JP3296097B2 - Surface acoustic wave device - Google Patents

Surface acoustic wave device

Info

Publication number
JP3296097B2
JP3296097B2 JP16092694A JP16092694A JP3296097B2 JP 3296097 B2 JP3296097 B2 JP 3296097B2 JP 16092694 A JP16092694 A JP 16092694A JP 16092694 A JP16092694 A JP 16092694A JP 3296097 B2 JP3296097 B2 JP 3296097B2
Authority
JP
Japan
Prior art keywords
electrode
surface acoustic
film
acoustic wave
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16092694A
Other languages
Japanese (ja)
Other versions
JPH0832404A (en
Inventor
康博 太田
章綱 湯原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16092694A priority Critical patent/JP3296097B2/en
Publication of JPH0832404A publication Critical patent/JPH0832404A/en
Application granted granted Critical
Publication of JP3296097B2 publication Critical patent/JP3296097B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、金属薄膜よりなる電極
膜を形成した弾性表面波素子に関し、特に、耐電力性が
高く、特性良好で、長期使用に耐える弾性表面波素子の
電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface acoustic wave device having an electrode film made of a metal thin film, and more particularly to an electrode of a surface acoustic wave device having high power durability, good characteristics and endurable for a long time.

【0002】[0002]

【従来の技術】近年、弾性表面波素子は、小形高性能な
バンドパスフィルタ及び共振子として応用範囲が拡大
し、動作周波数も数百MHzから数GHzと高周波化す
ると同時に高出力化が要求されるようになってきてい
る。また、高出力化を図るために、内部損失の低減及び
高耐電力性を併せ持つ新しい構造が要求されるようにな
ってきている。高周波化を図るためには、使用するすだ
れ状くし形電極のピッチを狭くすると同時に電極幅も狭
くする必要が有り、中心周波数1GHzの時には電極幅
は約1μmとなる。このような微細電極を用いた弾性表
面波素子の信頼性面での問題として、動作時に、弾性表
面波によって生ずる基板表面の歪みが、表面上に形成さ
れた電極膜に内部応力を発生させ、その応力が電極膜の
臨界剪断応力を越えた部分では電極材料原子が結晶粒界
を通路として移動し、電極に空隙(ボイド)、突起(ヒ
ロック)を発生させ、特性の劣化及び電極破壊が発生す
る点が挙げられる。
2. Description of the Related Art In recent years, the surface acoustic wave element has been applied to a small and high-performance band-pass filter and a resonator, and the operating frequency has been increased from several hundred MHz to several GHz, and at the same time, high output is required. It is becoming. Further, in order to achieve high output, a new structure having both a reduction in internal loss and high power durability has been required. In order to increase the frequency, it is necessary to narrow the pitch of the interdigital transducers to be used and at the same time to narrow the electrode width. When the center frequency is 1 GHz, the electrode width is about 1 μm. As a problem in terms of reliability of a surface acoustic wave element using such a microelectrode, during operation, distortion of the substrate surface caused by surface acoustic waves generates internal stress in an electrode film formed on the surface, At the portion where the stress exceeds the critical shear stress of the electrode film, the electrode material atoms move through the crystal grain boundaries as passages, creating voids (voids) and protrusions (hillocks) in the electrode, causing deterioration of characteristics and electrode breakdown. Point.

【0003】上記問題に対応するため、従来から、例え
ば特公昭61−47010号公報に記載されているよう
に、使用する電極材料として、AlにCuを少量添加し
電極の金属薄膜を硬化させることが行なわれている。ま
た、AlにTiを添加する提案は特開昭62−1634
08号公報に、AlにPdを添加する提案は特開平2−
274008号公報に記載されている。他に、AlにN
i,Mg等を添加する提案もなされている。
In order to cope with the above problem, as described in, for example, Japanese Patent Publication No. 61-47010, a small amount of Cu is added to Al as an electrode material to be used to cure a metal thin film of the electrode. Is being done. A proposal for adding Ti to Al is disclosed in Japanese Patent Application Laid-Open No. 62-1634.
Japanese Patent Application Laid-Open No. 08-08,082 discloses a proposal for adding Pd to Al.
No. 274008. Besides, N to Al
It has been proposed to add i, Mg and the like.

【0004】電極膜材料としては、Al膜にCu,T
i,Pd,Ni,Mg等を少量添加し電極膜の硬化を行
なう際に、添加量を増加するに伴い硬化強度は増大し耐
電力性は増大するが、一方、電極膜の比抵抗が増加す
る、及び、硬化強度が高すぎる為に、内部損失が増大、
及び、ワイヤボンディングが困難になるという問題があ
り、両者を満足するための添加する元素および添加する
量に大幅な制限があると共に、電極膜の微細構造に関す
る最適化がなされていなかった。
[0004] As an electrode film material, Cu, T
When the electrode film is hardened by adding a small amount of i, Pd, Ni, Mg, etc., the hardening strength increases and the power durability increases as the addition amount increases, but the specific resistance of the electrode film increases. And, because the curing strength is too high, the internal loss increases,
In addition, there is a problem that wire bonding becomes difficult, and there is a great limitation on elements to be added and amounts to be added to satisfy both of them, and optimization on a fine structure of an electrode film has not been performed.

【0005】[0005]

【発明が解決しようとする課題】上記従来技術は、電極
膜の硬化強度を増大させて耐電力性の向上を図ること、
電極膜の比抵抗を減少させて動作時の内部損失を低減さ
せること、及び、ワイヤボンディングを可能にするこ
と、を同時に実現させることについては考慮されていな
かった。
The above prior art aims to improve the power durability by increasing the curing strength of the electrode film.
No consideration has been given to simultaneously reducing the internal resistance during operation by reducing the specific resistance of the electrode film and enabling wire bonding.

【0006】本発明は、従来の課題を解決し、耐電力性
が高く、しかも動作時の内部損失が低くワイヤボンディ
ングが容易な弾性表面波素子電極の電極材料および電極
薄膜の微細構造を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the conventional problems, and provides an electrode material of a surface acoustic wave element electrode and a fine structure of an electrode thin film having high power durability, low internal loss during operation, and easy wire bonding. The purpose is to:

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に本発明においては、圧電性基板上に、少なくとも1個
の送受波電極を有し、該送受波電極を含め、弾性表面波
を伝搬ないしは反射する電極の少なくとも1部におい
て、(1)Cuを0.3wt%〜2.0wt%かつPd
を0.1wt%〜3.0wt%含有した3元素Al合金
薄膜にすること、(2)Cuを0.3wt%〜2.0w
t%かつTiを0.1wt%〜3.0wt%含有した3
元素Al合金薄膜にすること、(3)Cuを0.3wt
%〜2.0wt%、かつ、PdとTiの両者の合計をを
0.1wt%〜3.0wt%含有した4元素Al合金薄
膜にすること、(4)該Al合金薄膜の平均粒径を電極
幅の1/50〜1/3にすること、以上の4つ手段を採
用することにした。
According to the present invention, at least one transmitting and receiving electrode is provided on a piezoelectric substrate, and a surface acoustic wave is propagated including the transmitting and receiving electrode. Or at least part of the reflecting electrode, (1) 0.3 wt% to 2.0 wt% of Cu and Pd
To form a three-element Al alloy thin film containing 0.1 wt% to 3.0 wt% of Cu; (2) 0.3 wt% to 2.0 w of Cu
3 containing 0.1% to 3.0% by weight of Ti and 0.1% by weight
(3) Cu 0.3 wt%
% To 2.0 wt%, and a four-element Al alloy thin film containing 0.1 wt% to 3.0 wt% of the total of both Pd and Ti. (4) The average particle size of the Al alloy thin film is The width is set to 1/50 to 1/3 of the electrode width, and the above four means are adopted.

【0008】[0008]

【作用】圧電性基板に電極膜を形成する方法としては、
スパッタリング法及び真空蒸着法が用いられるが、膜の
緻密性及び合金膜の組成安定性の点から主にスパッタリ
ング法が用いられる。電極膜の耐電力向上を図るために
は、Cuを添加したAl合金薄膜を用いることが有効で
ある。しかし、Al−Cu合金膜の欠点は、電池効果に
より腐食性が高く、また、微細電極を高精度に形成する
塩素系ガスプラズマを用いたドライエッチングを行った
場合、Cuの塩化物の蒸気圧が低いためにエッチングが
難しく、また、Cuの塩化物が残留するために電極腐食
が発生し易い点がある。
[Function] As a method of forming an electrode film on a piezoelectric substrate,
Although a sputtering method and a vacuum evaporation method are used, the sputtering method is mainly used in view of the denseness of the film and the composition stability of the alloy film. In order to improve the power durability of the electrode film, it is effective to use an Al alloy thin film to which Cu is added. However, the disadvantage of the Al-Cu alloy film is that it is highly corrosive due to the battery effect, and when dry etching is performed using a chlorine-based gas plasma that forms a fine electrode with high precision, the vapor pressure of the chloride of Cu is reduced. Is low, etching is difficult, and electrode chloride is liable to be generated due to residual Cu chloride.

【0009】発明者は、弾性表面波素子の電極劣化に及
ぼすAlへの添加材料の効果及び電極膜構造の効果を検
討した結果、以下に示すことが明らかになった。Cuの
添加効果は、Al−Cu合金膜内におけるAl原子の自
己拡散の抑圧であり、他の添加材料に比較して1桁以上
低くAlの自己拡散速度を低減することができる。ま
た、Al−Cu合金膜は、同一条件にて成膜したAl膜
とほぼ同一の結晶粒径を示し、結晶粒径の微細化の効果
は無い。一方、電極膜構造としては、結晶粒径の微細化
が電極劣化防止として有効である。結晶粒径の微細化を
図る手段として添加材料の検討を行った結果、Pd,T
i,Bi,V,Zr,Sn,Pbが有効であった。但
し、Bi,V,Zr,Sn,Pbは、Alへの添加に伴
う抵抗増加、酸化性、腐食性、相分離及び毒性の点で好
ましくなく、Pd,Tiがより好ましい。
As a result of studying the effect of the additive material to Al and the effect of the electrode film structure on the electrode deterioration of the surface acoustic wave device, the inventors have found the following. The effect of adding Cu is suppression of the self-diffusion of Al atoms in the Al-Cu alloy film, and the self-diffusion rate of Al can be reduced by one digit or more as compared with other added materials. The Al-Cu alloy film has almost the same crystal grain size as the Al film formed under the same conditions, and has no effect of reducing the crystal grain size. On the other hand, for the electrode film structure, miniaturization of the crystal grain size is effective for preventing electrode deterioration. As a result of studying the additive material as a means for reducing the crystal grain size, Pd, T
i, Bi, V, Zr, Sn and Pb were effective. However, Bi, V, Zr, Sn, and Pb are not preferred in terms of resistance increase, oxidizing property, corrosiveness, phase separation and toxicity due to addition to Al, and Pd and Ti are more preferred.

【0010】そこで、Al−Cu合金膜にPd,Tiの
添加を行ったところ、結晶粒径は微細化され、電極の耐
電力性がAl−Cu合金膜を使用した場合よりも3倍以
上向上することを確認した。Cuの添加量は、その効果
を発揮するためには0.1wt%以上必要であるが、A
l膜よりも2倍以上の耐電力性を得るためには0.3w
t%以上がより好ましい。また、Cu添加による抵抗増
加および電池効果による腐食容易性を防止する点より
2.0wt%以下にする必要がある。Pd,Tiの添加
量は、その効果を発揮するためには0.1wt%以上必
要であるが、Pd,Ti添加による抵抗増加及び膜硬度
増加によるワイヤボンディング不能のため3.0wt%
以下に限定される。
Therefore, when Pd and Ti are added to the Al-Cu alloy film, the crystal grain size is reduced, and the power durability of the electrode is improved by more than three times as compared with the case where the Al-Cu alloy film is used. Make sure you do. The addition amount of Cu is required to be 0.1 wt% or more in order to exert its effect.
0.3 w
t% or more is more preferable. Further, the content needs to be 2.0 wt% or less in order to prevent the resistance increase due to the addition of Cu and the easiness of corrosion due to the battery effect. The addition amount of Pd and Ti is required to be 0.1 wt% or more in order to exert the effect, but it is 3.0 wt% because wire addition becomes impossible due to increase in resistance due to addition of Pd and Ti and increase in film hardness.
It is limited to the following.

【0011】電極膜の平均粒径は、耐電力性及び比抵抗
に影響を与える。平均粒径が小さいほど耐電力性は向上
する傾向を示すが、一方、比抵抗は増加し内部損失が増
大する傾向を示すため、平均粒径には最適範囲が存在す
る。実験の結果、平均粒径が電極幅の1/3以下の時、
耐電力性向上に有効であるが、1/50未満になると比
抵抗が増加し内部損失が増大するために好ましくないこ
とを明らかにした。
The average particle size of the electrode film affects power durability and specific resistance. The smaller the average particle size, the higher the power durability tends to be. On the other hand, the specific resistance tends to increase and the internal loss tends to increase. Therefore, the average particle size has an optimum range. As a result of the experiment, when the average particle size is 1/3 or less of the electrode width,
Although it is effective for improving the power durability, it has been clarified that if it is less than 1/50, the specific resistance increases and the internal loss increases, which is not preferable.

【0012】従って、電極膜の平均粒径は、電極幅の1
/50以上1/3以下の範囲内にする必要がある。
Therefore, the average particle size of the electrode film is one of the electrode width.
It is necessary to be within the range of / 50 or more and 1/3 or less.

【0013】[0013]

【実施例】以下、本発明を図面を用いて更に詳細に説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in more detail with reference to the drawings.

【0014】実施例1:図1(a)は弾性表面波2開口
共振器の平面図、図1(b)は図1(a)中に示すA−
A’線断面図である。圧電性基板1aにはSTカット水
晶基板を用い、その基板上に1組の送受波電極2,2’
が開口1000μm、28対で互いに弾性表面波を送受
するように設けられており、ボンディングパット3,
3’と接続されている。ボンディングパット3,3’は
直径25μmのAl線またはAu線よりなるボンディン
グワイヤで、カンパッケイジステム7の入出力ピン4,
4’に電気的に接続されている。また、上記1組の送受
波電極2,2’の両側には750本の金属スプリットか
らなる反射器5,5’が設けられ、2開口弾性表面波共
振器を構成している。上記送受波電極2,2’、反射器
5,5’の電極の膜厚は約0.1μmで、共振周波数は
697MHz,Q≒4000となっており、単層構造の
Al−0.5wt%Cu−0.3wt%Ti電極、Al
−0.5wt%Cu−0.3wt%Pd電極、比較例と
してAl−0.5wt%Cu電極の物を作製した。尚、
送受波電極2,2’、反射器5,5’を形成させた基板
1aは導電性接着剤6でTO−5カンパッケージステム
7に接着してある。図2に加速劣化試験結果を示す。加
速劣化試験の条件は、周囲温度120℃で、入力電力を
変化させた場合で行い、寿命は共振周波数が試験開始時
点から±50kHz変化した時間を持って示した。T
i,Pdを添加したAl−Cu電極を用いた場合は、A
l−Cu電極を用いた場合よりも長寿命になることが確
認できる。
Embodiment 1 FIG. 1 (a) is a plan view of a surface acoustic wave two-aperture resonator, and FIG. 1 (b) is an A-line resonator shown in FIG. 1 (a).
FIG. 3 is a sectional view taken along line A ′. An ST-cut quartz substrate is used as the piezoelectric substrate 1a, and a pair of transmitting and receiving electrodes 2 and 2 'are formed on the substrate.
Are provided so as to transmit and receive surface acoustic waves to and from each other with an opening of 1000 μm and 28 pairs.
3 '. The bonding pads 3, 3 'are bonding wires made of an Al wire or an Au wire having a diameter of 25 μm.
4 'is electrically connected. Further, reflectors 5 and 5 'made of 750 metal splits are provided on both sides of the pair of transmitting and receiving electrodes 2 and 2' to constitute a two-aperture surface acoustic wave resonator. The thickness of the transmitting and receiving electrodes 2, 2 'and the electrodes of the reflectors 5, 5' is about 0.1 μm, the resonance frequency is 697 MHz, Q ≒ 4000, and a single layer structure of Al-0.5 wt% Cu-0.3wt% Ti electrode, Al
A -0.5 wt% Cu-0.3 wt% Pd electrode and an Al-0.5 wt% Cu electrode as a comparative example were produced. still,
The substrate 1a on which the transmitting and receiving electrodes 2, 2 'and the reflectors 5, 5' are formed is adhered to the TO-5 can package stem 7 with a conductive adhesive 6. FIG. 2 shows the results of the accelerated deterioration test. The conditions of the accelerated aging test were performed when the input power was changed at an ambient temperature of 120 ° C., and the life was shown by the time when the resonance frequency changed by ± 50 kHz from the start of the test. T
When an Al-Cu electrode to which i, Pd is added is used, A
It can be confirmed that the life is longer than when the l-Cu electrode is used.

【0015】実施例2:図3に、本実施例の加速劣化試
験に用いた素子構造を示す。図3(a)は本実施例の素
子の平面図、図3(b)は図3(a)A−A’の断面図
である。圧電性基板1bはSHモードの擬似表面波を伝
搬する36°回転Y軸切断、X軸伝搬のLiTaO3
ある。電極構成は、入力電極8、出力電極9が交互に配
置されており、入出力電極の個数は、入力電極8は2
個、出力電極9は3個の多電極型構造となっている。入
力電極8及び出力電極9は、それぞれくし形電極指10
から構成され、図3(b)の断面図に示すように、くし
形電極指10の電極幅とくし形電極指10のない部分
(スペース部)の幅は等しくなっている。また、入出力
電極8,9の間には接地用電極パターン11が形成され
ている。更に、圧電性基板1bの表面は、入出力電極
8,9及び接地用電極パターン11と電気的に絶縁され
た浮き電極パターン12で覆った構造としている。尚、
この多電極型弾性表面波素子の中心周波数は880MH
zで、入出力電極8,9のくし形電極指の電極幅、スペ
ース幅は共に1.2μm、接地用電極パターン11の幅
は5μmである。電極は、単層構造のAl−1.0wt
%Cu−0.5wt%Ti電極、Al−1.0wt%C
u−0.5wt%Pd電極、比較例としてAl−1.0
wt%Cu電極の物を作製し、膜厚は約0.1μmであ
る。図4に加速劣化試験結果を示す。加速劣化試験の条
件は、周囲温度120℃で、入力電力を変化させた場合
で行い、寿命は中心周波数での損失が0.5dB増加し
た時間とした。Ti,Pdを添加したAl−Cu電極を
用いた場合は、Al−Cu電極を用いた場合よりも長寿
命になることが確認できる。
Embodiment 2 FIG. 3 shows an element structure used in an accelerated deterioration test of this embodiment. FIG. 3A is a plan view of the element of this embodiment, and FIG. 3B is a cross-sectional view taken along the line AA ′ of FIG. The piezoelectric substrate 1b is made of LiTaO 3 that propagates a SH-mode pseudo surface wave and is 36 ° rotated Y-axis cut and X-axis propagated. The electrode configuration is such that input electrodes 8 and output electrodes 9 are alternately arranged, and the number of input / output electrodes is 2
The output electrode 9 has three multi-electrode structures. The input electrode 8 and the output electrode 9 are
As shown in the cross-sectional view of FIG. 3B, the electrode width of the comb-shaped electrode finger 10 is equal to the width of the portion without the comb-shaped electrode finger 10 (space portion). A ground electrode pattern 11 is formed between the input / output electrodes 8 and 9. Further, the surface of the piezoelectric substrate 1b is covered with a floating electrode pattern 12 which is electrically insulated from the input / output electrodes 8, 9 and the ground electrode pattern 11. still,
The center frequency of this multi-electrode surface acoustic wave device is 880 MHz.
In z, the electrode width and space width of the comb-shaped electrode fingers of the input / output electrodes 8 and 9 are both 1.2 μm, and the width of the ground electrode pattern 11 is 5 μm. The electrode is a single layer Al-1.0 wt
% Cu-0.5 wt% Ti electrode, Al-1.0 wt% C
u-0.5 wt% Pd electrode, Al-1.0 as a comparative example
A product of a wt% Cu electrode was manufactured, and the film thickness was about 0.1 μm. FIG. 4 shows the results of the accelerated deterioration test. The conditions of the accelerated aging test were performed at an ambient temperature of 120 ° C. while changing the input power, and the life was defined as the time at which the loss at the center frequency increased by 0.5 dB. It can be confirmed that the life is longer when the Al-Cu electrode to which Ti and Pd are added is used than when the Al-Cu electrode is used.

【0016】実施例3:実施例2と同一の多電極型弾性
表面波素子構造を用い、電極は、単層構造のAl−1.
0wt%Cu−0.3wt%Ti−0.3wt%Pd電
極、比較例としてAl−1.5wt%Cu電極の物を作
製し加速劣化試験を行った。膜厚は約0.1μmであ
る。図5に加速劣化試験結果を示す。加速劣化試験の条
件は、周囲温度120℃で、入力電力を変化させた場合
で行い、寿命は中心周波数での損失が0.5dB増加し
た時間とした。TiとPdを添加したAl−Cu電極を
用いた場合は、Al−Cu電極を用いた場合よりも長寿
命になることが確認できる。
Example 3 The same multi-electrode surface acoustic wave device structure as in Example 2 was used, and the electrodes were of a single-layer structure of Al-1.
A 0 wt% Cu-0.3 wt% Ti-0.3 wt% Pd electrode and an Al-1.5 wt% Cu electrode as a comparative example were prepared and subjected to an accelerated deterioration test. The thickness is about 0.1 μm. FIG. 5 shows the results of the accelerated deterioration test. The conditions of the accelerated aging test were performed at an ambient temperature of 120 ° C. while changing the input power, and the life was defined as the time at which the loss at the center frequency increased by 0.5 dB. It can be confirmed that when the Al-Cu electrode to which Ti and Pd are added is used, the life is longer than when the Al-Cu electrode is used.

【0017】実施例4:本実施例は、AlへのCu添加
量の範囲を示すものである。図6は、Al−Cu電極膜
を用いた弾性表面波素子において、Cuの添加量に対す
る寿命をAl電極膜を用いた時の寿命により規格化し示
したものである。寿命評価に用いた弾性表面波素子は、
ST水晶基板を使用した2開口共振器であり、加速劣化
試験の条件は周囲温度120℃、入力電力1Wである。
寿命は共振周波数が試験開始時点から±50kHz変化
した時間とした。該弾性表面波素子の構造等は実施例1
と同様である。AlへのCuの添加量を増加させるとA
lに対する寿命倍率は上昇する。0.1wt%Cuの添
加により寿命向上の効果は現われるが、少なくともAl
に対する寿命の2倍の寿命を確保するためには0.3w
t%Cu以上の添加が必要である。しかし、2.0wt
%Cuより多くの添加を行った場合には、弾性表面波素
子の作製プロセス中に電極に腐食が発生する頻度が高く
実用的ではない。従って、Cuの添加量としては、0.
1wt%以上の添加が好ましく、0.3wt%以上の添
加がさらに好ましいが、2.0wt%以下にする必要が
ある。
Embodiment 4 This embodiment shows the range of the amount of Cu added to Al. FIG. 6 shows, in a surface acoustic wave device using an Al—Cu electrode film, the life with respect to the added amount of Cu normalized by the life when the Al electrode film is used. The surface acoustic wave device used for life evaluation is
It is a two-aperture resonator using an ST crystal substrate, and the conditions for the accelerated deterioration test are an ambient temperature of 120 ° C. and an input power of 1 W.
The life was defined as the time when the resonance frequency changed by ± 50 kHz from the start of the test. The structure and the like of the surface acoustic wave element are described in Example 1.
Is the same as When the amount of Cu added to Al is increased, A
The life multiplier for 1 increases. Although the effect of improving the life appears by adding 0.1 wt% Cu, at least Al
0.3 w to ensure a life twice as long as
It is necessary to add t% Cu or more. However, 2.0wt
If more than% Cu is added, the electrode frequently corrodes during the surface acoustic wave device fabrication process, which is not practical. Therefore, as the addition amount of Cu, 0.1.
Addition of 1 wt% or more is preferable, and addition of 0.3 wt% or more is more preferable, but it is necessary to be 2.0 wt% or less.

【0018】実施例5:本実施例は、AlへのTi,P
dの添加量の下限を示すものである。図7は、Alへの
Ti,Pdの添加量に対する合金膜の平均結晶粒径を示
したものである。各合金膜の膜厚は0.13μmと一定
とし評価した。Ti,Pdはともに該合金膜の結晶粒径
を小さくする効果あり、同一添加量ではPdの方がその
効果が大きい事を確認した。該効果は微量の添加におい
ても現われるが少なくとも0.1wt%以上の添加がよ
り望ましい。
Embodiment 5: This embodiment relates to the case where Ti, P
It shows the lower limit of the amount of d added. FIG. 7 shows the average crystal grain size of the alloy film with respect to the amounts of Ti and Pd added to Al. The thickness of each alloy film was evaluated as being constant at 0.13 μm. Both Ti and Pd have the effect of reducing the crystal grain size of the alloy film, and it has been confirmed that Pd has a greater effect at the same addition amount. Although this effect appears even in a small amount of addition, at least 0.1 wt% or more is more desirable.

【0019】実施例6:本実施例は、AlへのTi,P
dの添加量の上限を示すものである。図8は、Al−
0.5wt%CuへのTi,Pdの添加量に対する合金
膜の比抵抗を示したものである。各合金膜の膜厚は0.
1μmと一定とし評価した。Ti,Pdの添加量が増加
するにともない比抵抗は増大するが、Pd添加の方が増
加の割合が少ない。また、3.0wt%より多くの添加
を行った場合には、該合金膜の硬度が増加しワイヤボン
ディングが不可能になるため3.0wt%以下の添加量
にすることが必要である。
Embodiment 6: This embodiment relates to the case where Ti, P
It shows the upper limit of the amount of d added. FIG.
It shows the specific resistance of the alloy film with respect to the amount of Ti and Pd added to 0.5 wt% Cu. The thickness of each alloy film is 0.
The evaluation was made constant at 1 μm. Although the specific resistance increases with the addition amount of Ti and Pd, the ratio of the increase is smaller with the addition of Pd. If more than 3.0 wt% is added, the hardness of the alloy film increases and wire bonding becomes impossible, so it is necessary to make the addition amount 3.0 wt% or less.

【0020】実施例5の結果も踏まえると、Ti,Pd
の添加量は0.1wt%以上3.0wt%以下にする必
要がある。
Considering the results of Example 5, Ti, Pd
Is required to be 0.1 wt% or more and 3.0 wt% or less.

【0021】実施例7:図9は、弾性表面波素子電極の
寿命が電極膜の(平均結晶粒径/電極幅)により大きな
影響を受けることを示した図である。すなわち、電極幅
に対する電極膜の平均粒径の比率と、当該素子電極の寿
命の関係を●印の特性線で示している。加速劣化試験条
件及び素子は、実施例2に示したそれと同様である。た
だし、電極膜組成は、Al−0.5wt%Cu−0.4
wt%Pdとした。電極幅に対する電極膜の平均粒径の
比率は、電極膜の作成条件を変化させて得ることができ
る。該比率が低くなると共に寿命は向上し、本加速試験
では、10時間以上の寿命を保持することが実用上必要
になるため、本比率は1/3以下にする必要があること
がわかる。一方、該比率が1/50より低くなると、黒
四角印の特性線で示している様に、電極膜の比抵抗が増
加するために素子としての内部損失が増加することから
好ましくない。従って、上記両条件から好ましい該比率
は1/3〜1/50であることになる。
Embodiment 7 FIG. 9 is a view showing that the life of a surface acoustic wave device electrode is greatly affected by (average crystal grain size / electrode width) of an electrode film. That is, the relationship between the ratio of the average particle diameter of the electrode film to the electrode width and the life of the device electrode is indicated by the characteristic line indicated by a black circle. The accelerated deterioration test conditions and elements are the same as those described in Example 2. However, the composition of the electrode film is Al-0.5 wt% Cu-0.4
wt% Pd. The ratio of the average particle size of the electrode film to the electrode width can be obtained by changing the conditions for forming the electrode film. As the ratio decreases, the service life increases, and in the present accelerated test, it is practically necessary to maintain a service life of 10 hours or more. Therefore, it is understood that the ratio needs to be 1/3 or less. On the other hand, if the ratio is lower than 1/50, as shown by the characteristic line indicated by the black square, the specific resistance of the electrode film increases, which is not preferable because the internal loss as an element increases. Therefore, the preferable ratio is 1/3 to 1/50 based on the above two conditions.

【0022】実施例8:図10は、Al−0.5wt%
CuへのTi,Pdの添加量に対する合金膜の平均結晶
粒径を示したものである。各合金膜の膜厚は0.13μ
mと一定とし評価した。Ti,Pdはともに該合金膜の
結晶粒径を小さくする効果あり、同一添加量ではPdの
方がその効果が大きい事を確認した。該効果は微量の添
加においても現われるが少なくとも0.1wt%以上の
添加がより望ましい。
Example 8: FIG. 10 shows that Al-0.5 wt%
It shows the average crystal grain size of the alloy film with respect to the addition amount of Ti and Pd to Cu. The thickness of each alloy film is 0.13μ
The evaluation was made constant at m. Both Ti and Pd have the effect of reducing the crystal grain size of the alloy film, and it has been confirmed that Pd has a greater effect at the same addition amount. Although this effect appears even in a small amount of addition, at least 0.1 wt% or more is more desirable.

【0023】実施例1の図2に示した加速劣化試験結果
では、寿命はPdよりもTi添加の方が長く、一方、P
dの方が平均結晶粒径の微細化の効果が大きいとする本
実施例とは結果が相違している。この事実は、Tiを添
加した合金中の方がPdを添加した合金中よりのAlの
自己拡散が小さい事を意味している。
According to the results of the accelerated deterioration test shown in FIG. 2 of Example 1, the life was longer when Ti was added than when Pd was added.
The result is different from that of the present example in which d is more effective in reducing the average crystal grain size. This fact means that the self-diffusion of Al is smaller in the alloy to which Ti is added than in the alloy to which Pd is added.

【0024】実施例9:図11は、Al−1.0wt%
CuへのTi,Pdの添加量に対する合金膜の平均結晶
粒径を示したものである。各合金膜の膜厚は0.13μ
mと一定とし評価した。Ti,Pdはともに該合金膜の
結晶粒径を小さくする効果あり、同一添加量ではPdの
方がその効果が大きい事を確認した。該効果は微量の添
加においても現われるが少なくとも0.1wt%以上の
添加がより望ましい。
Example 9: FIG. 11 shows Al-1.0 wt%
It shows the average crystal grain size of the alloy film with respect to the addition amount of Ti and Pd to Cu. The thickness of each alloy film is 0.13μ
The evaluation was made constant at m. Both Ti and Pd have the effect of reducing the crystal grain size of the alloy film, and it has been confirmed that Pd has a greater effect at the same addition amount. Although this effect appears even in a small amount of addition, at least 0.1 wt% or more is more desirable.

【0025】実施例2の図4に示した加速劣化試験結果
では、寿命はPdよりもTi添加の方が長く、一方、P
dの方が平均結晶粒径の微細化の効果が大きいとする本
実施例とは結果が相違している。この事実は、Tiを添
加した合金中の方がPdを添加した合金中よりのAlの
自己拡散が小さい事を意味している。
According to the results of the accelerated deterioration test shown in FIG. 4 of Example 2, the life was longer when Ti was added than when Pd was added.
The result is different from that of the present example in which d is more effective in reducing the average crystal grain size. This fact means that the self-diffusion of Al is smaller in the alloy to which Ti is added than in the alloy to which Pd is added.

【0026】以上、本実施例では、単層膜からなる電極
について示したが、2層以上からなる多層膜においての
少なくとも1層に本発明を実施しても有効である。ま
た、電極膜の膜厚は本実施例では0.1μmとしたが、
さらに厚くとも薄くとも差し支えない。圧電性基板は、
本実施例の水晶、LiTaO3に限定するものではな
く、LiNbO3,Li247,ZnO等の圧電性基板
であれば本発明に含まれる。また、素子構造も、本実施
例の共振器型構造、多電極型構造に限定する必要はな
い。
As described above, in the present embodiment, an electrode composed of a single-layer film has been described. However, it is effective to apply the present invention to at least one layer of a multilayer film composed of two or more layers. The thickness of the electrode film was 0.1 μm in the present embodiment,
It can be thicker or thinner. The piezoelectric substrate is
The present invention is not limited to the quartz crystal and LiTaO 3 of this embodiment, and any piezoelectric substrate made of LiNbO 3 , Li 2 B 4 O 7 , ZnO or the like is included in the present invention. Also, the element structure does not need to be limited to the resonator type structure and the multi-electrode type structure of this embodiment.

【0027】[0027]

【発明の効果】以上説明したように本発明によれば、弾
性表面波素子電極において、大幅に耐電力性向上が図れ
ると共に、電極膜の比抵抗を低減でき、また、ワイヤボ
ンディングを可能にする事ができる。
As described above, according to the present invention, in the surface acoustic wave device electrode, the power durability can be greatly improved, the specific resistance of the electrode film can be reduced, and wire bonding can be performed. Can do things.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は本発明一実施例の弾性表面波素子の平
面図、(b)は(a)中のA−A線断面図である。
FIG. 1A is a plan view of a surface acoustic wave device according to one embodiment of the present invention, and FIG. 1B is a cross-sectional view taken along line AA in FIG.

【図2】本実施例1の弾性表面波2開口共振器におい
て、Al−0.5wt%Cu電極膜、Al−0.5wt
%Cu−0.3wt%Ti電極膜、Al−0.5wt%
Cu−0.3wt%Pd電極膜を用いた際の加速劣化試
験結果を示す特性図である。
FIG. 2 is a diagram illustrating an Al-0.5 wt% Cu electrode film and an Al-0.5 wt%
% Cu-0.3wt% Ti electrode film, Al-0.5wt%
FIG. 9 is a characteristic diagram showing an accelerated deterioration test result when a Cu-0.3 wt% Pd electrode film is used.

【図3】(a)は本発明一実施例の弾性表面波素子の平
面図、(b)は(a)中のA−A線断面図である。
3A is a plan view of a surface acoustic wave device according to one embodiment of the present invention, and FIG. 3B is a cross-sectional view taken along line AA in FIG.

【図4】本実施例2の多電極型弾性表面波素子におい
て、Al−1.0wt%Cu電極膜、Al−1.0wt
%Cu−0.5wt%Ti電極膜、Al−1.0wt%
Cu−0.5wt%Pd電極膜を用いた際の加速劣化試
験結果を示す特性図である。
FIG. 4 shows a multi-electrode surface acoustic wave device according to a second embodiment, in which an Al-1.0 wt% Cu electrode film and an Al-1.0 wt% are used.
% Cu-0.5wt% Ti electrode film, Al-1.0wt%
FIG. 9 is a characteristic diagram showing an accelerated deterioration test result when a Cu-0.5 wt% Pd electrode film is used.

【図5】本実施例3の多電極型弾性表面波素子におい
て、Al−1.5wt%Cu電極膜、Al−1.0wt
%Cu−0.3wt%Ti−0.3wt%Pd電極膜を
用いた際の加速劣化試験結果を示す特性図である。
FIG. 5 shows a multi-electrode surface acoustic wave device according to a third embodiment, in which an Al-1.5 wt% Cu electrode film and an Al-1.0 wt% are used.
FIG. 9 is a characteristic diagram showing an accelerated deterioration test result when a% Cu-0.3 wt% Ti-0.3 wt% Pd electrode film is used.

【図6】Al−Cu電極膜のCu添加量と寿命の関係を
示す特性図である。
FIG. 6 is a characteristic diagram showing the relationship between the amount of Cu added and the life of an Al—Cu electrode film.

【図7】Al−Ti膜とAl−Pd膜のTi,Pd添加
量と平均結晶粒径の関係を示す特性図である。
FIG. 7 is a characteristic diagram showing the relationship between the amounts of Ti and Pd added to an Al—Ti film and an Al—Pd film and the average crystal grain size.

【図8】Al−0.5wt%Cu電極膜へのTi,Pd
添加量と比抵抗の関係を示す特性図である。
FIG. 8 shows Ti and Pd on an Al-0.5 wt% Cu electrode film.
It is a characteristic view which shows the relationship between the addition amount and specific resistance.

【図9】電極膜における平均結晶粒径/膜厚と寿命およ
び規格化した比抵抗の関係を示した特性図である。
FIG. 9 is a characteristic diagram showing a relationship between an average crystal grain size / film thickness in an electrode film, life, and standardized specific resistance.

【図10】Al−0.5wt%CuへのTi,Pd添加
量と平均結晶粒径の関係を示す特性図である。
FIG. 10 is a characteristic diagram showing the relationship between the amounts of Ti and Pd added to Al-0.5 wt% Cu and the average crystal grain size.

【図11】Al−1.0wt%CuへのTi,Pd添加
量と平均結晶粒径の関係を示す特性図である。
FIG. 11 is a characteristic diagram showing the relationship between the amounts of Ti and Pd added to Al-1.0 wt% Cu and the average crystal grain size.

【符号の説明】[Explanation of symbols]

1a,1b…圧電性基板、 2,2’…送受波電極、 3,3’…ボンディングパッド、 4,4’…入出力ピン、 5,5’…反射器、 6…導電性接着剤、 7…カンパッケージステム、 8…入力電極、 9…出力電極、 10…くし形電極、 11…接地用電極パターン、 12…浮き電極パターン。 1a, 1b: piezoelectric substrate, 2, 2 ': transmitting / receiving electrode, 3, 3': bonding pad, 4, 4 ': input / output pin, 5, 5': reflector, 6: conductive adhesive, 7 ... Can package stem, 8 ... input electrode, 9 ... output electrode, 10 ... comb electrode, 11 ... grounding electrode pattern, 12 ... floating electrode pattern.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】圧電性基板上に、少なくとも1個の送受波
電極を有し、該送受波電極を含め、弾性表面波を伝搬な
いしは反射する電極の少なくとも一部が、該電極の膜厚
方向の平均組成として、Cuを0.3wt%〜2.0w
t%かつTiを0.1wt%〜3.0wt%含有した3
元素Al合金であることを特徴とする弾性表面波素子。
An electrode having at least one transmitting / receiving electrode on a piezoelectric substrate, and including at least one of the transmitting / receiving electrodes, at least a part of an electrode for propagating or reflecting a surface acoustic wave is disposed in a thickness direction of the electrode The average composition of Cu is 0.3 wt% to 2.0 w
3 containing 0.1% to 3.0% by weight of Ti and 0.1% by weight
A surface acoustic wave device comprising an element Al alloy.
【請求項2】圧電性基板上に、少なくとも1個の送受波
電極を有し、該送受波電極を含め、弾性表面波を伝搬な
いしは反射する電極の少なくとも一部が、該電極の膜厚
方向の平均組成として、Cuを0.3wt%〜2.0w
t%、かつ、PdとTiの両者の合計を0.1wt%〜
3.0wt%添加した4元素Al合金であることを特徴
とする弾性表面波素子。
2. A piezoelectric substrate comprising at least one transmitting / receiving electrode on a piezoelectric substrate, and at least a part of an electrode for transmitting or reflecting a surface acoustic wave, including the transmitting / receiving electrode, is disposed in a thickness direction of the electrode. The average composition of Cu is 0.3 wt% to 2.0 w
t%, and the total of both Pd and Ti is 0.1 wt% or more.
A surface acoustic wave device comprising a four-element Al alloy added with 3.0 wt%.
【請求項3】圧電性基板上に、少なくとも1個の送受波
電極を有し、該送受波電極を含め、弾性表面波を伝搬な
いしは反射する電極の少なくとも一部において、該電極
の平均粒径が電極幅の1/50〜1/3であることを特
徴とする請求項1又は請求項2に記載の弾性表面波素
子。
3. An average particle diameter of at least one electrode for transmitting and receiving a surface acoustic wave, including at least one transmitting / receiving electrode on a piezoelectric substrate, including the transmitting / receiving electrode. 3. The surface acoustic wave device according to claim 1, wherein the width of the surface acoustic wave is 1/50 to 1/3 of the electrode width.
JP16092694A 1994-07-13 1994-07-13 Surface acoustic wave device Expired - Fee Related JP3296097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16092694A JP3296097B2 (en) 1994-07-13 1994-07-13 Surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16092694A JP3296097B2 (en) 1994-07-13 1994-07-13 Surface acoustic wave device

Publications (2)

Publication Number Publication Date
JPH0832404A JPH0832404A (en) 1996-02-02
JP3296097B2 true JP3296097B2 (en) 2002-06-24

Family

ID=15725263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16092694A Expired - Fee Related JP3296097B2 (en) 1994-07-13 1994-07-13 Surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP3296097B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6965190B2 (en) 2001-09-12 2005-11-15 Sanyo Electric Co., Ltd. Surface acoustic wave device
JP2005347892A (en) 2004-05-31 2005-12-15 Fujitsu Media Device Kk Surface acoustic wave element

Also Published As

Publication number Publication date
JPH0832404A (en) 1996-02-02

Similar Documents

Publication Publication Date Title
US9748924B2 (en) Elastic wave element with interdigital transducer electrode
US7692515B2 (en) Low-loss electro-acoustic component
US6271617B1 (en) Surface acoustic wave device with a tungsten-aluminum layered interdigital transducer
KR100346805B1 (en) Surface acoustic wave device
US7868523B2 (en) Elastic wave device and method of producing the same
US4775814A (en) Saw device
WO2007034832A1 (en) Acoustic surface wave element and acoustic surface wave device
US20050264136A1 (en) Surface acoustic wave device
US20220182037A1 (en) Acoustic wave device
JP5083469B2 (en) Surface acoustic wave device
US20220224311A1 (en) Acoustic wave device
JP6836867B2 (en) Manufacturing method of elastic wave device
US20220345108A1 (en) Acoustic wave device
US20220247377A1 (en) Acoustic wave device
JPH06350377A (en) Surface acoustic wave element
US11863155B2 (en) Surface acoustic wave element
JP3296097B2 (en) Surface acoustic wave device
JP3659455B2 (en) Surface acoustic wave device
US20220368305A1 (en) Acoustic wave device
US6879225B2 (en) Surface acoustic wave device
JPH066173A (en) Electrode for surface elastic wave element
JPH09186542A (en) Surface acoustic wave resonator filter
JPH10126207A (en) Surface acoustic wave device
JPH08265099A (en) Surface acoustic wave filter of resonator type
CN109417371B (en) Elastic wave device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080412

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees