JPH0237829B2 - - Google Patents
Info
- Publication number
- JPH0237829B2 JPH0237829B2 JP59280873A JP28087384A JPH0237829B2 JP H0237829 B2 JPH0237829 B2 JP H0237829B2 JP 59280873 A JP59280873 A JP 59280873A JP 28087384 A JP28087384 A JP 28087384A JP H0237829 B2 JPH0237829 B2 JP H0237829B2
- Authority
- JP
- Japan
- Prior art keywords
- wire
- wires
- twisted
- feeding
- welding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 31
- 238000003466 welding Methods 0.000 claims description 26
- 229910052759 nickel Inorganic materials 0.000 claims description 16
- 229910001220 stainless steel Inorganic materials 0.000 claims description 15
- 229910045601 alloy Inorganic materials 0.000 claims description 14
- 239000000956 alloy Substances 0.000 claims description 14
- 239000010935 stainless steel Substances 0.000 claims description 14
- 239000000314 lubricant Substances 0.000 claims description 9
- 239000011295 pitch Substances 0.000 description 16
- 230000007547 defect Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 239000010687 lubricating oil Substances 0.000 description 8
- 239000011148 porous material Substances 0.000 description 5
- 239000011324 bead Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910000975 Carbon steel Inorganic materials 0.000 description 3
- 239000010962 carbon steel Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 238000005238 degreasing Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 238000005491 wire drawing Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000035553 feeding performance Effects 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/02—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
- B23K35/0255—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
- B23K35/0261—Rods, electrodes, wires
- B23K35/0283—Rods, electrodes, wires multi-cored; multiple
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Nonmetallic Welding Materials (AREA)
Description
〔産業上の利用分野〕
本発明は、ステンレス鋼及びニツケル基合金よ
りなる複数本の素線を撚合せてなる溶接用撚合せ
ワイヤに関し、殊に送給性及び直進性が良好であ
ると共に、ブローホール等の気孔欠陥のない健全
な溶接部を得ることのできる撚合せワイヤに関す
るものである。
〔従来の技術〕
溶接用撚合せワイヤとは、例えば特開昭55−
117255号や同57−31494号等に開示されている如
く複数本の素線を撚合せて一本化したもので、ワ
イヤを直進させるだけでも溶接アークが該ワイヤ
の軸心を中心にして自然に回転し、狭開先溶接に
適用した場合でも開先側面への溶込みが均一且つ
確実に進行する為、通常のソリツドワイヤに比べ
ると溶接能率が高く且つ優れた品質の溶接継手を
得ることができる。その為この種の撚合せワイヤ
はTIG或はMIG等の自動溶接への適用を主体に
して急速に普及してきており、ワイヤ素材につい
ても炭素鋼のみならずステンレス鋼やニツケル基
合金等にも適用されはじめている。
〔発明が解決しようとする問題点〕
ところで撚合せワイヤは、細径の素線を複数本
束ねて撚線機で適度の撚りを与えることによつて
製造されるが、伸線工程及び撚合せ工程で使用さ
れる献滑油が相当量付着しており、これらは溶接
熱で燃焼乃至分解して多量のガスを発生しブロー
ホール等の気孔欠陥を招く要因となるので、ワイ
ヤ表面に付着した潤滑油は脱脂処理等によつて十
分に除去しておくことが望まれる。
一方ステンレス鋼やニツケル基合金よりなるワ
イヤはそれ自身耐食性が良好であるので、炭素鋼
ワイヤの様な銅めつき処理等を施す必要がなく、
裸ワイヤのままで製品化される。そのため伸線加
工時にできた表面傷が製品ワイヤの表面にそのま
ま残ることになり、銅めつきワイヤに比べて表面
粗度が高くなる。従つてステンレス鋼やニツケル
基合金製のワイヤの送給抵抗は銅めつきワイヤに
比べて大きく、気孔欠陥の発生を防止すべく表面
の潤滑油を除去してしまうと、送給抵抗は銅めつ
きワイヤに比べて大きくなり易い。殊に撚合せワ
イヤは、前述の如く複数本の素線を撚合せたもの
であるから通常のソリツドワイヤに比べると直進
性が悪く、しかも撚りが与えられることによつて
表面に螺旋溝が形成される為、送結抵抗は更に大
きくなる。加うるに溶接能率の向上という最近の
要請に対応しようとしてワイヤ送給速度を高めて
いくと、送給抵抗は加速度的に大きくなり、撚合
せワイヤの直進性が低下するばかりでなく送給ラ
インでワイヤが座屈して送給不能に陥ることもあ
る。
本発明はこうした状況のもとで、特にステンレ
ス鋼やニツケル基合金よりなる複数本の素線を撚
合せてなる溶接用撚合せワイヤを対象とし、ワイ
ヤ送給速度を高めた場合でも優れた送給性と直進
性を確保し得るばかりでなく、気孔欠陥等のない
健全な溶接継手を得ることのできる撚合せワイヤ
を提供しようとするものである。
〔問題点を解決する為の手段〕
本発明は、ステンレス鋼又はニツケル基合金よ
りなる複数本の素線を撚合せてなる溶接用撚合せ
ワイヤにおいて、該ワイヤの引張強さが90〜190
Kg・f/mm2であり、且つ撚合される素線の直径(d)
と撚合せピツチ(pt)が〔15d≦pt≦45d〕の関係
を満足する他、潤滑油付着量を20ppm以下に抑え
てなるところに要旨が存在する。
〔作用〕
本発明に係る撚合せワイヤを構成する素線の化
学成分は、ステンレス鋼やニツケル基合金のTIG
溶接やMIG溶接等に使用されるソリツドワイヤ
と異なるものではなく、ステンレス鋼とはJIS Z
3321やAWS A5.9に規定されている如くクロ
ム鋼やニツケル−クロム鋼を意味し、またニツケ
ル基合金とはAWS A5.14に規定されているニツ
ケル及びニツケル合金を意味するものであり、当
分野においてステンレス鋼及びニツケル基合金と
認識されるものはすべて本発明において使用する
ことができる。
一方上記の様な金属を素線とする撚合せワイヤ
の断面形状も、炭素鋼等を素線とする撚合せワイ
ヤの断面形状と本質的な相意はなく、例えば第1
図A〜Cに示す如く略同一断面形状の素線1a,
1b,……を、横断面において各素線1a,1
b,……の中心Pを結ぶ線が正多角形を形成する
様に束ねて撚合せたものであり、溶接時に撚合せ
ワイヤの軸心Oを中心にしてアークが円周方向へ
万遍なく広がる様に構成されている。第2図A〜
Cは本発明に係る撚合せワイヤを示す横断面図で
あり、中央部に芯線10を配置し、略同一断面形
状の複数の素線1a,1b,……の中心Pを結ぶ
線が正多角形を形成する様に前記芯線10のまわ
りに束ねて撚合せている。第3図は上記撚合せワ
イヤの一部側面図であり、撚ピツチ(pt)とは撚
合される素線1a,1b,……の撚合せ螺旋のピ
ツチを言う。
この様な撚合せワイヤをTIG溶接やMIG溶接
等の自動溶接装置に適用する場合に最も問題にな
るのは、該ワイヤの直進性及び送給安定性であ
る。しかし撚合せワイヤは前述の如く細い金属素
線1a,1b,……を撚合せたものであり、外周
面には複数条の螺旋溝が形成されている為送給抵
抗が大きく、しかも送給抵抗に遭遇したときに座
屈を起こし易いという欠点もあり、通常のソリツ
ドワイヤに比べると直進性及び送給性が悪い。殊
にステンレス鋼やニツケル基合金の様な銅めつき
処理の施されない素線を使用した場合は、前述の
如く素線の表面粗度が高い為送給抵抗は更に大き
くなり、直進性及び送給性は一段と悪くなる。
他方、素線を得る為の伸線工程及び撚合せ工程
で使用した潤滑油は、撚合せワイヤ表面の滑りを
良くして送給性を高める作用があるが、反面溶接
熱で燃焼乃至分解してガス化しブローホール等の
気孔欠陥を起こす原因となる。従つて気孔欠陥の
ない健全な溶接部を得る為には、潤滑油付着量を
極力少なくする必要がある。ちなみに第4図は、
Y308系(JIS Z 3321)の素線(直径0.53mm)
7本を第2図Aに示す断面形状となる様に束ねて
撚合せた撚合せワイヤ(直径1.6mm)を対象とし、
潤滑油(油脂)の付着量がブローホール発生数に
及ぼす影響を調べた実験結果を示したものであ
る。但し実験条件は下記の通りとし、250mmの長
さのビード中に発生したブローホールの数を肉眼
によつて求めたものである。
<溶接条件>
溶接電流:250A、DC−RP
溶接電圧:28V
溶接速度:30cm/分
シールドガス:Ar+2%O2、25/分
第4図からも明らかな様に、気孔欠陥のない健
全な溶接金属を確保する為には、潤滑油の付着量
を20ppm以下に抑えなければならない。
しかしステンレス鋼やニツケル基合金からなる
素線を用いた撚合せワイヤでは、潤滑油付着量を
この様な低レベルに抑えると、前述の様な理由に
より直進性及び送給性が著しく悪くなり、撚合せ
ワイヤ本来の特徴を十分に生かすことができな
い。そこで撚合せワイヤの送給性及び直進性を改
善すべく種々研究を行なつたところ、撚ピツチ
(pt)を、素線の直径(d)に応じて前記条件を満た
す様に適正に調整してやれば、潤滑油付着量を
20ppm以下に抑えた場合でも、直進性及び送給性
を満足のいく程度まで高め得ることが分かつた。
ちなみに第5図は、直径0.53mmのY308系素線
7本を用いて第2図Aに示す様な撚合せワイヤを
作製したときにおいて、撚合せピツチ(pt)を
種々変えた場合のワイヤ送給抵抗を示したもので
ある。尚撚合せワイヤとしての直径は1.6mm、引
張強さは110〜120Kg・f/mm2、潤滑油付着量は6
〜10ppmであり、送給抵抗は下記の方法で測定し
た。
<送給抵抗の測定方法>
第6図に略示する如くワイヤリール2、加圧送
送給ローラ3、コンジツトケーブル4及びノツチ
ノズル5を備えた試験装置を使用し、コンジツト
ケーブル4の長さは3000mmとしその途中3か所に
半径150mmの曲り部を有する送給経路を形成し、
ワイヤリール2から各撚合せワイヤを送給した場
合におけるワイヤ送給モータにかかる負荷を送給
抵抗として測定した。
第5図からも明らかな様に、撚ピツチ(pt)を
撚合される素線の直径(d)に対して15d〜45dの範
囲に入る様に設定することによつて送給抵抗を最
小限に抑えることができる。この様に撚ピツチに
よつて送給抵抗が著しく変化する理由は次の様に
考えることができる。即ち素線の直径に対して撚
ピツチが大き過ぎると、撚合せワイヤの外径が不
均一になり易く、しかも撚合される素線の螺旋方
向と送給方向との交差角が大きくなる為、コンジ
ツトケーブル内面との摩擦が増大し送給抵抗が大
きくなるものと考えられる。逆に撚ピツチが小さ
過ぎると、撚合せによる相互の拘束力が低下して
湾曲したときに素線がばらける現象が起こり、撚
合せワイヤの断面形状がくずれて外径が不均一に
なる他、該ワイヤ全体としての剛性が低下する結
果、やはり送給抵抗が増大するものと思われる。
何れにしても素線の直径に対して撚ピツチが
(15d〜45d)の範囲に収まる様に設定してやれ
ば、撚合せワイヤに対して十分な剛性が保障され
ると共に素線相互の拘束力も十分な値が保障さ
れ、送給抵抗を最小限に抑えることができる。ま
た送給抵抗の減少に伴なつて送給時の湾曲乃至座
屈といつた現象も生じなくなるから、撚合せワイ
ヤの直進性も高まる。
尚溶接能率を高めるべくワイヤ送給速度を高め
ようとすると、それに比例して送給抵抗は加速度
的に増大してくる。そして撚合せワイヤ自身の軸
心方向の強度が不十分であるとコンジツトケーブ
ル内でワイヤが座屈し送給不能に陥ることがあ
る。そこで送給抵抗がかなり高くなつた場合でも
座屈を起こさない様な軸心方向強度を明らかにす
る必要性があると考え実験を行なつたところ、第
7図に示す結果が得られた。即ち第6図は、後述
する実施例のデータから撚合せワイヤの引張強さ
とワイヤ送給抵抗の値を抜粋して整理したもので
あり、送給抵抗を小さくする為には撚合せワイヤ
全体としての引張強さを90Kg・f/mm2以上にすべ
きであることが分かる。但し引張強さが過大にな
ると、コンジツトケーブル内の送給路に沿つた湾
曲自在性が低下して送給抵抗がかえつて増大する
他コンジツトチユーブの損耗が著しくなり、更に
は素線を撚合せるときに素線が折損する等撚合せ
操作が困難になる。従つてこうした問題を回避す
る為には、撚合せワイヤの引張強さを190Kg・
f/mm2程度以下に抑える必要がある。尚撚合せワ
イヤの引張強さは〔撚合せワイヤの引張荷重/撚
合せワイヤの横断面積〕によつて求められるが、
これは素線の引張強さと実質的に同じである。
〔実施例〕
実施例 1
C:0.04%(重量%:以下同じ)、Si:0.39%、
Mn:1.50%、Ni:9.87%、Cr:19.82%、P:
0.021%、S:0.005%、残部Fe及び不可避不純物
の化学組成を有するステンレス鋼を対象とし、燃
処理条件を調整して引張強さを色々変えた素線
(0.53mm〓)を用い、第2図Aに示す横断面形状を
有しと引張強さ及び撚ピツチ等の異なる種々の撚
合せワイヤを作製し、溶接材料としての性能を調
べた。
結果を第1表に示す。第1表において、撚合せ
ワイヤの送給抵抗は第6図に準じて測定し、直進
性は、第6図に示す方法で各ワイヤを送給する場
合において、第8図に示す如く送給端のコンタク
トチツプ6から供試ワイヤWを25mm突出させ、ワ
イヤW先端部の送給中心からのずれ幅(x)の大
小により判定した。
[Industrial Application Field] The present invention relates to a welding twisted wire made by twisting a plurality of wires made of stainless steel and a nickel-based alloy, and which has particularly good feedability and straightness, and The present invention relates to a twisted wire that can obtain a sound welded part without porosity defects such as blowholes. [Prior art] The twisted wire for welding is, for example,
As disclosed in No. 117255 and No. 57-31494, it is made by twisting multiple wires into one, and even if the wire is moved straight, the welding arc will naturally move around the axis of the wire. Even when applied to narrow gap welding, penetration into the sides of the groove progresses uniformly and reliably, resulting in higher welding efficiency and superior quality welded joints compared to ordinary solid wire. can. Therefore, this type of twisted wire is rapidly becoming popular mainly for automatic welding such as TIG or MIG, and the wire material is also applicable not only to carbon steel but also to stainless steel, nickel-based alloys, etc. It's starting to happen. [Problems to be Solved by the Invention] By the way, twisted wires are manufactured by bundling a plurality of small diameter wires and giving appropriate twists using a wire twisting machine. A considerable amount of lubricating oil used in the process is attached to the wire surface, and this burns or decomposes due to the welding heat, generating a large amount of gas and causing pore defects such as blowholes. It is desirable to sufficiently remove lubricating oil by degreasing or the like. On the other hand, wires made of stainless steel or nickel-based alloys themselves have good corrosion resistance, so there is no need for copper plating like carbon steel wires.
It will be commercialized as a bare wire. Therefore, surface scratches created during wire drawing remain on the surface of the product wire, resulting in higher surface roughness than copper-plated wire. Therefore, the feeding resistance of wires made of stainless steel or nickel-based alloys is larger than that of copper-plated wires, and if the lubricating oil on the surface is removed to prevent the occurrence of pore defects, the feeding resistance will be higher than that of copper-plated wires. It tends to be larger than a fixed wire. In particular, twisted wires are made by twisting multiple strands of wire together as mentioned above, so they have poor straightness compared to normal solid wires, and furthermore, by being twisted, spiral grooves are formed on the surface. Therefore, the connection resistance becomes even larger. In addition, as the wire feeding speed is increased to meet the recent demand for improved welding efficiency, the feeding resistance increases at an accelerating rate, which not only reduces the straightness of the stranded wire but also causes damage to the feeding line. In some cases, the wire may buckle and become unable to feed. Under these circumstances, the present invention is aimed at a welding twisted wire made by twisting a plurality of wires made of stainless steel or nickel-based alloy, and which provides excellent wire feeding even when the wire feeding speed is increased. The present invention aims to provide a twisted wire that not only ensures feedability and straightness, but also allows a sound welded joint free of pore defects and the like to be obtained. [Means for Solving the Problems] The present invention provides a welding twisted wire made by twisting a plurality of wires made of stainless steel or nickel-based alloy, the wire having a tensile strength of 90 to 190.
Kg・f/mm 2 , and the diameter (d) of the wires to be twisted
The gist lies in that the twisted pitch (pt) satisfies the relationship [15d≦pt≦45d] and that the amount of lubricant deposited is suppressed to 20 ppm or less. [Function] The chemical composition of the strands constituting the twisted wire according to the present invention is TIG of stainless steel or nickel-based alloy.
It is not different from solid wire used for welding, MIG welding, etc., and stainless steel is JIS Z.
3321 and AWS A5.9, and nickel-based alloys refer to nickel and nickel alloys as specified in AWS A5.14. All recognized stainless steels and nickel-based alloys in the art can be used in the present invention. On the other hand, the cross-sectional shape of the twisted wires made of metal as described above is not essentially the same as the cross-sectional shape of the twisted wires made of carbon steel, etc.
As shown in Figures A to C, the strands 1a have approximately the same cross-sectional shape,
1b,... in the cross section, each strand 1a, 1
The wires are bundled and twisted so that the lines connecting the centers P of b, ... form a regular polygon, and during welding, the arc is evenly distributed in the circumferential direction around the axis O of the twisted wires. It is designed to expand. Figure 2 A~
C is a cross-sectional view showing a twisted wire according to the present invention, in which a core wire 10 is arranged in the center, and a line connecting the centers P of a plurality of wires 1a, 1b, . They are bundled and twisted around the core wire 10 to form a polygon. FIG. 3 is a partial side view of the above-mentioned twisted wire, and the twisted pitch (pt) refers to the pitch of the twisted spiral of the wires 1a, 1b, . . . to be twisted. When applying such twisted wires to automatic welding equipment such as TIG welding and MIG welding, the most important issues are the straightness and feeding stability of the wires. However, as mentioned above, the twisted wire is made by twisting the thin metal wires 1a, 1b, . It also has the disadvantage of being prone to buckling when it encounters resistance, and has poor straightness and feedability compared to ordinary solid wire. In particular, when using uncopper-plated strands such as stainless steel or nickel-based alloys, the feeding resistance becomes even greater due to the high surface roughness of the strands as described above, resulting in poor straightness and feeding. Feedability deteriorates further. On the other hand, lubricating oil used in the wire drawing process and twisting process to obtain strands has the effect of improving the slippage on the surface of the twisted wire and increasing feedability, but on the other hand, it burns or decomposes due to welding heat. This causes gasification and causes pore defects such as blowholes. Therefore, in order to obtain a sound welded joint free of pore defects, it is necessary to minimize the amount of lubricant deposited. By the way, Figure 4 shows
Y308 series (JIS Z 3321) wire (diameter 0.53mm)
The subject is a twisted wire (diameter 1.6 mm) made by bundling and twisting seven wires to have the cross-sectional shape shown in Figure 2A.
This figure shows the results of an experiment investigating the influence of the amount of lubricating oil (oil) on the number of blowholes. However, the experimental conditions were as follows, and the number of blowholes generated in a bead with a length of 250 mm was determined by the naked eye. <Welding conditions> Welding current: 250A, DC-RP Welding voltage: 28V Welding speed: 30cm/min Shielding gas: Ar + 2% O 2 , 25/min As is clear from Figure 4, sound welding with no porosity defects. In order to secure the metal, the amount of lubricant attached must be kept below 20ppm. However, in the case of twisted wires made of wires made of stainless steel or nickel-based alloys, if the amount of lubricant deposited is kept to such a low level, straightness and feedability will deteriorate significantly due to the reasons mentioned above. The original characteristics of the twisted wire cannot be fully utilized. Therefore, we conducted various studies to improve the feeding and straightness of twisted wires, and found that the twisting pitch (pt) could be adjusted appropriately to meet the above conditions according to the diameter (d) of the strands. For example, reduce the amount of lubricant
It has been found that even when the amount is kept below 20 ppm, straightness and feedability can be improved to a satisfactory degree. By the way, Figure 5 shows the wire feed when the twisted wire shown in Figure 2A was made using seven Y308 wires with a diameter of 0.53 mm, and the twisted pitch (pt) was varied. This shows the supply resistance. The diameter of the twisted wire is 1.6 mm, the tensile strength is 110 to 120 Kg・f/mm 2 , and the amount of lubricating oil is 6
~10 ppm, and the feeding resistance was measured by the following method. <Method for Measuring Feeding Resistance> As schematically shown in FIG. is 3000 mm, and a feeding path with 150 mm radius bends is formed at three locations along the way.
The load applied to the wire feeding motor when each twisted wire was fed from the wire reel 2 was measured as the feeding resistance. As is clear from Figure 5, feeding resistance can be minimized by setting the twisting pitch (pt) within the range of 15d to 45d relative to the diameter (d) of the wires to be twisted. can be kept to a minimum. The reason why the feeding resistance changes significantly depending on the twist pitch can be considered as follows. In other words, if the twist pitch is too large relative to the diameter of the strands, the outer diameter of the stranded wires tends to be uneven, and the intersection angle between the helical direction of the strands to be twisted and the feeding direction becomes large. It is thought that the friction with the inner surface of the conduit cable increases and the feeding resistance increases. On the other hand, if the twisting pitch is too small, the mutual binding force due to twisting will be reduced and the strands will come apart when bent, which will distort the cross-sectional shape of the twisted wire and cause the outer diameter to become uneven. , it is thought that as a result of the decrease in the rigidity of the wire as a whole, the feeding resistance also increases.
In any case, if the twist pitch is set within the range of (15d to 45d) relative to the diameter of the strands, sufficient rigidity is guaranteed for the twisted wires, and sufficient binding force between the strands is ensured. A value that is guaranteed is guaranteed, and feeding resistance can be minimized. Further, as the feeding resistance is reduced, phenomena such as bending or buckling during feeding do not occur, so that the straightness of the twisted wire is improved. If an attempt is made to increase the wire feeding speed in order to improve welding efficiency, the feeding resistance will increase at an accelerated rate in proportion to the wire feeding speed. If the strength of the twisted wires themselves in the axial direction is insufficient, the wires may buckle within the conduit cable, making it impossible to feed them. Therefore, we thought that it was necessary to find out the strength in the axial direction that would not cause buckling even when the feeding resistance became considerably high, so we conducted an experiment and obtained the results shown in FIG. 7. In other words, Fig. 6 shows the values of the tensile strength and wire feeding resistance of the twisted wires extracted from the data of the examples described later, and in order to reduce the feeding resistance, it is necessary to It can be seen that the tensile strength of the material should be 90Kg·f/mm 2 or more. However, if the tensile strength becomes excessive, the flexibility of bending along the feeding path within the conduit cable will decrease, feeding resistance will increase, the wear and tear of the conduit tube will become significant, and furthermore, the wires will be damaged. When twisting, the wires may break, making the twisting operation difficult. Therefore, in order to avoid these problems, the tensile strength of the twisted wire should be increased to 190 kg.
It is necessary to suppress f/ mm2 or less. The tensile strength of the stranded wire is determined by [tensile load of the stranded wire/cross-sectional area of the stranded wire].
This is substantially the same as the tensile strength of the strands. [Example] Example 1 C: 0.04% (weight %: same below), Si: 0.39%,
Mn: 1.50%, Ni: 9.87%, Cr: 19.82%, P:
The target was stainless steel with a chemical composition of 0.021%, S: 0.005%, balance Fe and unavoidable impurities. Various twisted wires having the cross-sectional shape shown in Figure A and having different tensile strength and twisting pitch were prepared, and their performance as welding materials was investigated. The results are shown in Table 1. In Table 1, the feeding resistance of the twisted wires was measured according to the method shown in Fig. 6, and the straightness was measured as shown in Fig. 8 when each wire was fed by the method shown in Fig. 6. A test wire W was made to protrude by 25 mm from the contact tip 6 at the end, and judgment was made based on the magnitude of the deviation width (x) of the tip of the wire W from the feeding center.
【表】
第1表より次の様に考えることができる。
ワイヤNo.1及び3は撚合せワイヤの引張強さが
不足する比較例であり、送給抵抗が大きくしかも
ワイヤの直進性も劣悪でビード形状が極めて悪
い。
ワイヤNo.2は素線の引張強さが大きすぎる比較
例であり、撚合せ工程で素線が断線を起こし撚合
せワイヤの製造自体が困難である。
ワイヤNo.14及び15は撚ピツチが規定範囲を超え
る比較例であり、素線相互の拘束力が不足する為
ワイヤがばらけ易く、送給できなかつた。
ワイヤNo.16及び17は撚ピツチが短過ぎる比較例
であり、No.16では素線の引張強さが低いめである
為撚加工は可能であるが、外径が不均一になり易
く送給抵抗が大きいと共に直進性も悪い。またNo.
17では素線の引張強さが高過ぎる為、小ピツチの
撚加工自体が困難で断線を起こす。
これらに対しワイヤNo.4〜13は本発明の規定要
件を満たす実施例であり、撚加工性が良好である
と共に、溶接時の送給抵抗及び直進性も良好で良
好な溶接ビードが得られている。
尚これらの撚合せワイヤの潤滑油付着量は何れ
も6〜9ppmの範囲であり、溶接ビードにブロー
ホール欠陥は認められなかつた。
実施例 2
実施例1で用いたのと同じ化学成分の素線を使
用し、断面形状の異なる4種の撚合せワイヤ(潤
滑油付着量は何れも6〜9ppm)を作成し夫々の
性能を調べた。結果は第2表に一括して示す通り
であり、何れのワイヤも本発明の規定要件を満た
している為、何れの性能においても良好な結果が
得られている。[Table] From Table 1, we can think of the following. Wires Nos. 1 and 3 are comparative examples in which the tensile strength of the twisted wires is insufficient, the feeding resistance is large, the straightness of the wires is poor, and the bead shape is extremely poor. Wire No. 2 is a comparative example in which the tensile strength of the strands is too high, and the strands break during the twisting process, making it difficult to manufacture the twisted wire itself. Wire Nos. 14 and 15 are comparative examples in which the twist pitch exceeds the specified range, and the wires tend to come apart due to insufficient binding force between the strands, making it impossible to feed them. Wires No. 16 and 17 are comparative examples in which the twist pitch is too short. In No. 16, the tensile strength of the strands is lower, so twisting is possible, but the outer diameter tends to be uneven and feeding is difficult. The resistance is large and the straightness is also poor. Also No.
With 17, the tensile strength of the wire is too high, making it difficult to twist in small pitches and causing wire breakage. On the other hand, wires No. 4 to 13 are examples that meet the specified requirements of the present invention, and have good twisting workability, good feeding resistance and straightness during welding, and a good weld bead can be obtained. ing. The amount of lubricant applied to these twisted wires was in the range of 6 to 9 ppm, and no blowhole defects were observed in the weld beads. Example 2 Using wires with the same chemical composition as those used in Example 1, we created four types of twisted wires with different cross-sectional shapes (each with a lubricating oil adhesion amount of 6 to 9 ppm), and evaluated the performance of each wire. Examined. The results are summarized in Table 2, and since all wires met the specified requirements of the present invention, good results were obtained in all performances.
【表】
実施例 3
本実施例では、素線として上記以外のステンレ
ス鋼又はニツケル基合金を使用し、上記と同様に
して撚合せワイヤとしての性能を調べた。但し撚
合せワイヤの断面形状は第2図Aに示す形状と
し、潤滑油付着量は何れも20ppm以下となる様に
脱脂条件を設定した。素線の化学成分等及び性能
試験結果を第3表に示す。[Table] Example 3 In this example, stainless steel or nickel-based alloy other than those mentioned above was used as the wire, and the performance as a twisted wire was investigated in the same manner as above. However, the cross-sectional shape of the twisted wires was as shown in FIG. 2A, and the degreasing conditions were set so that the amount of lubricant deposited was 20 ppm or less. Table 3 shows the chemical components of the wire and the performance test results.
【表】【table】
【表】【table】
本発明は以上の様に構成されるが、要はステン
レス鋼又はニツケル基合金からなる素線を材料と
する撚合せワイヤにおいて、潤滑油の付着量を制
限すると共に、該ワイヤの引張強さ及び撚合せピ
ツチを厳密に規定することによつて、送給抵抗を
最小限に抑えつつ安定した送給性と優れた直進性
を確保し、気孔欠陥のない極めて健全な溶接金属
を得ることができ、撚合せワイヤの性能を一段高
めることができた。
The present invention is constructed as described above, but the key point is to limit the amount of lubricant applied to the twisted wire made of wires made of stainless steel or nickel-based alloy, and to improve the tensile strength and strength of the wire. By strictly specifying the twisting pitch, it is possible to minimize feeding resistance, ensure stable feeding performance and excellent straightness, and obtain extremely sound weld metal with no porosity defects. , we were able to further improve the performance of the twisted wire.
第1,2図は撚合せワイヤの断面形状を例示す
る説明図、第3図は撚合せワイヤの一部側面図、
第4図は潤滑油の付着量とブローホール数の関係
を示すグラフ、第5図は撚合せピツチと送給抵抗
の関係を示すグラフ、第6図は送給抵抗の測定法
を示す説明図、第7図は引張強さと送給抵抗の関
係を示すグラフ、第8図はワイヤの直進性試験法
を示す説明図である。
1a,1b,……:素線、2……ワイヤリー
ル、3……加圧送給ローラ、4……コンジツトケ
ーブル。
1 and 2 are explanatory diagrams illustrating the cross-sectional shape of the twisted wire, FIG. 3 is a partial side view of the twisted wire,
Figure 4 is a graph showing the relationship between the amount of lubricating oil deposited and the number of blowholes, Figure 5 is a graph showing the relationship between twisting pitch and feeding resistance, and Figure 6 is an explanatory diagram showing the method for measuring feeding resistance. , FIG. 7 is a graph showing the relationship between tensile strength and feeding resistance, and FIG. 8 is an explanatory diagram showing a wire straightness test method. 1a, 1b,...: Element wire, 2... Wire reel, 3... Pressure feeding roller, 4... Conduit cable.
Claims (1)
数本の素線を撚合せてなる溶接用撚合せワイヤに
おいて、該ワイヤの引張強さが90〜190Kg・f/
mmであり、且つ撚合される素線の直径(d)と撚合せ
ピツチ(pt)が次式の関係を満たす他、 15d≦pt≦45d 潤滑油付着量を20ppm以下に抑えてなることを
特徴とする溶接用撚合せワイヤ。[Claims] 1. A welding twisted wire made by twisting a plurality of wires made of stainless steel or nickel-based alloy, the wire having a tensile strength of 90 to 190 Kg·f/
mm, and the diameter (d) of the wires to be twisted and the twisting pitch (pt) satisfy the relationship of the following formula, 15d≦pt≦45d, and the amount of lubricant attached is suppressed to 20ppm or less. Characteristic twisted wire for welding.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28087384A JPS61159295A (en) | 1984-12-29 | 1984-12-29 | Twisted wire for welding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28087384A JPS61159295A (en) | 1984-12-29 | 1984-12-29 | Twisted wire for welding |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61159295A JPS61159295A (en) | 1986-07-18 |
JPH0237829B2 true JPH0237829B2 (en) | 1990-08-27 |
Family
ID=17631139
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28087384A Granted JPS61159295A (en) | 1984-12-29 | 1984-12-29 | Twisted wire for welding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61159295A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0429926U (en) * | 1990-07-04 | 1992-03-10 | ||
JPH0519134U (en) * | 1991-08-23 | 1993-03-09 | 株式会社第一昭和 | Metal can |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101898287B (en) * | 2010-07-22 | 2013-11-27 | 时振 | Manufacture method of large-diameter self-protection multi-strand stranded welding wire |
CN106238950A (en) * | 2016-08-26 | 2016-12-21 | 武汉市润之达石化设备有限公司 | Rustless steel Flos Cannabis pigtail welding material and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51101746A (en) * | 1975-03-05 | 1976-09-08 | Nippon Steel Welding Prod Eng | SOKYUSEIRYOKONAAAKUYOSETSUYO SORITSUDOWAIYA |
JPS52117255A (en) * | 1976-03-29 | 1977-10-01 | Kobe Steel Ltd | Welding wire of consumable electrode |
-
1984
- 1984-12-29 JP JP28087384A patent/JPS61159295A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51101746A (en) * | 1975-03-05 | 1976-09-08 | Nippon Steel Welding Prod Eng | SOKYUSEIRYOKONAAAKUYOSETSUYO SORITSUDOWAIYA |
JPS52117255A (en) * | 1976-03-29 | 1977-10-01 | Kobe Steel Ltd | Welding wire of consumable electrode |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0429926U (en) * | 1990-07-04 | 1992-03-10 | ||
JPH0519134U (en) * | 1991-08-23 | 1993-03-09 | 株式会社第一昭和 | Metal can |
Also Published As
Publication number | Publication date |
---|---|
JPS61159295A (en) | 1986-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0237829B2 (en) | ||
WO1998039138A1 (en) | A wire, a core and a process for electrical arc welding | |
JP3779313B2 (en) | Annular concentric stranded bead cord | |
JPH0237828B2 (en) | YOSETSUYOYORIAWASEWAIYA | |
US1884149A (en) | Welding rod | |
KR20110117919A (en) | Copper-plated flux cored wire for gas shield arc welding and method for preparing the same | |
JPH11197878A (en) | Wire for gas shielded arc welding and its manufacture | |
JPH08197278A (en) | Gas shielded metal-arc welding wire | |
KR20220126779A (en) | Multi-electrode gas shielded arc single-sided welding method and multi-electrode gas shielded arc single-sided welding apparatus | |
US2697771A (en) | Weld rod and method of making | |
JPH07106412B2 (en) | High conductivity copper coated steel trolley wire manufacturing method | |
JP4657186B2 (en) | Solid wire for gas shielded arc welding | |
JP2008043990A (en) | COPPER PLATED SOLID WIRE FOR Ar-CO2 MIXED GAS SHIELDED ARC WELDING | |
US4469395A (en) | Electrical termination comprising a soft aluminum lead and a terminal of hard aluminum alloy butt-welded thereto | |
JP3908532B2 (en) | Aluminum alloy wire for welding | |
JP4467139B2 (en) | Metal flux cored wire for arc welding | |
JP2000256809A (en) | Welding wire and welding method using same | |
JP4263879B2 (en) | Flux-cored wire for welding | |
US20230119577A1 (en) | High alloy welding wire with copper based coating | |
JP2004314127A (en) | Solid wire for arc-welding excellent in feedability and its producing method | |
JPS5856677B2 (en) | Welding wire and its manufacturing method | |
JPH07223087A (en) | Wire for gas shielded metal arc welding excellent in wire feedability and weldability and manufacture thereof | |
JPH01210191A (en) | Flux cored wire for welding | |
JP4062498B2 (en) | Austenitic stainless steel wire for low current, high speed welding | |
JPH05115994A (en) | Wire for welding or thermal spraying |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |