するアルミニウム一銅合金
を約5000Å蒸着してレジストを塗布する。次にマ
スクを介して露光して現像しエツチング後、レジ
ストを剥離することにより弾性表面波共振子7が
得られる。 Briefly, the method for manufacturing the surface acoustic wave resonator 7 is as follows: Aluminum with a thickness of about 5000 Å is deposited on a LiTa0 8 single crystal wafer with a thickness of 0.3 mm. On top of that, an aluminum-copper alloy containing 2 wt% copper is deposited to a thickness of about 5000 Å, and a resist is applied. Next, the surface acoustic wave resonator 7 is obtained by exposing to light through a mask, developing and etching, and then peeling off the resist.
ここで第4図に示す通り、圧電性基板の厚さが
0.3mmで、電極の厚さが1.0μmであり従来のアル
ミニウムからIDT5とグレーテイング反射電極6
とを構成した100MHz帯の弾性表面波共振子で
1mWのパワーを印加し500時間の実装テストを行
なつた場合の共振特性は22は、500時間の実装
テストで2dB程度の共振損失が生じた。一方、本
考案の第2図および第3図に示す弾性表面波共振
子7を上述のものと同一条件で500時間の実装テ
ストを行なうと、同じく共振特性21が得られ
る。第4図の特性21に示すように、長時間の実
装テストによつても共振損失は非常に小さく、ま
た初期特性も良好であつた。尚、当然のことなが
ら上記実施例の弾性表面波共振子の初期特性は、
IDT5とグレーテイング反射電極6,6とを重量
組成比が2%の銅を含有するアルミニウム一銅合
金で形成した弾性表面波共振子7よりも非常に改
善されたことが確認された。これは、IDT5とグ
レーテイング反射電極6,6との下部の部分即ち
アルミニウム電極11の表面に凹凸がなく滑らか
なために弾性表面波の反射が良好となるからであ
る。 Here, as shown in Figure 4, the thickness of the piezoelectric substrate is
0.3mm, electrode thickness is 1.0μm, and IDT5 and grating reflective electrode6 are made from conventional aluminum.
A 100MHz band surface acoustic wave resonator consisting of
The resonance characteristics of the 22 when a power of 1 mW was applied and a mounting test was conducted for 500 hours resulted in a resonance loss of approximately 2 dB during the mounting test for 500 hours. On the other hand, when the surface acoustic wave resonator 7 of the present invention shown in FIGS. 2 and 3 is subjected to a mounting test for 500 hours under the same conditions as described above, the same resonance characteristic 21 is obtained. As shown in characteristic 21 in FIG. 4, the resonance loss was extremely small even after a long-term mounting test, and the initial characteristics were also good. Incidentally, as a matter of course, the initial characteristics of the surface acoustic wave resonator of the above example are as follows:
It was confirmed that the IDT 5 and the grating reflective electrodes 6 and 6 were much improved compared to the surface acoustic wave resonator 7 in which the IDT 5 and the grating reflective electrodes 6 were formed of an aluminum-copper alloy containing 2% copper by weight. This is because the lower portions of the IDT 5 and the grating reflective electrodes 6, 6, that is, the surface of the aluminum electrode 11, are smooth and have no unevenness, so that surface acoustic waves are reflected well.
以上の一実施例ではアルミニウム一銅合金の銅
の重量組成比が2%の実施例について示したが、
0.1〜5.0%程度の重量組成比においても顕著な効
果が見られた。これはアルミニウム一銅合金電極
の銅の重量組成比が0.1wt%未満であると、長時
間の実装テストで顕著な共振損失が生じるし、ま
た5.0wt%を越えるとアルミニウム一銅合金電極
の凹凸が著るしくなり表面波の反射が少なくなり
初期特性の劣化が目だつようになるからである。
またさらにIDT5とグレーテイング反射電極6,
6とのアルミニウム電極11の高さh2とアルミニ
ウム一銅合金電極10の高さh1とは1:1の例を
示したが本考案はこれに限ることなくh1とh2との
高さの比は任意に選択することができる。また換
言すれば、IDT5とグレーテイング反射電極6と
の全体のアルミニウムに占める銅の重量組成比は
略1%程度のものが初期特性も良好で共振損失の
低下も見られなかつた。また、本考案のものを
IDTを2個配列する表面波共振子や、IDTを多数
用いるリング型共振子等の異なつた電極構成の弾
性表面波共振子においても同様な効果が得られ
る。 In the above example, the weight composition ratio of copper in the aluminum-copper alloy was 2%.
Remarkable effects were also seen at weight composition ratios of about 0.1 to 5.0%. This is because if the weight composition ratio of copper in the aluminum-copper alloy electrode is less than 0.1wt%, significant resonance loss will occur during a long-term mounting test, and if it exceeds 5.0wt%, the unevenness of the aluminum-copper alloy electrode will occur. This is because the reflection of surface waves becomes significant, the reflection of surface waves decreases, and the deterioration of the initial characteristics becomes noticeable.
Furthermore, IDT5 and grating reflective electrode 6,
Although the height h2 of the aluminum electrode 11 and the height h1 of the aluminum-copper alloy electrode 10 are 1 : 1 , the present invention is not limited to this. The ratio can be arbitrarily selected. In other words, when the weight composition ratio of copper to the total aluminum of the IDT 5 and the grating reflective electrode 6 was about 1%, the initial characteristics were good and no reduction in resonance loss was observed. Also, the one of this invention
Similar effects can be obtained in surface acoustic wave resonators with different electrode configurations, such as a surface acoustic wave resonator in which two IDTs are arranged, and a ring-shaped resonator in which a large number of IDTs are arranged.
本考案によれば、インターデイジタル電極とグ
レーテイング反射電極とをアルミニウム電極とア
ルミニウム一銅合金電極とから形成したので、初
期特性における共振損失の低下が少なく、しかも
長時間の実使用において共振損失の劣化の非常に
少ない弾性表面波デバイスが得られる。
According to the present invention, since the interdigital electrode and the grating reflective electrode are formed from an aluminum electrode and an aluminum-copper alloy electrode, there is little reduction in resonance loss in the initial characteristics, and moreover, the resonance loss is reduced during long-term actual use. A surface acoustic wave device with very little deterioration can be obtained.
第1図は従来の弾性表面波共振子を示す平面
図、第2図は本考案の弾性表面波共振子の一実施
例を示す模式平面図、第3図は第2図のX−
X′に沿う断面を示す断面図、第4図は弾性表面
波共振子の共振特性図である。
1……圧電性基板、5……インターデイジタル
電極、6……グレーテイング反射電極、7……弾
性表面波共振子、10……アルミニウム一銅合金
電極、11……アルミニウム電極。
FIG. 1 is a plan view showing a conventional surface acoustic wave resonator, FIG. 2 is a schematic plan view showing an embodiment of the surface acoustic wave resonator of the present invention, and FIG.
FIG. 4 is a cross-sectional view showing a cross section taken along X', and is a resonance characteristic diagram of the surface acoustic wave resonator. DESCRIPTION OF SYMBOLS 1...Piezoelectric substrate, 5...Interdigital electrode, 6...Grating reflective electrode, 7 ...Surface acoustic wave resonator, 10...Aluminum-copper alloy electrode, 11...Aluminum electrode.
Claims (1)
電極を所定の間隔で挾む反射電極を形成してな
る弾性表面波デバイスにおいて、 前記インターデイジタル電極と前記反射電極
とはアルミニウムにより形成された第1層と、
この第1層上に設置された銅の重量組成比が
0.1〜0.5%であるアルミニウム−銅合金により
形成された第2層からなることを特徴とする弾
性表面波デバイス。 (2) 前記第1層と前記第2層との厚さの比が1:
1であることを特徴とする実用新案登録請求の
範囲第1項記載の弾性表面波デバイス。[Claims for Utility Model Registration] (1) A surface acoustic wave device comprising reflective electrodes sandwiching interdigital electrodes disposed on a piezoelectric substrate at predetermined intervals, wherein the interdigital electrodes and the reflective electrodes is a first layer formed of aluminum;
The weight composition ratio of the copper placed on this first layer is
A surface acoustic wave device comprising a second layer made of an aluminum-copper alloy of 0.1 to 0.5%. (2) The ratio of the thicknesses of the first layer and the second layer is 1:
1. A surface acoustic wave device according to claim 1, characterized in that: 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11486982U JPS5920722U (en) | 1982-07-30 | 1982-07-30 | surface acoustic wave device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11486982U JPS5920722U (en) | 1982-07-30 | 1982-07-30 | surface acoustic wave device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5920722U JPS5920722U (en) | 1984-02-08 |
JPH0238494Y2 true JPH0238494Y2 (en) | 1990-10-17 |
Family
ID=30265364
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11486982U Granted JPS5920722U (en) | 1982-07-30 | 1982-07-30 | surface acoustic wave device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5920722U (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3026937B2 (en) * | 1995-01-26 | 2000-03-27 | ティーディーケイ株式会社 | Manufacturing method of surface acoustic wave device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5480654A (en) * | 1977-12-09 | 1979-06-27 | Fujitsu Ltd | Surface acoustic wave element |
JPS5550717A (en) * | 1978-10-06 | 1980-04-12 | Hitachi Ltd | Manufacture for surface acoustic wave filter |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51114933U (en) * | 1975-03-12 | 1976-09-17 |
-
1982
- 1982-07-30 JP JP11486982U patent/JPS5920722U/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5480654A (en) * | 1977-12-09 | 1979-06-27 | Fujitsu Ltd | Surface acoustic wave element |
JPS5550717A (en) * | 1978-10-06 | 1980-04-12 | Hitachi Ltd | Manufacture for surface acoustic wave filter |
Also Published As
Publication number | Publication date |
---|---|
JPS5920722U (en) | 1984-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100312001B1 (en) | Surface acoustic wave device | |
US4775814A (en) | Saw device | |
KR100681692B1 (en) | Surface acoustic wave apparatus and manufacturing method therefor | |
US8183737B2 (en) | Surface acoustic wave device including electrode fingers partially disposed in grooves in a piezoelectric substrate | |
US5204575A (en) | Surface acoustic wave resonator | |
US20020057036A1 (en) | Surface acoustic wave device | |
JPH0773177B2 (en) | Surface acoustic wave resonator | |
EP0392879B1 (en) | Surface acoustic wave device | |
EP0762640A1 (en) | Surface acoustic wave device | |
WO2007145056A1 (en) | Surface acoustic wave device | |
US6898831B2 (en) | Method of producing a surface acoustic wave device | |
JP3979279B2 (en) | Surface acoustic wave device | |
JPH0238494Y2 (en) | ||
US5568001A (en) | Saw device having acoustic elements with diverse mass loading and method for forming same | |
JPH06350377A (en) | Surface acoustic wave element | |
JP2001217672A (en) | Surface acoustic wave element and its manufacturing method | |
JPH11163661A (en) | Surface acoustic wave device | |
US6452306B1 (en) | Surface acoustic wave device and piezoelectric substrate used therefor | |
JP2004040636A (en) | Surface wave device | |
JPH08250966A (en) | Surface acoustic wave device | |
JPH05183378A (en) | Surface acoustic wave element | |
JPH10126207A (en) | Surface acoustic wave device | |
JPS60140918A (en) | Surface acoustic wave resonator | |
JP3296097B2 (en) | Surface acoustic wave device | |
JPH11163662A (en) | Surface acoustic wave filter |