JPS6151524B2 - - Google Patents
Info
- Publication number
- JPS6151524B2 JPS6151524B2 JP54013257A JP1325779A JPS6151524B2 JP S6151524 B2 JPS6151524 B2 JP S6151524B2 JP 54013257 A JP54013257 A JP 54013257A JP 1325779 A JP1325779 A JP 1325779A JP S6151524 B2 JPS6151524 B2 JP S6151524B2
- Authority
- JP
- Japan
- Prior art keywords
- concrete
- slab
- formwork
- hollow
- long
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000004567 concrete Substances 0.000 claims description 87
- 238000009415 formwork Methods 0.000 claims description 58
- 238000004519 manufacturing process Methods 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 12
- 239000000853 adhesive Substances 0.000 claims description 3
- 230000001070 adhesive effect Effects 0.000 claims description 3
- 230000003014 reinforcing effect Effects 0.000 description 13
- 238000010276 construction Methods 0.000 description 11
- 229910000831 Steel Inorganic materials 0.000 description 10
- 239000010959 steel Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 5
- 238000005452 bending Methods 0.000 description 4
- 210000000988 bone and bone Anatomy 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 230000002787 reinforcement Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000011083 cement mortar Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B1/00—Producing shaped prefabricated articles from the material
- B28B1/08—Producing shaped prefabricated articles from the material by vibrating or jolting
- B28B1/084—Producing shaped prefabricated articles from the material by vibrating or jolting the vibrating moulds or cores being moved horizontally for making strands of moulded articles
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Mechanical Engineering (AREA)
- Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は矯梁、建築の工事現場で、床版構築
のために用いる、埋込型枠の製法に関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing embedded formwork used for constructing floor slabs at construction sites.
(従来の技術)
埋込型枠は、型枠自体をコンクリート版により
作り、その上に現場打ちコンクリートを打設し
て、従来の型枠組立、解体、移動の手数を不要に
するもので、コンクリート工事の工期短縮、労働
軽減に有効な手段となつている。(Conventional technology) Embedded formwork is a type of formwork that is made of concrete slabs and poured in-situ concrete on top of it, eliminating the need for conventional formwork assembly, disassembly, and movement. It is an effective means of shortening concrete construction time and reducing labor.
特にプレテンシヨン・ベンチ上で作つたPCコ
ンクリート版のものは、完成した床版の下面にプ
レテンシヨンが残るため、床版強度の向上も得ら
れ、一石二鳥の埋込型枠と認められている。 In particular, PC concrete slabs made on pretension benches have pretension remaining on the underside of the completed slab, improving the strength of the slab, and are recognized as embedded formwork that can kill two birds with one stone.
(発明が解決しようとする間題点)
この発明は、その埋込型枠としてプレテンシヨ
ンをもつ短尺PCコンクリート版の上面に、内部
が空胴である中空突条を加える事により、それ自
体の剛性増大による支保工の簡易化、床版補強効
果の増大、現場打ちコンクリートの節減、そして
床版の軽量化を得られる、という着想を得、これ
を開発目標とした。(Problems to be Solved by the Invention) This invention is capable of creating its own structure by adding a hollow protrusion with a hollow interior to the top surface of the short PC concrete slab having pretension as its embedded formwork. We came up with the idea that increased rigidity would simplify shoring, increase the effect of reinforcing the slab, reduce the amount of cast-in-place concrete, and reduce the weight of the slab, and we set these as development goals.
(間題点を解決するための手段)
この発明は長尺プレテンシヨン・ベンチ上に摺
動式コンクリート成形装置を走らせて、埋込型枠
を複数本とれる長さで、平坦か、又は上面に平行
突条をもつ長尺PCコンクリート版を成形する工
程、
埋込型枠の寸法の長さに合わせて上記PCコン
クリート版を分断して、所定長さの短尺PC版を
作る分断工程、及び
上記各短尺PC版上面のほぼ全面に、長手方向
中空を形成する寸法、形状の薄肉コクリートを、
既製条材または後打ちコンクリートとして載せ、
ボルト、接着剤、またはジベル筋により、その短
尺PC版に固定する工程、
を備えることを特徴とする埋込型枠の製法であ
る。(Means for solving the problem) This invention runs a sliding type concrete forming device on a long pretension bench, and forms a flat or upper surface with a length that can take a plurality of embedded formworks. A process of forming a long PC concrete slab with parallel ridges, a dividing process of dividing the PC concrete slab according to the length of the embedded formwork to create short PC concrete slabs of a predetermined length, and the above Almost the entire top surface of each short PC plate is covered with thin-walled cocrete whose size and shape form a hollow in the longitudinal direction.
Placed as ready-made strips or post-cast concrete,
This method of manufacturing an embedded formwork is characterized by comprising the step of fixing it to the short PC plate using bolts, adhesive, or dowel bars.
(作用)
この発明は従来、単に現場打ちコンクリートの
受板にすぎなかつた埋込型枠を短尺PCコンクリ
ート版上に中空突条という容積の割りに背の高い
補強骨を加えて、型枠架設用支保工を減じ、その
中空突条が床版完成時、床版の重量軽減用空胴と
して残るため、軽量化床版を中子作業なしで簡単
に打設、成形できるようにした。(Function) In this invention, the embedded formwork, which was conventionally merely a receiving plate for cast-in-place concrete, is constructed by adding a tall reinforcing bone called a hollow protrusion to the short PC concrete slab, and constructing the formwork. By reducing the number of shoring structures, the hollow protrusions remain as cavities to reduce the weight of the slab when the slab is completed, making it possible to easily cast and form lightweight slabs without the need for core work.
そして、その中空突条つき埋込型枠となるPC
コンクリート版の製法も、従来の中空コンクリー
ト製品を作る技法によらず、工事現場の計画と不
可欠な埋込型枠に最適の製法を開発した。 Then, the PC that becomes the embedded formwork with hollow protrusions
The manufacturing method for concrete slabs does not rely on conventional techniques for making hollow concrete products, but instead we have developed a manufacturing method that is optimal for construction site planning and embedded formwork, which is essential.
すなわち床版用埋込型枠はコンクリート橋の構
築に最も多く使われるが、その工事は間欠的であ
り、工事ごとに埋込型枠の所要寸法(主として長
さ)が変わり、工事が始まると急速に大量の埋込
型枠を製作して工事現場へ送らねばならない、と
いう事情があり、また強度的には、床版下面にな
る埋込型枠は、その下面沿いにプレテンシヨンを
かけたPC鋼線を並べればよく、上面の中空突条
部にPC鋼線を入れる必要はない、という事情が
ある。このような埋込型枠特有の条件に対応し
て、この発明はPC鋼線を配したPCコンクリート
版を、プレテンシヨン・ベンチ上で、予め長尺に
作つておき、プレテンシヨンをかけない中空突条
の方は、埋込型枠の寸法決定後、上記長尺PCコ
ンクリート版を分断した短尺PCコンクリート版
上に、既製条材または後打ちコンクリートとして
載せ、固定するという二段階にした。 In other words, embedded formwork for deck slabs is most often used in the construction of concrete bridges, but the construction work is intermittent, and the required dimensions (mainly length) of the embedded formwork change for each construction, and once construction begins. There was a need to rapidly manufacture a large amount of embedded formwork and send it to the construction site, and in terms of strength, the embedded formwork that would become the bottom surface of the floor slab had to be pretensioned along its bottom surface. The reason is that it is only necessary to line up the PC steel wires, and there is no need to insert the PC steel wires into the hollow protrusions on the top surface. In response to the unique conditions of embedded formwork, the present invention has been developed by making a long PC concrete slab with PC steel wires arranged on a pretensioning bench in advance, and then forming a hollow hollow without pretensioning. For the projecting strips, after determining the dimensions of the embedding formwork, we placed the long PC concrete slabs above as ready-made strips or post-cast concrete onto short PC concrete slabs and fixed them in place.
強度上重要で、プレテンシヨン作業も面倒な長
尺のPCコンクリート版は十分に時間をかけて作
り、何時でも所要寸法に分断できる状態で待機さ
せておき、埋込型枠の寸法が決定したら直ちにこ
れを分断して短尺PC版とし、その上に条材か後
打ちコンクリートを載せる簡単な作業で中空突条
を作るのである。 Long PC concrete slabs, which are important for strength and require troublesome pretensioning work, take a sufficient amount of time to be made, and are kept on standby so that they can be cut into the required dimensions at any time.Once the dimensions of the embedded formwork have been determined, they can be prepared immediately. This is divided into short PC plates, and hollow protrusions are created by simply placing strips or post-cast concrete on top of them.
(実施例)
第1,2図はこの発明による埋込型枠用のPC
コンクリート版の二実施例1,2の断面を示す。
無論、全長同一面形で、長手方向プレテンシヨン
鋼材として異径PC鋼材7を、全幅に概略均等に
配設し、さらにこの場合、溶接金網8を全体に内
蔵させている。(Example) Figures 1 and 2 are PCs for embedded formwork according to the present invention.
The cross sections of two examples 1 and 2 of the concrete slab are shown.
Of course, the entire length is the same plane, and pretensioned steel materials 7 with different diameters are arranged approximately evenly across the entire width, and in this case, a welded wire mesh 8 is incorporated throughout.
PCコンクリート版1は平坦であるのに対し、
PCコンクリート版2はほぼ平坦なものの上面に
並行突条3を加えたもので、他は変りない。 While PC concrete version 1 is flat,
PC concrete version 2 has parallel protrusions 3 added to the top surface of an almost flat surface, but other aspects remain the same.
第3図はこの発明による埋込型枠の一実施例を
示す断面図で、短尺に分断したPCコンクリート
版2の並行突条3,3の上に、平形条材4をかぶ
せ固定したものである。第4図は平形条材でなく
溝形条材5をかぶせた例である。第1図のPCコ
ンクリート版1上には第4図の溝形条材5をかぶ
せればよい。いずれにしても短尺PCコンクリー
ト版に条材を付加する事により上面のほぼ全長に
中空突条をもつ埋込型枠となる。無論、中空突条
の高さは現場打ちコンクリートFの予定厚みより
高くない。そして、中空突条の中空部6はコンク
リート床版完成時、その曲げ強度に有害でなく、
重量軽減に有効な容積でなければならない。 FIG. 3 is a sectional view showing an embodiment of the embedded formwork according to the present invention, in which a flat strip material 4 is fixed by covering the parallel protrusions 3, 3 of a PC concrete slab 2 cut into short lengths. be. FIG. 4 shows an example in which a groove-shaped strip 5 is covered instead of a flat strip. It is sufficient to cover the PC concrete slab 1 shown in Fig. 1 with the channel-shaped strip 5 shown in Fig. 4. In any case, by adding strips to the short PC concrete slab, it becomes an embedded formwork with hollow ridges along almost the entire length of the top surface. Of course, the height of the hollow protrusion is not higher than the planned thickness of the cast-in-place concrete F. The hollow parts 6 of the hollow protrusions are not harmful to the bending strength of the concrete slab when it is completed.
The volume must be effective for weight reduction.
第3,4図のようにPC版に中空突条を設けた
場合と、設けない場合の完成床版の強さを、無支
保施工可能な床版支間の長さで比較するため、第
1,2図の短尺PCコンクリート版1,2をその
まま埋込型枠に使つて、現場コンクリートを打つ
た場合も加え、第3,4図の埋込型枠による床版
強度を、床版下面のプレストレス(圧縮)が零と
なるモーメントで求めてみよう。いずれも、型枠
幅Wは1000mm、基部1,2の厚み40mm、突条3の
高さ50mm、同じく頂部幅100mm、平形条材4、溝
形条材5の水平部厚み30mmで、床版全厚みは実際
にそくした厚みとするため、第1図から順次
100,120,150,200mmとした。 In order to compare the strength of completed slabs with and without hollow protrusions on the PC slab as shown in Figures 3 and 4, the first , In addition to the case where short PC concrete slabs 1 and 2 in Figure 2 are used as embedded formwork and concrete is cast on site, the strength of the slab due to the embedded formwork in Figures 3 and 4 is calculated as follows: Let's find the moment at which the prestress (compression) becomes zero. In both cases, the formwork width W is 1000 mm, the thickness of the bases 1 and 2 is 40 mm, the height of the protrusion 3 is 50 mm, the top width is 100 mm, the horizontal part thickness of the flat strip 4 and the groove strip 5 is 30 mm, and the floor slab In order to determine the total thickness as the actual thickness, the values are calculated sequentially starting from Figure 1.
100, 120, 150, 200mm.
完成した各床版の異径PC鋼材(径10mm、6
本)による上下面のプレストレスは、上面が+2
Kg/cm2、下面が+69Kg/cm2程度である。 Different diameter PC steel materials (diameter 10 mm, 6
The prestress on the upper and lower surfaces due to
Kg/cm 2 , and the bottom surface is about +69Kg/cm 2 .
その下面の圧縮応力を零にするモーメントMo
は第1図から順に166,632,1504,2825Kg―mと
なる。これは、この発明の短尺PCコンクリート
版と、これに付加する条材とを適宜、組合わせる
事により、完成床版の耐力を著しく強め、また広
範囲に設計することを示している。 The moment Mo that makes the compressive stress on the lower surface zero
are 166, 632, 1504, and 2825 kg-m in order from Figure 1. This shows that by appropriately combining the short PC concrete slab of the present invention and the strips added thereto, the strength of the finished slab can be significantly strengthened and it can be designed over a wide range of areas.
また第2図のPCコンクリート版2の厚み60
mm、突条高さ60mmのもので厚み150mmの床版を作
る場合、支間5mまで無支保工コンクリート打が
可能であるが、PCコンクリート版2に厚み50mm
の平形条材4を付けると下面プレストレス零とな
るモーメントMoは1164Kg―mから3188Kg―mと
2.7倍になる上、中空床版となるため自重が52.5
Kg/m2軽減される。これにより厚み200mmの床版
を支間7.5mまで無支保施可能となる。そして現
場で鉄筋を加えなくても347Kg/m2の積載荷重に
耐える床版が完成する。また更に荷重に対する曲
げ強度を上げたい場合は、隣接した埋込型枠との
継目部に現場で追加鉄筋を配置すればよい。 Also, the thickness of PC concrete plate 2 in Figure 2 is 60
When making a floor slab with a thickness of 150 mm and a ridge height of 60 mm, it is possible to cast unsupported concrete with a span of up to 5 m, but the PC concrete slab 2 has a thickness of 50 mm.
When the flat strip 4 of
In addition to being 2.7 times larger, the weight is 52.5 because it is a hollow floor slab.
Kg/ m2 reduced. This makes it possible to install floor slabs with a thickness of 200 mm up to a span of 7.5 m without shoring. A floor slab that can withstand a live load of 347 kg/ m2 is completed without adding reinforcing bars on site. If you want to further increase the bending strength against loads, you can place additional reinforcing bars on-site at the joints with the adjacent embedded formwork.
また第4図のPCコンクリート版2の厚み60
mm、突条3の高さも60mm、溝形条材5の高さ120
mm、その厚み50mmとした場合、上記Moは6450Kg
―mで、床版厚み300mmで9mまで無支保施工可能
となる。 Also, the thickness of PC concrete plate 2 in Figure 4 is 60
mm, the height of the protruding strip 3 is also 60 mm, and the height of the channel strip 5 is 120 mm.
mm, and the thickness is 50mm, the above Mo is 6450Kg
- m, it is possible to construct without shoring up to 9 m with a floor slab thickness of 300 mm.
これを道路二等橋の埋込型枠として用いた場
合、橋長5mなら下面に53Kg/cm2のプレストレス
が残つており、設計活荷重モーメントが加わつて
も、未だ+1Kg/cm2圧縮応力が残る。即ちフレ・
プレストレスのPC合成床版となる。断面内にほ
とんど引張応力を生じない理想的な状態となり、
計算上、設計モーメントにより床版(基板)下面
に―18Kg/cm2の引張応力、橋長7,8,9mの
時、夫々−39,−64,−90Kg/cm2の引張応力を生ず
るから、鉄筋で補強する必要が生ずる。即ちRC
床版構造となる。この場合、埋込型枠内に予め入
れられたPC鋼材と鉄筋、金網、及び現場で追加
した鉄筋が有効高さに応じて働く。 When this is used as an embedded formwork for a second-class road bridge, if the bridge length is 5m, a prestress of 53Kg/ cm2 remains on the bottom surface, and even if a design live load moment is applied, there is still a compressive stress of +1Kg/ cm2. remains. In other words,
This is a pre-stressed PC composite floor slab. This creates an ideal state in which almost no tensile stress occurs within the cross section.
In calculations, the design moment produces a tensile stress of -18Kg/ cm2 on the bottom surface of the deck slab (substrate), and a tensile stress of -39, -64, and -90Kg/ cm2 for bridge lengths of 7, 8, and 9m, respectively. , it becomes necessary to reinforce with reinforcing bars. i.e. R.C.
It will have a floor slab structure. In this case, the prestressed steel, reinforcing bars, wire mesh, and reinforcing bars added on site work in accordance with the effective height of the embedded formwork.
従つて設計者は、この発明によるPCコンクリ
ート版の断面形状を適宜に選び、これに載せる現
場打ちコンクリートや鉄筋を含めて最も好ましい
応力状態のスラブ橋その他を設計することができ
る。 Therefore, the designer can appropriately select the cross-sectional shape of the PC concrete slab according to the present invention, and design a slab bridge or other structure with the most preferable stress state, including the cast-in-place concrete and reinforcing bars to be mounted thereon.
間題となる下面のひび割れについては、RC床
版の埋込型枠として、PCコンクリート版を用い
た場合、数多くの実験結果から、床版下面の計算
引張応力が―100Kg/cm2程度にモーメントまで、
目視できる亀裂は発生しない。即ち、この発明に
より、ひび割れに極めて強いPC床版を設計でき
る。そして、そのひび割れに対する安全度も、前
記のフル・プレストレスシングから、許容される
引張応力を認めるパーシヤル・プレストレシン
グ、又は最大荷重によつてひび割れは生ずるが荷
重を除けば完全に消減する等の各段階中、適宜の
安全度に選択設計できることになる。長尺のPC
コンクリート版製作時、PC鋼材のほかに異径鉄
筋の内蔵させれば、ひび割れ発生を遅らすPCの
効果と、ひび割れの進行を抑制するRCの効果を
兼ね備える事になる。 Regarding cracks on the bottom surface, which is a problem, when PC concrete slabs are used as embedded formwork for RC deck slabs, numerous experimental results show that the calculated tensile stress on the bottom surface of the slabs is approximately -100Kg/ cm2 . to,
No visible cracks occur. That is, according to this invention, it is possible to design a PC floor slab that is extremely resistant to cracking. The degree of safety against cracks ranges from the above-mentioned full prestressing to partial prestressing, which allows for permissible tensile stress, or cracks that occur under the maximum load but disappear completely when the load is removed. At each stage, the appropriate safety level can be selected and designed. long PC
When making concrete slabs, if you incorporate reinforcing bars of different diameters in addition to prestressing steel, you will have both the effect of prestressing, which delays the onset of cracks, and the effect of RC, which suppresses the progression of cracks.
なお、床版の横方向モーメントも考慮する必要
があるが、それは図示した実施例の基板1,2の
ように溶接金網8を内蔵させ、型枠隣接部にも第
5,6図のように溶接金網を入れる事により十
分、横方向モーメントに耐えるようになる。これ
は従来のPC桁の横締めによる方法よりも簡単で
ある。 It is also necessary to take into consideration the lateral moment of the floor slab, which is achieved by incorporating welded wire mesh 8 as in the substrates 1 and 2 of the illustrated embodiment, and by incorporating welded wire mesh 8 in the adjacent part of the formwork as shown in Figures 5 and 6. By inserting a welded wire mesh, it can sufficiently withstand lateral moments. This is easier than the conventional method of horizontally tightening PC girders.
次に長尺PCコンクリート版の製法を説明す
る。 Next, we will explain the manufacturing method for long PC concrete slabs.
この発明による中空突条つき埋込型枠は、これ
を従来の方法で製作する場合、中空部を作るため
数mの中子を要し、面倒な作業となる。また現場
の状況により埋込型枠の寸法は受註のつど変るの
で、見込生産できず、工場稼動率のムラが大き
い。 When the embedded formwork with hollow protrusions according to the present invention is manufactured by a conventional method, several meters of cores are required to create the hollow portion, which is a troublesome work. In addition, the dimensions of the embedded formwork change each time an order is received depending on the situation on site, making it impossible to make to order and resulting in large fluctuations in factory operating rates.
そこで、この発明による製法は、まず見込生産
を可能とする事を第一目的としている。この発明
の埋込型枠の寸法変動部分は、埋込型枠としての
長さと、中空突条の断面寸法であり、横幅は第
5,6図のように隣接させて床版横幅を作るので
一定でもよい。 Therefore, the first objective of the manufacturing method according to the present invention is to enable make-to-stock production. The variable dimensions of the embedded formwork of this invention are the length as the embedded formwork and the cross-sectional dimension of the hollow protrusion, and the width is the width of the floor slab, which is made by adjoining them as shown in Figures 5 and 6. It may be constant.
この発明の製法は埋込型枠の長さの変動にかか
わらず見込生産するために、通常の埋込型枠が複
数本とれる長尺PCコンクリート版を作り、指定
長さに応じて分断する方法をとつた。次に、中空
突条の寸法変動に対しては、これを別製とし、変
動しない長尺PCコンクリート版だけを見込生産
する方法をとつた。 The manufacturing method of this invention is to create a long PC concrete slab from which multiple ordinary embedded forms can be made and divide it into pieces according to the specified length, in order to perform make-to-stock production regardless of variations in the length of embedded formwork. I took it. Next, in order to deal with variations in the dimensions of the hollow protrusions, we decided to manufacture them separately and produce only the long PC concrete slabs that would not vary.
具体的には、第11図に示すような、数十mか
ら百mに達する長尺プレテンシヨン・ベンチの底
枠20上に摺動式コンクリート成形装置21を走らせ
て、全長が通常の埋込型枠を複数本とれる長さ
で、平坦か、又は上面に並行突条3をもつ長尺
PCコンクリート版を成形、養生し、埋込型枠の
寸法決定時まで待機させ、寸法決定後、この長尺
PC版を周知のコンクリート切断機により所定寸
法に分断して短尺のPC版を所要数だけ作り、そ
れぞれの上面に別に作つた条材4,5等を固定す
るか、後打ちコンクリートを加えて全長に中空突
条を形成する。もつとも、条材を予め長尺PC版
に固定した後、分断してもよい訳である。 Specifically, as shown in Fig. 11, a sliding concrete forming device 21 is run on the bottom frame 20 of a long pretension bench ranging from several tens of meters to a hundred meters long, and the total length is A long piece that is long enough to take multiple formworks and is flat or has parallel protrusions 3 on the top surface.
The PC concrete slab is formed, cured, and kept on standby until the dimensions of the embedded formwork are determined.
Cut the PC board into specified dimensions using a well-known concrete cutting machine to make the required number of short PC boards, and either fix separately made strips 4, 5, etc. on the top of each board, or add post-cast concrete to the entire length. A hollow protrusion is formed on the surface. However, it is also possible to fix the strips to a long PC plate in advance and then divide them.
PCコンクリート版上面に中空突条を作る方法
は二種あり、別製の条材4又は5を接着材、ボル
ト、ナツトでPC版2に固定する方法と、PC版2
上に型枠を作り、コンクリートを打設する方法と
である。第5,6図の実線は前者の例で、条材
4,5は別に製作(プレストレス不要)し、突条
3,3間に渡しかぶせ、図の左側の場合はPC版
2から出たアンカーボルト9、ナツト10で締付
ける。予め接合面にはセメントモルタル又は樹脂
モルタルを塗つておくとよい。又、図の右側に示
すように条材4,5の幅をやや狭くして、側面に
金網8か鉄筋を突出させ、PC版2側からもジベ
ル筋11等を出して後打ちコンクリート又はモル
タル12で一体化する。 There are two ways to create hollow protrusions on the top surface of the PC concrete slab: one is to fix separately manufactured strips 4 or 5 to the PC slab 2 with adhesive, bolts, and nuts, and the other is to fix the separately manufactured strip 4 or 5 to the PC slab 2
This method involves creating formwork on top and pouring concrete. The solid lines in Figures 5 and 6 are examples of the former, where strips 4 and 5 are manufactured separately (no prestressing required) and placed over between the protrusions 3 and 3. In the case on the left side of the figure, they are produced from PC version 2 Tighten anchor bolt 9 and nut 10. It is best to apply cement mortar or resin mortar to the joint surfaces in advance. In addition, as shown on the right side of the figure, the width of the strips 4 and 5 is made slightly narrower, wire mesh 8 or reinforcing bars are made to protrude from the sides, and dowel reinforcements 11 etc. are made to protrude from the side of the PC plate 2, and post-cast concrete or mortar is made. Unify at 12.
また後者の方法では、図の条材4又は5の下面
と側面を形成する型板(鎖線)13を、接合する
べき突条3上面をはずして取付け、コンククリー
トを打設する。無論、突条3上面には予めスパイ
ラル状等のジベル筋を出し結合を強める。 In the latter method, a template (dashed line) 13 forming the lower and side surfaces of the strip 4 or 5 shown in the figure is attached with the upper surface of the protrusion 3 to be joined removed, and concrete is poured. Of course, the upper surface of the protrusion 3 is provided with a spiral or other dowel line in advance to strengthen the connection.
なお、第5図の場合、並行突条3,3間を乾燥
砂で満たし、その上にビニール・シート等をかぶ
せて型板13の代用にし、コンクリート打設、硬
化後、傾斜させて砂を出してもよい。 In the case of Fig. 5, the space between the parallel protrusions 3 and 3 is filled with dry sand, a vinyl sheet or the like is placed over it to serve as the template 13, and after the concrete is poured and hardened, it is tilted and the sand is poured. You can take it out.
隣接する埋込型枠に接する縁部は従来の埋込型
枠と変らないが、前述の隣接部に追加する継手用
溶接金網8の二列を第5,6図に示している。 The edges that contact the adjacent embedded formworks are the same as those of the conventional embedded formwork, but two rows of welded wire mesh 8 for joints added to the above-mentioned adjacent areas are shown in FIGS. 5 and 6.
さて次に、この長尺PCコンクリート版製造装
置を第7〜10図の実施例によつて説明する。 Next, this long PC concrete slab manufacturing apparatus will be explained with reference to the embodiments shown in FIGS. 7 to 10.
この製造装置は上述の製法に従い、長尺PC版
を量産しておくものである。それは本発明者が開
発した特願昭53―114025号「PCコンクリート版
製造装置」と同様、例えば50〜100mのプレテン
シヨン・ベンチ設備を利用したもので、第11図
に示す実施例のように、平らなコンクリート材1
4を多数連結し、上面に鋼板を貼つて底枠20と
し、両端に、異径PC鋼材7の固定材15、緊張
用ジヤツキ取付材16を接続している。ジヤツキ
17によりPC鋼材7に緊張を与えた後、底枠2
0上、飛び飛びにコンクリートを投入し、摺動成
形装置21が、この場合、図示しないウインチに
より引かれて底枠20の一端から他端へ底枠20
上を摺動して順次、所要断面に成形してゆくので
ある。 This manufacturing device mass-produces long PC plates according to the manufacturing method described above. This is similar to the patent application No. 114025/1983 developed by the present inventor, ``PC Concrete Plate Manufacturing Apparatus'', and uses, for example, 50 to 100 m pretension bench equipment, as shown in the embodiment shown in Figure 11. , flat concrete material 1
4 are connected together and a steel plate is pasted on the upper surface to form a bottom frame 20, and fixing members 15 made of PC steel materials 7 of different diameters and tensioning jack mounting members 16 are connected to both ends. After applying tension to the PC steel material 7 with the jack 17, the bottom frame 2
0, concrete is poured into the bottom frame 20 intermittently, and the sliding forming device 21 is pulled by a winch (not shown) to move the bottom frame 20 from one end of the bottom frame 20 to the other end.
By sliding on the top, it is successively shaped into the desired cross section.
PCコンクリート版の並行突条3は現場打ちコ
ンクリートに接する上面側にあるが、上記摺動成
形装置による場合、並行突条3を底枠20側で成
形すれば、この方式の摺動成形でも容易である。
しかし、その場合、突条3の寸法変動のたびに底
枠を取替えねばならない面倒がある。 The parallel protrusions 3 of the PC concrete plate are on the top side that contacts the cast-in-place concrete, but when using the above-mentioned sliding forming device, if the parallel protrusions 3 are formed on the bottom frame 20 side, this method of sliding forming is also easy. It is.
However, in that case, there is the trouble of having to replace the bottom frame every time the dimensions of the protrusion 3 change.
そこで、この装置は、PC版2の平らな部分は
盛上げたコンクリートをならして進むという前出
願の摺動成形法を踏しゆうし、上面に立つ並行突
条3は摺動装置自身のホツパーからコンクリート
を落し成形するという複合方式を採つたのであ
る。 Therefore, this device follows the sliding forming method of the previous application in which the flat part of the PC plate 2 is advanced by leveling the heaped concrete, and the parallel protrusions 3 standing on the top surface are the hopper of the sliding device itself. They adopted a composite method of pouring and forming concrete from scratch.
第7〜11図の実施例の主要部は、第9図に全
断面を示す、全長同一断面の長尺底枠20、この
底枠20上にPC鋼材7を張る周知の緊張装置1
5,16、底枠20上を移動する摺動成形装置2
1で、この摺動成形装置21は前述のように底枠
20上に飛び飛びに投入したコンクリートをほぼ
平らにならすスクレーパー22、製品を形成する
上枠23、これらに振動を与える振動機24とそ
の周波数変換機24a、上枠23の後方に続き、
製品上面の突条部を形成する突条形成枠25、及
び形成枠25の前部上方に設けたコンクリート・
ホツパー26等である。 The main parts of the embodiment shown in FIGS. 7 to 11 are a long bottom frame 20 whose entire length is the same in cross section as shown in FIG.
5, 16, sliding forming device 2 that moves on the bottom frame 20
1, this sliding forming device 21 includes a scraper 22 that flattens the concrete poured intermittently onto the bottom frame 20, an upper frame 23 that forms the product, a vibrator 24 that vibrates these, and a vibrator 24 that vibrates them. Following the frequency converter 24a and the rear of the upper frame 23,
A ridge forming frame 25 that forms the ridges on the top surface of the product, and a concrete frame 25 provided above the front part of the forming frame 25.
Hopper 26 etc.
底枠20はこの場合、左右両側をPC線で締付
けたコンクリート材14,14…上に敷いた底板
20aと、左右のレール兼用側枠20bとから成
る。スクレーパー22は摺動成形装置21の前部
につき、U形周壁22a内の前後方向三段の山形
板22bにより、投入したコンクリートの山を崩
し左右へ広げてほぼ平らにする。山形板22bに
は多数の振動バー22cが付き、山形板22b前
面に停滞するコンクリートに活力を与える。22
dは調節ダンパーである。 In this case, the bottom frame 20 consists of a bottom plate 20a laid on concrete materials 14, 14, which are fastened with PC wires on both left and right sides, and side frames 20b that also serve as left and right rails. The scraper 22 is located at the front part of the sliding forming device 21, and uses three chevron-shaped plates 22b in the front and rear directions within the U-shaped peripheral wall 22a to break up the piles of the poured concrete and spread it left and right to make it almost flat. A large number of vibration bars 22c are attached to the chevron plate 22b, which energizes the concrete stagnant in front of the chevron plate 22b. 22
d is an adjustment damper.
スクレーパー22から上枠23の下へ入つたコ
ンクリートはPC版2の厚みに近い平たんな状態
になり、続く突条成形枠25の下へ入る。そこで
ホツパー26から突条用コンクリートを補給され
るので、これを第10図にも示すような囲い板2
6aで所要断面形状に成形するものである。製品
の上面は埋込型枠の底になるので粗面であること
が望ましく、平滑に成形する必要はない。むし
ろ、この摺動成形装置21に、表面を粗面にする
突起つきローラを後続させることが望ましい。 The concrete that has entered under the upper frame 23 from the scraper 22 becomes flat and has a thickness close to that of the PC plate 2, and then enters under the ridge forming frame 25 that follows. There, concrete for the ridge is supplied from the hopper 26, and this is supplied to the surrounding plate 2 as shown in Fig. 10.
6a to form the desired cross-sectional shape. The top surface of the product will be the bottom of the embedded mold, so it is desirable that it be a rough surface, and it is not necessary to mold it smoothly. Rather, it is desirable that this sliding forming device 21 be followed by a roller with protrusions that roughen the surface.
以上、この発明を小数の実施例によつて説明し
たが、設計条件によつて設計者がその公知技術に
より、多様な実施態様をとり得ることはいうまで
もない。例えばコンクリート版の幅を1mでなく
2mとし、並行突条3を三本にして突条中空部6
を並列させるとか、広く変化、応用し得る。 Although the present invention has been described above with reference to a small number of embodiments, it goes without saying that depending on the design conditions, a designer can implement various embodiments using known techniques. For example, the width of the concrete slab should not be 1m.
2m, with three parallel protrusions 3 and a protrusion hollow part 6.
It can be widely varied and applied, such as by placing them in parallel.
(発明の効果)
この発明は埋込型枠を中空突条つきPCコンク
リート版とする事により、これを単なる作業能率
向上手段でなく、これによつて作つた床版の強度
向上、重量軽減に大きな働きをさせる道を開い
た。(Effects of the invention) By using a PC concrete slab with hollow ridges as the embedded formwork, this invention is not only a means of improving work efficiency, but also improves the strength and reduces the weight of the slab made by this. It paved the way for great work.
すなわち強度面では、容積の割りに背の高い補
強骨である中空条つきのPCコンクリート版は、
それ自身の曲げ強さを高めると共に、中空部内臓
床版としても、その下側に信頼性に富む中空補強
骨を加えた事になり、前述のとおり床版の鉄筋工
事を大幅に減じ得るようにした。 In other words, in terms of strength, the PC concrete slab with hollow striations, which is a reinforcement bone that is tall compared to its volume,
In addition to increasing its own bending strength, highly reliable hollow reinforcing bones are added to the underside of the slab, which can also be used as a hollow internal floor slab, and as mentioned above, the need for reinforcement work for the slab can be significantly reduced. I made it.
次の床版重量の軽減は、この発明の最も重要な
効果である。 The following reduction in deck weight is the most important effect of this invention.
この発明は従来、強力であるが、現場打コンク
リートの受板にすぎなかつた埋設型枠を、はじめ
て、床版重量軽減用空胴(中空突条)を背負つた
型枠とし、現場打コンクリートを打設するだけ
で、欠陥のない空胴つき床を得られるようにし
た。これにより床版軽量化の設計、施工を画期的
に簡略化したものである。 This invention replaces the conventionally strong buried formwork, which was merely a receiving plate for cast-in-place concrete, with a formwork that carries cavities (hollow ridges) to reduce the weight of the floor slab, making it possible to use cast-in-place concrete for the first time. It is now possible to obtain a defect-free cavity floor just by pouring it. This dramatically simplifies the design and construction of lightweight floor slabs.
しかも、その中空突条つきPCコンクリート版
の製法自体も、従来の常識に反して、埋込型枠の
特殊事情に最適の方法とした。すなわち、床版工
事は間欠的に行われ、始まると長大な製品を大量
に揃える必要があるため、埋込型枠をPCコンク
リート版と中空突条と分離して作る。プレテンシ
ヨンを必要とするPC版は、長尺プレテンシヨ
ン・ベンチと摺動成形装置により、数本分の長い
版を予め作つて養生しておく。そして埋設型枠の
寸法決定後、上記長尺PC版をその寸法に分断
し、それぞれの上に既製条材か、後打ちコンクリ
ートを載せて所要の中空突条を成形し、埋設型枠
として完成する。従つて、プレテンシヨン・ベン
チは見込み生産により稼動率を高め、寸法決定か
ら出荷までの日数を著減する。基部の断面形状は
単純であるから、埋設型枠の寸法、形状が変つて
も、上に載る条材や後打ちコンクリートの形を変
えるだけで対応できる。 Moreover, the manufacturing method of the PC concrete slab with hollow ridges goes against conventional wisdom and is optimized for the special circumstances of embedded formwork. In other words, floor slab construction is carried out intermittently, and once it starts, it is necessary to prepare a large amount of long products, so the embedded formwork is made separately from the PC concrete slab and hollow ridges. For PC plates that require pretension, several long plates are made in advance and cured using a long pretension bench and sliding forming device. After determining the dimensions of the buried formwork, the long PC board is divided into those dimensions, and ready-made strips or post-cast concrete are placed on top of each piece to form the required hollow protrusions, completing the buried formwork. do. Therefore, the pretension bench increases operating rates through make-to-stock production and significantly reduces the number of days from sizing to shipping. Since the cross-sectional shape of the base is simple, even if the dimensions and shape of the buried formwork change, it can be accommodated simply by changing the shape of the strips placed on top or the post-cast concrete.
なお、在来のPCコンクリート製埋込型枠とは
異なり中空突条付きとした事により、型枠自体に
最小の重量増加で最大の曲げ抵抗力を加え、床版
軽量化の効果を相まつて、型枠架設時の支保工を
著減した点も見逃せない。 In addition, unlike conventional PC concrete embedded formwork, it has hollow ridges, which adds maximum bending resistance to the formwork itself with minimal weight increase, while also reducing the weight of the floor slab. It cannot be overlooked that the need for shoring during formwork erection has been significantly reduced.
即ちこの発明は、設計者にコンクリート床版類
の有力な補強、軽量化手段を提供し、施工者に型
枠作業解消、支保工、鉄筋の激減、工期短縮、経
費縮減をもたらし、埋込型枠製作者に工場稼動率
の平均化、原価低減、納期短縮をもたらすもので
ある。 In other words, this invention provides designers with a powerful means of reinforcing and reducing the weight of concrete slabs, and allows builders to eliminate form work, drastically reduce the need for shoring and reinforcing bars, shorten construction time, and reduce costs. This will help frame manufacturers average factory operating rates, reduce costs, and shorten delivery times.
第1,2図はこの発明による埋込型枠用PCコ
ンクリート版の二種の断面図、第3,4図は上記
PC版に中空突条を付して埋込型枠とし、その上
に現場打ちコンクリートを打設したこの発明の二
実施例断面図、第5,6図は第3,4図の実施例
の詳細図、第7図はこの発明の製造装置の一実施
例側面図、第8図はその平面図、第9図はその正
面断面図、第10図はその突条形成枠の斜視図、
第11図は製造装置概略図である。
1,2……PCコンクリート版、3……中空突
条の下部となる並行突条、4,5……中空突条の
上部となる条材、6……中空突条の中空部。
Figures 1 and 2 are cross-sectional views of two types of PC concrete slabs for embedded formwork according to the present invention, and Figures 3 and 4 are the above.
Figures 5 and 6 are cross-sectional views of two embodiments of the present invention, in which hollow protrusions are attached to a PC plate to form an embedded formwork, and cast-in-place concrete is poured on top of the formwork. 7 is a side view of an embodiment of the manufacturing apparatus of the present invention, FIG. 8 is a plan view thereof, FIG. 9 is a front sectional view thereof, and FIG. 10 is a perspective view of the protrusion forming frame;
FIG. 11 is a schematic diagram of the manufacturing apparatus. 1, 2...PC concrete plate, 3...Parallel ridges forming the lower part of the hollow ridges, 4, 5...Strip material forming the upper part of the hollow ridges, 6...Hollow part of the hollow ridges.
Claims (1)
クリート成形装置を走らせて、埋込型枠を複数本
とれる長さで、平坦か、又は上面に平行突条をも
つ長尺PCコンクリート版を成形する工程、 埋込型枠の寸法の長さに合わせて上記PCコン
クリート版を分断して、所定長さの短尺PC版を
作る分断工程、及び 上記各短尺PC版上面の、ほぼ全面に長手方向
中空を形成する寸法、形状の薄肉コンクリート
を、既製条材または後打ちコンクリートとして載
せ、ボルト、接着剤、またはジベル筋により、そ
の短尺PC版に固定する工程、 を備えることを特徴とする埋込型枠の製法。[Scope of Claims] 1. A long pretension bench that is flat or has parallel ridges on its upper surface and is long enough to form multiple embedded forms by running a sliding concrete forming device on the long pretension bench. A process of forming a PC concrete plate; A dividing process of dividing the PC concrete plate according to the length of the embedded formwork to create short PC plates of a predetermined length; A process of placing thin concrete with a size and shape that forms a longitudinal hollow on almost the entire surface as ready-made strips or post-cast concrete, and fixing it to the short PC plate with bolts, adhesive, or dowel bars. The manufacturing method of embedded formwork is characterized by its characteristics.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1325779A JPS55108552A (en) | 1979-02-09 | 1979-02-09 | Precast concrete board for embeddinggtype molding flask* and method and device for making said board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1325779A JPS55108552A (en) | 1979-02-09 | 1979-02-09 | Precast concrete board for embeddinggtype molding flask* and method and device for making said board |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55108552A JPS55108552A (en) | 1980-08-20 |
JPS6151524B2 true JPS6151524B2 (en) | 1986-11-10 |
Family
ID=11828155
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1325779A Granted JPS55108552A (en) | 1979-02-09 | 1979-02-09 | Precast concrete board for embeddinggtype molding flask* and method and device for making said board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS55108552A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59133008A (en) * | 1983-01-21 | 1984-07-31 | 富士ピ−・エス・コンクリ−ト株式会社 | Concrete material manufacturing equipment using sliding molding |
JPS59155108U (en) * | 1983-04-04 | 1984-10-18 | 富士ピ−・エス・コンクリ−ト株式会社 | Pretension bench for concrete slabs |
JPS61211435A (en) * | 1985-03-14 | 1986-09-19 | 株式会社竹中工務店 | Long span non-timbering slab construction method |
JPS6248506U (en) * | 1985-09-11 | 1987-03-25 | ||
JPS62193013U (en) * | 1986-05-28 | 1987-12-08 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5286417A (en) * | 1976-01-12 | 1977-07-18 | Taisei Corp | Method of manufacturing eccentric tension precast concrete construction material |
-
1979
- 1979-02-09 JP JP1325779A patent/JPS55108552A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5286417A (en) * | 1976-01-12 | 1977-07-18 | Taisei Corp | Method of manufacturing eccentric tension precast concrete construction material |
Also Published As
Publication number | Publication date |
---|---|
JPS55108552A (en) | 1980-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5881524A (en) | Composite building system and method of manufacturing same and components therefore | |
US4974381A (en) | Tie anchor and method for manufacturing insulated concrete sandwich panels | |
US6036906A (en) | Method for manufacturing an improved prestressed concrete joist | |
US5373675A (en) | Composite building system and method of manufacturing same and components therefor | |
US3577504A (en) | Method of manufacturing a girder with a web of reinforced and/or prestressed concrete | |
US5146726A (en) | Composite building system and method of manufacturing same and components therefor | |
JP2928475B2 (en) | Precast concrete girder for composite floor slab | |
JP2001026909A (en) | Connection structure of floor slab using three- dimensional truss with concrete form in bridge girder | |
JPS6151524B2 (en) | ||
EP0016478A2 (en) | Wall made of a plurality of pre cast cementitious panels | |
JP3429459B2 (en) | Construction method of bridge deck haunch | |
JP3322637B2 (en) | Construction method of cast-in-place concrete slab of bridge | |
GB2495401A (en) | Building unit such as a structural floor or roof slab | |
JP3511159B2 (en) | Concrete casting method | |
JPH08184120A (en) | Precast flooring joint structure | |
JP3275017B2 (en) | Method of manufacturing caisson using precast member | |
JPH10219708A (en) | Precast concrete block for continuous footing and continuous footing method by use thereof | |
JP2001049616A (en) | Precast pc web for use in concrete bridge and prestressed concrete bridge having the pc web | |
JPH0913486A (en) | Concrete structure body | |
KR102688522B1 (en) | The manufacturing method of composite pc structure and composite pc structure manufactured by the method | |
JPH023844B2 (en) | ||
JPH08232270A (en) | Method for stabilizing slope | |
SU1638277A1 (en) | Building | |
CN118418284A (en) | Single-mode production method of prefabricated bench plate and stair connecting structure | |
JPH0932172A (en) | Precast floor plate |