JPH023844B2 - - Google Patents

Info

Publication number
JPH023844B2
JPH023844B2 JP22155882A JP22155882A JPH023844B2 JP H023844 B2 JPH023844 B2 JP H023844B2 JP 22155882 A JP22155882 A JP 22155882A JP 22155882 A JP22155882 A JP 22155882A JP H023844 B2 JPH023844 B2 JP H023844B2
Authority
JP
Japan
Prior art keywords
concrete
slabs
dowel
semi
prefabricated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22155882A
Other languages
Japanese (ja)
Other versions
JPS59114313A (en
Inventor
Masaru Terasaki
Saburo Tomizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishikawajima Kenzai Kogyo Co Ltd
Original Assignee
Ishikawajima Kenzai Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishikawajima Kenzai Kogyo Co Ltd filed Critical Ishikawajima Kenzai Kogyo Co Ltd
Priority to JP22155882A priority Critical patent/JPS59114313A/en
Publication of JPS59114313A publication Critical patent/JPS59114313A/en
Publication of JPH023844B2 publication Critical patent/JPH023844B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

【発明の詳細な説明】 本発明は、道路橋等におけるプレストレストコ
ンクリート床版の架設工法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for constructing prestressed concrete slabs for road bridges and the like.

近年、交通量の増大に加えて車輛の走行速度と
重量が大きくなり、道路の僅かな弱点でも破損を
受けるため、道路維持が一段と難かしくなつてき
ている。なかでも鋼桁上に鉄筋コンクリート床版
を架設したいわゆる鋼橋では、その鉄筋コンクリ
ート床版の損傷が多くなつており、その対策とし
て新床版においては、床版厚の増加、主桁剛度差
による付加曲げモーメントの考慮、およい配筋方
法等について、建設省より新しい指導がなされて
いる。
In recent years, road maintenance has become even more difficult as the volume of traffic has increased and the speed and weight of vehicles have increased, and even the slightest weak point in a road can cause damage. In particular, in so-called steel bridges in which reinforced concrete deck slabs are constructed on steel girders, the reinforced concrete deck slabs are frequently damaged, and countermeasures for this problem include increasing the slab thickness and increasing the stiffness of the main girder. The Ministry of Construction has issued new guidance regarding consideration of bending moments, appropriate reinforcement methods, etc.

ところで、この種のコンクリート床版を架設す
る場合の従来工法は、主桁上に支保工・型枠等を
組み、次いで下面配筋および上面配筋を行なつた
後、コンクリートを打設し、この打設コンクリー
トの硬化後に脱型するという工法が主体であつ
た。この工法では、コンクリートの全てを現場打
ちする工法であるため、床版自体に継目が形成さ
れず、かつ全体的な工費も廉価になる利点を有す
るが、この工法による床版は通常の鉄筋コンクリ
ート床版であるため、前述した理由で損傷を受け
やすい問題があつた。
By the way, the conventional construction method for constructing this type of concrete slab is to construct shoring, formwork, etc. on the main girder, then place reinforcement on the bottom and top surfaces, and then pour concrete. The main method of construction was to remove the cast concrete from the mold after it had hardened. In this construction method, all of the concrete is poured on-site, so there are no joints formed in the slab itself, and the overall construction cost is low. Since it is a printed version, it is susceptible to damage for the reasons mentioned above.

一方、他の工法として、予め工場等で製作した
プレキヤスト床版を用いて主筋方向すなわち幅員
方向はRC構造とし、配力筋方向すなわち橋軸方
向に縦締め用プレストレスを導入し、主桁上に目
地コンクリートを打設して主桁と一体化する工法
も一部で実施されている。この工法では、鉄筋コ
ンクリート床版の橋軸方向にプレストレスを導入
することにより、床版自体の強度、耐久性をある
程度向上できる利点を有する反面、次のような欠
点があつた。すなわち、床版の橋軸方向に縦締用
プレストレスを導入するため、その橋軸方向のあ
る一定区間ごとに作業を不連続的に進めてゆく必
要があること。さらに、プレキヤスト床版は相当
の重量物となるため、その製造地(工場等)から
架設現場までの運搬に多大な費用がかかる上に高
所での架設作業が困難となり、このため全体的な
工費も高くつき、しかも目地コンクリート部分が
床版の継目となるため、強度上の不連続部分が形
成されやすいなどの欠点があつた。
On the other hand, as another construction method, pre-cast deck slabs manufactured in advance at a factory etc. are used to create an RC structure in the direction of the main reinforcement, that is, in the width direction, and prestress for vertical tightening is introduced in the direction of the distribution reinforcement, that is, in the direction of the bridge axis. In some cases, a method of pouring concrete joints and integrating them with the main girder is also being implemented. This construction method has the advantage of increasing the strength and durability of the reinforced concrete deck slab itself to some extent by introducing prestress in the bridge axis direction, but it has the following drawbacks. In other words, in order to introduce vertical tightening prestress in the direction of the bridge axis of the deck, it is necessary to proceed with the work discontinuously at certain intervals in the direction of the bridge axis. Furthermore, since precast slabs are quite heavy, transporting them from the place of manufacture (factory, etc.) to the erection site is costly, and it is difficult to erect at high places. Construction costs were high, and since the concrete joints were used as joints between the slabs, there were disadvantages such as the possibility of forming discontinuous areas in terms of strength.

本発明は、以上のような点を考慮してなされた
もので、床版に対し実質的にその橋軸方向および
幅員方向の両方向に連続的にプレストレスを導入
し得て強度、耐久性に優れた床版を形成すること
ができ、しかも強度上の不連続部分もなく、かつ
全体的な工費も廉価で、現場での施工性も良好な
道路橋等におけるプレストレストコンクリート床
版の架設工法を提供することを目的とする。
The present invention has been made in consideration of the above points, and it is possible to continuously introduce prestress to the deck slab substantially in both the bridge axis direction and the width direction, thereby improving strength and durability. We have developed a construction method for prestressed concrete deck slabs for road bridges, etc., which can form excellent deck slabs, has no discontinuous parts in terms of strength, has low overall construction costs, and is easy to construct on-site. The purpose is to provide.

以下、本発明を図面に示す一実施例に基づいて
説明する。
The present invention will be described below based on an embodiment shown in the drawings.

本発明による工法は、第1図に示すように、予
め工場等において、孔1a…を有する支持梁1の
上下に主筋2および配力筋2′からなる鉄筋メツ
シユを組み付け、支持梁1より吊材3を介してプ
レートよりなる型枠4を取り付けて成るいわゆる
セミプレハブ床版5を製作しておき、これを現場
に運搬してきて同図に示すように主桁6,6上に
順次並べて架設する。なお、セミプレハブ床版5
の型枠4としては、第2図に示すように、主桁6
の上部フランジ6a上に立設したジベル7にそれ
ぞれ対応する部分に大径の孔8を設けてあり、こ
の孔8をジベル7にはめることにより、セミプレ
ハブ床版5を架設した状態において、これらの孔
8から前記ジベル7が型枠4の上面上へそれぞれ
臨むように構成されている。なお、特に図示しな
かつたが、セミプレハブ床版5の型枠4にはラツ
プ代が設けてあり、セミプレハブ床版5どうしを
並べて架設した状態でこれらのラツプ代部分が互
いに重なるように配慮されている。
As shown in Fig. 1, the construction method according to the present invention involves assembling a reinforcing bar mesh consisting of main bars 2 and distribution bars 2' above and below a support beam 1 having holes 1a in advance in a factory or the like, and suspending it from the support beam 1. So-called semi-prefabricated floor slabs 5 are manufactured by attaching formwork 4 made of plates through materials 3, and these are transported to the site and erected by arranging them sequentially on main girders 6, 6 as shown in the figure. do. In addition, semi-prefabricated floor slab 5
As the formwork 4, as shown in Fig. 2, the main girder 6
Large-diameter holes 8 are provided in portions corresponding to the dowels 7 erected on the upper flange 6a of the semi-prefabricated deck 5. By fitting these holes 8 into the dowels 7, these The dowels 7 are constructed so as to face the upper surface of the formwork 4 through the holes 8, respectively. Although not particularly shown, wrap allowances are provided in the formwork 4 of the semi-prefabricated floor slabs 5, and consideration is given so that these lap allowances overlap each other when the semi-prefabricated floor slabs 5 are erected side by side. has been done.

このようにして、主桁6,6上にセミプレハブ
床版5を順次並べて架設したら、次いでこれらセ
ミプレハブ床版5にコンクリートを打設する前
に、第2図に示すように下面のみが開口した中空
の抜型9を各ジベル7にそれぞれ被せて型枠4上
にセツトし、これによつて各ジベル7、および孔
8によつて露出した上部フランジ6aの表面にコ
ンクリートが付着しないようにシールしておく。
そしてさらに、打設されるコンクリートにプレス
トレスを導入するために必要な本数のPC鋼材1
0を、第3図および第4図に示すように平面的に
見てX字状に交差する如くセミプレハブ床版の上
下筋の中間に幅員方向斜めに差し通して配設して
おく。ここで、前記抜型9としては、その中空部
内径を孔8の径よりも大きく、また、後で脱型し
やすいように下部に向かうにしたがいその外形を
しだいに小さく形成しておくのが好ましい。ま
た、前記PC鋼材10の幅員方向に対する傾き角
θは通常は30°前後で充分であるが、必要ならば
45°程度でも良い。しかし、何れの場合でも、1
本のPC鋼材10が第3図に示すように少なくと
も隣り合う2つのセミプレハブ床版を貫通するよ
うに斜めに配する必要がある。なお、このPC鋼
材10としては、打設コンクリート中において緊
張可能な状態となるように、例えばPC鋼線の周
りにグリース等の潤滑剤を塗布してこれをプラス
チツクシースで被覆して成るいわゆるアンボンド
ワイヤーでも、あるいはPCワイヤーの何れでも
良い。なお、PCワイヤーを使用する場合には、
予めセミプレハブ床版内にシース管をセツトし、
これにPCワイヤーを差し通して配設する。
In this way, after the semi-prefabricated deck slabs 5 are sequentially arranged and erected on the main girders 6, 6, before pouring concrete onto these semi-prefabricated deck slabs 5, only the bottom surface is open as shown in Fig. 2. A hollow cutting die 9 is placed over each dowel 7 and set on the formwork 4, thereby sealing the surface of each dowel 7 and the upper flange 6a exposed through the hole 8 to prevent concrete from adhering to it. I'll keep it.
Furthermore, the necessary number of PC steel members 1 to introduce prestress into the concrete to be poured.
0 are inserted obliquely in the width direction between the upper and lower ribs of the semi-prefabricated floor slab so as to intersect in an X-shape when viewed from above as shown in FIGS. 3 and 4. Here, it is preferable that the inner diameter of the hollow part of the cutting die 9 is larger than the diameter of the hole 8, and that the outer diameter of the die 9 is gradually smaller toward the bottom so that it can be easily demolded later. . In addition, the inclination angle θ of the prestressing steel material 10 with respect to the width direction is usually around 30°, but if necessary
It may be around 45°. However, in any case, 1
As shown in FIG. 3, the PC steel material 10 must be diagonally arranged so as to penetrate at least two adjacent semi-prefabricated floor slabs. The prestressed steel material 10 is a so-called unbonded material made by applying a lubricant such as grease around a prestressed steel wire and covering it with a plastic sheath so that it can be tensed in poured concrete. Either wire or PC wire may be used. In addition, when using PC wire,
Set the sheath pipe inside the semi-prefabricated floor slab in advance,
Insert the PC wire through this.

このようにして、抜型9およびPC鋼材10の
セツトを終えたら、次いでコンクリート11を打
設して所定期間養生し、コンクリートの硬化後に
前記各PC鋼材10の両端を順次緊張してプレス
トレスを導入する。このプレストレス導入作業を
実施すると、硬化したコンクリート11には幅員
方向および橋軸方向の両方向に圧縮力が作用す
る。すなわち、各PC鋼材10は第3図に示すよ
うに平面的に見てX字状に交差する如く幅員方向
斜めに配されているから、このPC鋼材10によ
る圧縮力のうち、PC鋼材10の傾き角θに対応
する分力が橋軸方向の圧縮力として作用する。
After the cutting die 9 and the prestressing steel material 10 have been set in this way, concrete 11 is poured and cured for a predetermined period of time, and after the concrete hardens, both ends of the prestressing steel material 10 are sequentially tensed to introduce prestress. do. When this prestress introduction work is performed, compressive force acts on the hardened concrete 11 in both the width direction and the bridge axis direction. That is, as shown in FIG. 3, since the PC steel materials 10 are arranged diagonally in the width direction so as to intersect in an X shape when viewed from above, the compressive force due to the PC steel materials 10 is absorbed by the PC steel materials 10. A component force corresponding to the inclination angle θ acts as a compressive force in the bridge axis direction.

ところで、この両方向の圧縮力は、硬化したコ
ンクリート11と一体化している各セミプレハブ
床版5にも当然作用し、これによつて各セミプレ
ハブ床版5はそのコンクリート11と共に橋軸方
向、幅員方向の両方向もしくは一方向に主桁6,
6上を若干移動させられる力を受けることにな
る。ここで、型枠4上に臨ませたジベル7は抜型
8によつてコンクリート11との一体化が阻止さ
れており、かつ型枠4に設けた孔8はジベル7よ
りも充分に大径となつているので、各ユニツトス
ラブ5は何れの方向にも移動自在であり、この結
果、プレストレスの導入は支障なく行なわれる。
また、このプレストレス導入作業を行なう際、前
記PC鋼材10の両端は最初の部分を除けばその
全てが幅員方向両端に位置するので、現場におけ
るプレストレス導入作業が行ないやすく、しかも
コンクリート11さえ硬化しておれば、連続的に
その作業を進めてゆくことができる。
By the way, this compressive force in both directions naturally acts on each semi-prefabricated deck slab 5 that is integrated with the hardened concrete 11, and as a result, each semi-prefabricated deck slab 5 is compressed along with the concrete 11 in the bridge axis direction and width. Main girder 6 in both directions or in one direction,
6 will be subjected to a force that will cause it to move slightly. Here, the dowel 7 facing onto the formwork 4 is prevented from being integrated with the concrete 11 by the cutting die 8, and the hole 8 provided in the formwork 4 has a diameter sufficiently larger than that of the dowel 7. As a result, each unit slab 5 is movable in any direction, and as a result, the prestress can be introduced without any problem.
In addition, when performing this prestress introduction work, since all of the ends of the prestressing steel material 10 except for the first part are located at both ends in the width direction, it is easy to perform the prestress introduction work on site, and even the concrete 11 hardens. If you do so, you can continue working on it.

以上のようにして、プレストレスを導入した
ら、次に抜型9を脱形してこの部分にコンクリー
トを充填すれば、第3図に示すようなプレストレ
ストコンクリート床版Aが形成される。このよう
にして形成された床版Aは、その橋軸方向および
幅員方向の何れの方向にもある定まつた圧縮応力
度(プレストレス)が与えられ、この結果、強度
および耐久性に優れた床版が構成される。なお、
床版Aはジベルまわりの後打ちコンクリートを介
して主桁6,6に一体化される。
After introducing prestress as described above, the cutting die 9 is removed and concrete is filled in this area to form a prestressed concrete slab A as shown in FIG. 3. The deck A formed in this way is given a certain degree of compressive stress (prestress) in both the bridge axis direction and the width direction, and as a result, it has excellent strength and durability. The floor slab is constructed. In addition,
The deck slab A is integrated with the main girders 6, 6 through post-cast concrete around the dowel.

なお、実施例においては、型枠4を一体物のプ
レートで形成し、かつ主桁6,6上に位置する部
分にジベル7との干渉を除く孔8を設けた例を示
したが、例えば第5図に示すように型枠4′を分
割したプレートで形成し、かつ図示のように上部
フランジ6a上に載る程度の範囲で互いに間隔を
あけて設けた場合には、その間隔と等しい幅でか
つジベル7との干渉を除く孔8′を有する帯状の
ゴム板等からなる捨て型枠12を使用し、この上
に抜型9をセツトするようにしても良い。
In addition, in the embodiment, an example was shown in which the formwork 4 was formed of an integral plate and holes 8 were provided in the portions located above the main girders 6, 6 to eliminate interference with the dowels 7, but for example, When the formwork 4' is formed of divided plates as shown in FIG. 5, and they are spaced apart from each other within a range that is sufficient to rest on the upper flange 6a as shown in the figure, the width is equal to the space between them. It is also possible to use a disposable mold frame 12 made of a band-shaped rubber plate or the like having a hole 8' which is large and has holes 8' to prevent interference with the dowel 7, and to set the cutting die 9 thereon.

また、実施例では、支持梁1に設けた孔1aの
一つに対し、PC鋼材10を2本通した例を示し
たが、例えば第6図に示すように、孔1aの数を
増やして一つの孔1aに対し1本づつ通すように
しても良い。
In addition, in the example, an example was shown in which two PC steel materials 10 were passed through one hole 1a provided in the support beam 1, but as shown in FIG. 6, for example, the number of holes 1a could be increased. One wire may be passed through each hole 1a.

以上詳述したように、本発明は、上方に延びる
ジベルを複数設けた主桁上に、主筋および配力筋
等の必要な鉄筋を組むと共にその下に型枠を取付
けて成るセミプレハブ床版を、前記型枠に形成し
た前記ジベルよりも大径の孔をジベルにはめるこ
とにより、複数並べて架設し、次いでこれらセミ
プレハブ床版にコンクリートを打設する前に、下
面のみが開口した中空かつ打設コンクリート内か
ら上方に脱型可能な抜型を、前記孔および前記ジ
ベルに被せることにより、ジベルおよび主桁の上
面に打設コンクリートが付着しないようにシール
しておくと共に、必要本数のPC鋼材を、少なく
とも隣り合う2つのセミプレハブ床版にわたり幅
員方向斜めであつて平面的に見てX字状に交差さ
せかつ硬化後の打設コンクリート中において緊張
可能な状態に配しておき、打設コンクリートの硬
化後に前記PC鋼材を順次緊張してプレストレス
を導入し、床版を形成するようにしたから、床版
に対し実質的にその橋軸方向および幅員方向の両
方向に連続的にプレストレスを導入し得て強度、
耐久性に優れた床版を形成することができ、ま
た、コンクリートは現場打ちであるので、継目に
よる強度上の不連続部分も形成されず、かつ、全
体的な工費も兼価であり、さらに、予め工場等で
製作しておいたセミプレハブ床版を架設する工法
としているので現場での配筋作業も少なく、また
プレストレスの導入作業も容易に行なえて現場で
の施工性も良好であるなど種々の優れた効果があ
る。
As described in detail above, the present invention is a semi-prefabricated floor slab made by assembling necessary reinforcing bars such as main bars and distribution bars on a main girder provided with a plurality of dowels extending upward, and attaching formwork underneath. A hole with a diameter larger than the dowel formed in the formwork is inserted into the dowel to construct a plurality of them side by side, and then, before pouring concrete into these semi-prefabricated slabs, hollow and By covering the hole and the dowel with a cutting die that can be removed upward from inside the poured concrete, the dowel and the top surface of the main girder are sealed so that the poured concrete does not adhere to them, and the required number of PC steel pieces are are arranged across at least two adjacent semi-prefabricated slabs diagonally in the width direction and intersect in an X-shape when viewed from above, and in a tensionable state in the poured concrete after hardening. After the concrete hardens, the PC steel materials are sequentially tensed to introduce prestress to form the deck slab, so that the deck is substantially continuously prestressed in both the axial and width directions of the bridge. Introducing the strength,
It is possible to form a floor slab with excellent durability, and since the concrete is cast on-site, there are no discontinuities in strength due to joints, and the overall construction cost is also low. Since the construction method involves erecting semi-prefabricated floor slabs that have been manufactured in advance at a factory, there is less reinforcement work on site, and prestressing can be easily introduced, making construction easier on site. It has various excellent effects.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例を説明するために示したも
ので、第1図は主桁上に架設したセミプレハブ床
版の概略断面図、第2図は型枠が主桁上に位置す
る部分の斜視図、第3図は架設された床版の概略
平面図、第4図は第1図ので示す部分の拡大図
(支持梁を除く)、第5図および第6図はそれぞれ
本発明の他の実施例を示す第2図同様の斜視図で
ある。 1……支持梁、2……主筋、2′……配力筋、
4,4′……型枠、5……セミプレハブ床版、6
……主桁、7……ジベル、8,8′……孔、9…
…抜型、10……PC鋼材、11……コンクリー
ト、12……捨て型枠。
The figures are shown to explain embodiments of the present invention. Figure 1 is a schematic sectional view of a semi-prefabricated deck constructed on the main girder, and Figure 2 is a section where the formwork is located on the main girder. , FIG. 3 is a schematic plan view of the erected floor slab, FIG. 4 is an enlarged view of the part shown in FIG. 1 (excluding support beams), and FIGS. FIG. 2 is a perspective view similar to FIG. 2 showing another embodiment; 1... Support beam, 2... Main reinforcement, 2'... Distribution reinforcement,
4,4'...Formwork, 5...Semi-prefabricated floor slab, 6
...Main girder, 7...Dovetail, 8, 8'...Hole, 9...
...Cutting die, 10...PC steel material, 11...Concrete, 12...Disposable formwork.

Claims (1)

【特許請求の範囲】[Claims] 1 上方に延びるジベルを複数設けた主桁上に、
主筋および配力筋等の必要な鉄筋を組むと共にそ
の下に型枠を取付けて成るセミプレハブ床版を、
前記型枠に形成した前記ジベルよりも大径の孔を
ジベルにはめることにより、複数並べて架設し、
次いでこれらセミプレハブ床版にコンクリートを
打設する前に、下面のみが開口した中空かつ打設
コンクリート内から上方に脱型可能な抜型を、前
記孔および前記ジベルに被せることにより、ジベ
ルおよび主桁の上面に打設コンクリートが付着し
ないようにシールしておくと共に、必要本数の
PC鋼材を、少なくとも隣り合う2つのセミプレ
ハブ床版にわたり幅員方向斜めであつて平面的に
見てX字状に交差させかつ硬化後の打設コンクリ
ート中において緊張可能な状態に配しておき、打
設コンクリートの硬化後に前記PC鋼材を順次緊
張してプレストレスを導入することを特徴とする
道路橋等におけるプレストレスコンクリート床版
の架設工法。
1. On the main girder with multiple dowels extending upward,
Semi-prefabricated floor slabs are made by assembling the necessary reinforcing bars such as main bars and distribution bars, and installing formwork underneath.
By fitting a hole with a larger diameter than the dowel formed in the formwork into the dowel, a plurality of holes are installed side by side,
Next, before pouring concrete into these semi-prefabricated deck slabs, a hollow cutting die with only the lower surface open and capable of being removed upwards from within the poured concrete is placed over the hole and the dowel to form the dowel and the main girder. Seal the top surface of the poured concrete to prevent it from adhering to it, and also
PC steel materials are arranged across at least two adjacent semi-prefabricated slabs diagonally in the width direction and intersect in an X-shape when viewed from above, and in a state where they can be tensioned in the poured concrete after hardening, A method for constructing prestressed concrete slabs for road bridges, etc., characterized by introducing prestress by sequentially tensioning the prestressed steel materials after the poured concrete has hardened.
JP22155882A 1982-12-17 1982-12-17 Construction of prestressed concrete floor panel in road bridge Granted JPS59114313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22155882A JPS59114313A (en) 1982-12-17 1982-12-17 Construction of prestressed concrete floor panel in road bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22155882A JPS59114313A (en) 1982-12-17 1982-12-17 Construction of prestressed concrete floor panel in road bridge

Publications (2)

Publication Number Publication Date
JPS59114313A JPS59114313A (en) 1984-07-02
JPH023844B2 true JPH023844B2 (en) 1990-01-25

Family

ID=16768602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22155882A Granted JPS59114313A (en) 1982-12-17 1982-12-17 Construction of prestressed concrete floor panel in road bridge

Country Status (1)

Country Link
JP (1) JPS59114313A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002004222A (en) * 2000-06-23 2002-01-09 Hitachi Zosen Corp Composite floor board
JP4733655B2 (en) * 2007-02-06 2011-07-27 三井造船株式会社 Minority main girder bridge
JP4845039B2 (en) * 2007-03-07 2011-12-28 三井造船株式会社 RC slab minority main girder bridge

Also Published As

Publication number Publication date
JPS59114313A (en) 1984-07-02

Similar Documents

Publication Publication Date Title
JP3322637B2 (en) Construction method of cast-in-place concrete slab of bridge
JPH023844B2 (en)
JP3579167B2 (en) Deck for road surface and its laying method
JPS6282147A (en) Novel prestressed synthetic beam and its construction
JPH0520817Y2 (en)
JPH023843B2 (en)
JP2959325B2 (en) Construction method of steel frame reinforced concrete structure
JPH09273117A (en) Joint construction of floor slab
JPS6151524B2 (en)
JP3824242B2 (en) Viaduct-free support construction method
JP3017662B2 (en) Construction method of joint
JP3271810B2 (en) A method for manufacturing a heat-insulated half-PC plate.
JPH0380946B2 (en)
JPH068176Y2 (en) Long precast concrete member
JPH08209831A (en) Compound ultra-light floor board and manufacture thereof
JPS5817773Y2 (en) Prestressed concrete girder for road bridge
JPH03151429A (en) Reinforcement preassembled beam with formwork and working method thereof
JPH03194009A (en) Method of forming joint part of composite structure vertical member
JPS62138207A (en) Preparation of precast concrete member
JPS6321601Y2 (en)
JPH07207800A (en) Floor construction method using precast reinforced concrete large beam and steel frame small beam
JPS59228554A (en) Precast small beam and construction of slab structure using the same
JPH0369747A (en) Pc slab
JPH10121414A (en) Work execution method for flooring bridge with flooring panel
JP2541366B2 (en) Concrete beams and lower concrete beam members for concrete beams