JP4062498B2 - Austenitic stainless steel wire for low current, high speed welding - Google Patents

Austenitic stainless steel wire for low current, high speed welding Download PDF

Info

Publication number
JP4062498B2
JP4062498B2 JP2002212115A JP2002212115A JP4062498B2 JP 4062498 B2 JP4062498 B2 JP 4062498B2 JP 2002212115 A JP2002212115 A JP 2002212115A JP 2002212115 A JP2002212115 A JP 2002212115A JP 4062498 B2 JP4062498 B2 JP 4062498B2
Authority
JP
Japan
Prior art keywords
wire
welding
hardness
ratio
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002212115A
Other languages
Japanese (ja)
Other versions
JP2003103396A (en
Inventor
李在炯
Original Assignee
株式会社キスウェル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社キスウェル filed Critical 株式会社キスウェル
Publication of JP2003103396A publication Critical patent/JP2003103396A/en
Application granted granted Critical
Publication of JP4062498B2 publication Critical patent/JP4062498B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、オーステナイト系ステンレス鋼溶接用ワイヤに関し、さらに詳細には、低電流、高速溶接時にワイヤ送給性およびアークの安定性を向上させ、それによる高品質の溶接品質が獲得できるオーステナイト系ステンレス鋼溶接用ワイヤに関する。
【0002】
【従来の技術】
ステンレス鋼は、鋼にクロムを添加し、耐食性を向上させた一種の合金鋼であり、その組成によってクロム系とクロム−ニッケル系とに大別され、金属組織によってはマルテンサイト系、フェライト系、オーステナイト系、オーステナイト−フェライト系および析出硬化型の5種類に分類される。
【0003】
また、オーステナイト系ステンレス鋼はクロム−ニッケル系であり、その代表例には、最も経済的な組成として知られる18%クロム−8%ニッケルの18−8ステンレス鋼があり、これを改良した各種鋼が開発されている。
【0004】
最近、産業全般に亘って生産性向上のために高速、高能率の溶接が必要となり、したがって、ステンレス鋼の溶接においても薄膜(3mm以下)の低電流、高速溶接における溶接アークの安定性が切実に要求されている状況である。
【0005】
かかる低電流、高速溶接における問題点は、アークの安定性とワイヤの送給性とに大別できるが、アークの安定性がよくない場合にはアークスタートの際に溶接が施されないこともあり、溶接中にアークが切れる可能性もある。
【0006】
特に、自動溶接で前述のような状況が発生すると、グラインディングおよび補修溶接などの追加の後工程が必要となり、製造コストのアップにつながる。また場合によっては、不良品が生産されて製造品質を劣化させる原因となる。しかも、アークの安定性がよくないと、アークの長さの変化および溶接電流の変化が大きくなって大粒のスパッタを生じてしまい、この場合にはスパッタ除去作業およびスパッタの飛散りによる火災の危険性を伴う。
【0007】
かかるアークの安定性を改善するために製鋼工程で種々の微量元素を添加する方法もあるが、高速溶接における送給性を確保しないと、前記元素の添加だけでは安定した溶接アークの確保が難しいという短所がある。
【0008】
一方、ワイヤの送給性がよくないと、高速溶接時にワイヤの送給が不良になるため、溶接ケーブルを通過することが困難であり、アークが切れる現象が引き起こされる恐れもある。アークが切れる現象は、ワイヤの送給を不安定にし、アークの長さを変化させ、母材と溶加材との電子移動は不安定になる。かかる不安定な電子の移動は、高速溶接による溶融池の速い移動とともに、アークの切れおよび溶接ビードの不連続点を誘起する主な原因となる。
【0009】
一方、従来ではワイヤの送給性を改善するためにワイヤの表面に潤滑油を塗布する方法(日本国特許第2682814号、日本国特許公開平11−147174号、日本国特許公開2000−94178号など)と表面の形状を均一にする方法(韓国特許第134857号など)などがあるが、このようなワイヤの表面の管理だけでは溶接ケーブルの長さが長い場合や、捩じれている場合、送給負荷を多く受けることになり、ワイヤが捩じれたり、屈折したりして送給不良が起こる恐れがある。
【0010】
【発明が解決しようとする課題】
本発明は、前記問題点に鑑みてなされたものであり、オーステナイト系ステンレス鋼の低電流、高速溶接の際、アークの安定性を向上させることによって,高品質の溶接品質が獲得できるオーステナイト系ステンレス鋼溶接用ワイヤを提供することにその目的がある。
【0011】
【課題を解決するための手段】
前記課題を解決するために、本発明は、オーステナイト系ステンレス鋼溶接用ワイヤの断面上の中心部と表面の硬度差および長手方向の硬度差を調節して送給性を改善し、且つ前記ワイヤに含有される微量元素を一定範囲に調節することにより、高い溶接品質を獲得可能なオーステナイト系ステンレス鋼溶接用ワイヤを提供することにその目的がある。
【0012】
すなわち、本発明によるオーステナイト系ステンレス鋼溶接用ワイヤは、溶接速度30〜70CPM(cm/分)の低電流短絡移行(short circuiting transfer)溶接条件で優れたアークの安定性を表すオーステナイト系ステンレス鋼溶接用ワイヤとして、Hv1硬度計(Vickers hardness tester、以下、 Hv1と称する)を基準として前記ワイヤの断面上の中心部と表面との硬度差が18以下であり、前記ワイヤの長手方向に対して任意の200mm間隔に測定した硬度差が15以下であり、前記ワイヤに含有された微量元素(Si+P+S+N)/Mnの値が0.19〜0.62であることを特徴とする。
【0013】
【発明の実施の形態】
以下、添付の図面を参照しつつ、本発明を詳細に説明する。
本出願は2000年6月28日付にて出願された韓国特許出願第2000−36126号(これに対応する日本国特許出願第2001−189298号)と関連しており、該出願は本明細書で完全に開示されたと同様に本明細書の一部として参照される。
【0014】
また、本出願の明細書および特許請求の範囲中に言及されるワイヤとは、MIG溶接用オーステナイト系ステンレス鋼溶接用ソリッドワイヤを意味し、任意の区間という用語は、ワイヤ全部分の中で0.1秒間溶接される区間を任意的に選択した時、その任意的に選択された区間を意味する。
【0015】
本出願の発明者は、オーステナイト系ステンレス鋼溶接用ワイヤの低電流短絡移行溶接条件で溶接速度を30〜70CPMで溶接するとき、任意の区間で変動係数比(溶接電流の変動係数/溶接電圧の変動係数)の値が0.3〜0.7の範囲に保持されると、アークの安定性が著しく向上するということを見出し、前記条件に合うワイヤを探すために鋭意に研究した結果、Hv1硬度計を基準としてワイヤ断面上の中心部と表面の硬度差が18以下であり、ワイヤの長手方向に対して任意の200mm間隔に測定した硬度差が15以下であり、また、ワイヤに含有された微量元素(Si+P+S+N)/Mnの値が0.19〜0.62である場合はワイヤの送給性およびアーク安定性に優れていることが分かった。
【0016】
まず、本発明者の実験結果に基づき、オーステナイト系ステンレス鋼溶接用ワイヤの低電流短絡移行溶接条件で溶接速度を30〜70CPMに溶接したとき任意の区間で変動係数比、すなわち‘溶接電流の変動係数/溶接電圧の変動係数’値が0.3〜0.7の範囲に保持されるとアークの安定性が向上されるという現象について説明する。
【0017】
まず、図1を参照して短絡移行について説明する。
アーク溶接は、図1に示すように、アークが短絡される短絡区間とアークが保持されるアーク発生区間が続いて繰り返されながら行われる。短絡区間では、溶滴が溶加材から母材に移動される期間で、アークが表れない。しかし、溶滴の移動が終わると、新たにアークが発生して溶加材を溶かし、新規の溶滴を生成する。この過程が繰り返されながらアーク溶接が行われる。
【0018】
一方、変動係数比を0.3〜0.7に限定した理由は次の通りである。
変動係数比が0.7を超えると溶接電圧の変動係数に比べて溶接電流の変動係数が大きくなり、これは、アークの長さに対する溶接電圧の変動が小さすぎるか、または溶接電流の変動が大きすぎるということを意味するが、このような条件では測定の行われた任意の区間で短絡移行が十分になされなかったり、過度の溶接電流の変動で電流の最大値が大きくなり、大粒(1mm以上)のスパッタを生成させることになる。
【0019】
一方、変動係数比が0.3未満であれば、溶接電流の変動係数に比べて溶接電圧の変動係数が大きくなり、これはアーク長さに対する溶接電圧の変動が大きすぎる、あるいは溶接電流の変動が小さすぎること等を意味し、このような条件では測定の行われた任意の区間で短絡移行が多すぎ、正常の短絡でない瞬間短絡(2msec以下)が多発する可能性があり、また、電流の変動が小さすぎるとアーク発生時間を延ばし、これにより十分な短絡がなされないこともあり得るので、変動係数比が0.3未満である場合はアークが安定とは評価できない。
【0020】
従って、本発明者は‘溶接電流の変動係数/溶接電圧の変動係数’と表れる変動係数比を0.3〜0.7の範囲内に限定することをアークの安定性を確保するための条件と設定した。
【0021】
一方、短絡区間でも次アークの順調な発生のために短絡変動係数を所定の範囲内に保持することが重要であるが、短絡区間における短絡変動係数(標準偏差/平均時間)を0.25〜0.6の範囲に保持するとアークの安定性がさらに向上される。その理由は、短絡変動係数が0.25未満であるか、0.6を超えると、次のアーク発生が多少不規則になって順調な短絡移行が進まないからで、この場合は綺麗なビード外観が得難い。
【0022】
従って、本発明者は、低電流短絡移行溶接条件で溶接速度を30〜70CPMに溶接する際、アーク安定性および綺麗な溶接ビードを確保するための、選択的であるがさらに有効な結果が得られる条件として‘標準偏差/平均時間’と表れる短絡区間における短絡変動係数を0.25〜0.6以内に保持することにした。
【0023】
前述のように、低電流高速溶接のためのオーステナイト系ステンレス鋼溶接用ワイヤのアーク安定性を評価するための客観的基準を設定し、短絡移行溶接条件で変動係数比或いは変動係数比および短絡変動係数のいずれも前記範囲に保持するための手段を鋭意研究した結果、Hv1硬度計を基準とするとき、ワイヤ 断面上の中心部と表面の硬度差が18以下であり、ワイヤの長手方向に対して任意の200mm間隔に測定した硬度差が15以下であり、且つワイヤに含有された微量元素(Si+P+S+N)/Mnの値が0.19〜0.62である場合は、変動係数比或いは変動係数比および短絡変動係数のいずれも本発明で提案した範囲に含まれアーク安定性が最も満足的なものと表れた。
【0024】
本発明のワイヤにおいて、Hv1硬度計を基準とするとき、ワイヤ断面上の中心部と表面の硬度差が18以下であり、ワイヤの長手方向に対して任意の200mm間隔に測定した硬度差を15以下に設定した理由は、最終製品線の残留応力分布を均一にしてワイヤの送給性を改善するためであり、これについては2000年6月28日付にて出願された韓国特許出願第2000−36126号(日本国特許出願第2001−189298号)に詳細に開示されており、以下にその要旨だけを説明する。
【0025】
一般に、溶接用ワイヤを含む各種のワイヤは、最初の原線(ROD)から最終製品のワイヤになるまで多様なサイズのダイスを通過し、太径から細径に段階的に減面され、最終製品線に伸線されるようになる。
【0026】
伸線(WIRE DRAWING)工程において、ワイヤの送給性に関わる因子としては、最終製品線を望む線径に引き抜く(伸線)ための減面率に従う伸線スケジュール、ワイヤの引張強度や延伸率の偏差の調整を通じての内部応力の分布、ワイヤの直進性等が有り得る。このうち、ワイヤの内部応力分布の均一性が、ワイヤの送給性において最も重要に考慮されるべき因子である。
【0027】
従来では、ワイヤの送給性の向上のための伸線工程における管理は、単純に太径を細径にする式の減面率のみを考慮する、あるいはワイヤの引張強度や延伸率の偏差の調整を通じての内部応力の分布の均一化を考慮するのが一般的であった。
【0028】
しかし、伸線工程において、ワイヤの延伸(伸線)が重なる度にワイヤの外部、即ち、ダイスと接触される表面部は、中心部に比して組織がもっと緻密になって硬化され、このような硬化が重なる度にワイヤの延伸は不可能になるのみならず、ワイヤの外部と中心部の残留応力の分布はもっと不均一になる。従って、従来の単純な減面率による伸線スケジュールの調整と伸線線の引張強度の管理として、最終製品線における外部と内部との残留応力の分布を均一にするには限界がある。
【0029】
また、連続されるワイヤの伸線に従うワイヤ表面の硬化は、ワイヤと接触するダイスの摩耗を誘発させ、伸線線の表面に損傷を加えることになり、最終製品線の品質によくない影響を及ぼし、結果的には、溶接時、円滑なワイヤの送給を妨害することになる。
【0030】
かかる表面が硬化されたワイヤとダイスとの接触に従うダイスの摩耗は、ワイヤとの接触面積を不均一にする原因になり、このため、最終製品線の長手方向への残留応力の分布も不均一になる。
【0031】
そこで、本発明者は、伸線工程におけるワイヤ断面の硬度偏差とワイヤ長手方向の硬度偏差の調整を通じてワイヤ内部応力の分布を均一にし、ワイヤ送給性の向上を図った。
【0032】
一方、ワイヤ内部応力の分布を均一化する方法は、図2に示すように、ワイヤがダイスを通過するとき実際に減面される接触部位を減面接触部20およびその面積を減面接触面積といい、ワイヤの線径が矯正される接触部位を矯正接触部200およびその面積を矯正接触面積という時、前記減面接触面積と矯正接触面積を合計した面積を管理することによって達成できる。
【0033】
前記減面接触面積と矯正接触面積については図2を参照して詳述する。
ワイヤ(W)とダイス(D)との接触面積を決定するのは、大きく、i)ワイヤ(W)の実際的な減面が行われるダイス(D)とワイヤ(W)との接触面積と、ii)ワイヤの直進性及びワイヤの直進性に従うワイヤ(W)とベアリング部(200)との接触面積である。前記ベアリング部(200)でワイヤの線径は矯正され、直進性が向上される。
【0034】
先ず、前者の場合を察してみると、ワイヤ(W)が実際的に減面される部位(減面接触部)の接触面積が少なすぎる場合には、ワイヤの(円形)断面上の内部(中心部)と外部(表面)との残留応力の差が大きくなり、ワイヤの一側外部と他側外部との硬度差が大きくなって、溶接時、ワイヤが送給ローラーを通過する時受けられる連続的な局部荷重に耐えられず、ワイヤが捩じれてチップ先断の揺れを招くようになって、アーク不安定の原因になり得る。
【0035】
また、接触面積が多すぎる場合には、局部的な加工硬化現象によりワイヤの表面品質に悪い影響を及ぼすようになり、酷い場合には、ワイヤの内部(中心部)と外部との応力の偏差が大きくなって伸線が不可能にもなり得る。
【0036】
次に、後者の場合を察してみると、伸線されるワイヤ(W)とベアリング部(200)との接触面積が少なすぎる場合には、ワイヤ(W)の長手方向への内部応力の偏差が大きくなってワイヤの送給は円滑にならず、これはワイヤが送給ローラーを通過する時受けられる連続的且つ局部的な荷重をワイヤが耐えられず、捻れるか縺れて送給ローラーから離脱する原因になるか、ワイヤ(W)の直進性が足りなくなって溶接時に送給ローラーの通過後、又はケーブル通過後ワイヤが変形されやすく、これはワイヤがコンタクトチップを通過した後にも、直進性を有することが出来ないことによって、溶接欠陥(蛇行ビード)を招く。
【0037】
従来では、かかる内部応力の偏差を管理する方法として、安定した減面率による製品線の引張強度や延伸率の偏差を管理したが、かかる方法では、製品線の微細な内部応力、即ちワイヤが送給時に荷重を受けられる外部表面の応力と、かかる表面からの荷重を伝達されるワイヤ中心部の応力を管理するには限界がある。
【0038】
そこで、本発明者は、図2に示すように、ワイヤがダイスを通過するとき実際に減面される接触部位を減面接触部20およびその面積を減面接触面積といい、ワイヤの線径が矯正される接触部位を矯正接触部200およびその面積を矯正接触面積といい、前記減面接触面積と矯正接触面積とを合計した面積を管理することによって内部応力の分布を均一化になるのを見出した。
【0039】
次いで、変動係数比を前記範囲内に保持するための一環として溶接用ワイヤに含有されている構成成分が変動係数比に及ぼす影響を考慮した。これにより、微量添加されるがアークの安定性またはオーステナイトの安定化に影響するMn、Si、S、N、およびPの含量について集中的に研究した結果、(Si+P+S+N)/Mnの値が0.19〜0.62の範囲内にある時、前記変動係数比範囲を容易に保持し得ることが分かった。
【0040】
該微量元素の各成分について説明すると次の通りである。
Mnは、溶接金属に対する脱酸効果が得られるものであり、オーステナイト安定化元素として作用する。しかし、該Mnを過量添加すると、耐食性、耐酸化性が劣化し、溶接中にワイヤ先端に形成される表面張力が大きくなって、低電流短絡移行区間で溶滴の移行を妨害し短絡区間を延長させる原因となる。
【0041】
Siは有効な脱酸剤であって、アーク安定剤である。該Siの添加によって耐酸化性は増大され、溶融金属の濡れ性がよくなる効果があるが、過量添加すると溶接凝固割れを発生させる原因となる。
【0042】
Sは、MIG溶接の際、ビードの形状を良好にするために、また溶接アークの安定化およびスパッタ量を減少させるために添加する。またMnSを生成させて熱間加工時結晶粒の粗大化を防止する目的として添加するが、過剰添加時にはビード上に形成されるスラグの量を増加させ、低融点の化合物を形成して高温割れを引き起こすため、過剰添加は好ましくない。
【0043】
PとNは、通常、溶接性向上に役に立たない元素であって、過量添加時には 線材製造の際、熱間加工性を害する問題が起こるため、最小の量に調整するのが一般的であるが、本発明では溶接アークの安定化効果のために少量添加することにした。
【0044】
以上のような点を勘案し、本出願の発明者は、ワイヤに含有される前記微量元素(Si+P+S+N)/Mnの値を0.19〜0.62の範囲に設定することにした。
【0045】
以下、本発明で提案した前記範囲内に含まれる発明例と本発明の範囲から外れる比較例に上げて本発明の効果について述べる。
【0046】
下記表1は試験に使用されたオーステナイト系ステンレス鋼用ソリッドワイヤを表し、スパッタ発生量の単位はgである。また、表2には低電流短絡移行溶接条件を表す。
【表1】

Figure 0004062498
【表2】
Figure 0004062498
【0047】
表1のワイヤはAWS ER309規格を基本として微量元素の組成を少しずつ変化させたものであり、ワイヤの減面は5.5mm→1.2mmであった。
【0048】
表1の送給性試験は、2ターン形態にし、伸線工程は、1次伸線→熱処理→2次伸線→熱処理→3次伸線(最終伸線)の順番に行い、最終伸線段階は、伸線(引き抜き)を2段階に分離して遂行し、(最終伸線工程での)各伸線段階における接触面積比を変更し、各々のワイヤに対し、ビッカース硬度試験器(Vickers hardness tester、以下、Hvlと略称する)で硬度を測定した。
【0049】
伸線工程において、熱処理は1次伸線後、及び最終伸線前に行うようにし、1次伸線後の熱処理は、ステンレス鋼の場合には、加工硬化を多く受けるので、継続する伸線のために伸線線の加工硬化を解いてやる熱処理であり、最終伸線前の熱処理は、最終製品線の内部残留応力を最小化して均一化するための熱処理である。
【0050】
これは、ワイヤがダイスを通過する時の応力の緩和も重要であるが、引込み線(引込みワイヤ)の残留応力の分布も重要なためである。
【0051】
また、最終伸線前の熱処理は、1次伸線後、応力がある程度解消されるが、継続する2次伸線により内部の残留応力の分布が不均一であって、良好な送給性を示す程度の残留応力分布を得難いので、最終伸線前の熱処理は重要な工程になる。
【0052】
硬度偏差は、断面硬度偏差の場合、ワイヤの断面中心部と表面の硬度を測定してその差を求め、長手方向の場合、ワイヤの任意の200mm間隔で連続5回硬度を測定してその差を算術平均する(3つの試料の算術平均値)。
【0053】
最終伸線(即ち、3次伸線)における伸線を2段階に分離し、第1の段階は、減面接触比、即ちワイヤとダイスとの接触角の調整を通じて減面接触面積を規制し、第2の段階では矯正接触比、即ち伸線の線径を矯正する段階における矯正接触面積を規制し、ワイヤの断面上の硬度偏差及び長手方向の硬度偏差を減少させ、ワイヤの残留応力の分布を均一にしたものである。
【0054】
即ち、第1の段階ではワイヤとダイスとが接触する角度を小さくし、ワイヤ断面上の硬度偏差を減少させ、溶接時にワイヤの捩じれによるチップ先断の揺れを防止し、第2の段階ではダイスのベアリング長さ、即ちワイヤが矯正されるベアリング部の長手を長くし、ワイヤの長手方向の硬度偏差を減少させ、ワイヤがケーブルを通過する時、折曲するか捩じれることによって生じる溶接欠陥(蛇行ビード)を防止した。前記において、第1の伸線段階でのワイヤとダイスとの接触角の大きさと、第2の段階でのベアリング部の長さに対する接触面積比への寄与程度は、接触面積比が3乃至3.5の範囲内で両者とも約1/3(1乃至1.17)乃至1/2(1.5乃至1.75)であることが要求される。
【0055】
下記表3、表4および表5は、前記表1のワイヤを使用して表2の溶接条件で低電流短絡移行溶接を行いながら各ワイヤに対して任意の13区間における溶接電流、溶接電圧および変動係数比を測定して表したものである。尚、表3は30CPM、表4は50CPM、表5は70CPMの溶接速度である場合を表す。
【0056】
溶接電流、溶接電圧および変動係数比はモニテックコリア社のArcモニタリングWAM−4000D version 1.0を利用して測定した。変動係数比とは‘溶接電流の変動係数/溶接電圧の変動係数’を意味する。また、表1のワイヤを25cm溶接する際、任意の区間における短絡区間平均時間とその標準偏差および短絡変動係数を表した。ここで、短絡変動係数とは‘標準偏差/平均時間’を意味する。そして、前記測定した変動係数比と短絡変動係数が溶接ビードに及ぼした影響を調べるために、溶接アーク開始の後1.5cm以降から測定した溶接部ビード幅に対してn=50基準に標準偏差を求め、その結果も共に表した。一方、表3、表4および表5で、‘電流’項目は溶接電流の変動係数を意味し、‘電圧’項目は溶接電圧の変動係数を意味し、‘平均’項目は平均時間を意味する。
【0057】
【表3】
Figure 0004062498
【表4】
Figure 0004062498
【表5】
Figure 0004062498
【0058】
前記表3、表4および表5をまとめてみると、まず、比較例1〜3で、微量元素は本発明の範囲に含まれるがワイヤの硬度偏差が本発明が提案した範囲を超えるので、送給負荷が大きく表れたし、また変動係数比および短絡変動係数の最小値と最大値の幅が大きく表れた。
【0059】
比較例4〜6では、ワイヤの硬度偏差が本発明で提案した範囲に含まれ、送給負荷は多少低いものと表れたが、微量元素は本発明で提案した範囲から外れており、変動係数比および短絡変動係数の最小値と最大値の幅が比較例1〜3におけるものと同様に大きく表れた。その上、スパッタも発明例に比べて相当多く発生されるものと表れた。
【0060】
一方、比較例7〜9では、ワイヤの硬度偏差や微量元素の含有量とも本発明で提案する範囲から外れ、送給負荷およびスパッタ発生量の評価項目のいずれも良くないと判明された。また、変動係数比および短絡変動係数の最小値と最大値の幅が最も大きいことが分かる。
【0061】
しかし、発明例10〜12では、ワイヤの硬度偏差や微量元素の含有量とも本発明で提案する範囲に含まれているため、送給負荷は低く、スパッタ発生量は少なく、且つ変動係数比および短絡変動係数の最小値と最大値の幅が最も小さいことが分かる。
【0062】
発明例は、ビード幅標準偏差が0.25未満であり、ほぼ一定したビード幅が得られるものと表れたが、比較例はビード幅の標準偏差が0.26以上と一定したビード幅が得難いと表れた。
【0063】
また、溶接時に発生される1mm以上のスパッタの量(表1参照)と送給負荷においても、比較例に比べて変動係数比および短絡変動係数が一定範囲に保持される発明例が少なく発生されることが分かる。
【0064】
かかる結果から、溶接速度30〜70CPMの低電流短絡移行溶接条件で優れたアーク安定性を表すオーステナイト系ステンレス鋼溶接用ワイヤは、Hv1硬度計を基準で前記ワイヤ断面上の中心部と表面の硬度差が18以下であり、前記ワイヤの長手方向に対して任意の20mm間隔に測定した硬度差が15以下であり、ワイヤに含有された微量元素(Si+P+S+N)/Mnの値が0.19〜0.62の範囲に限定されるべきということが分かる。
【0065】
【発明の効果】
前述のように、本発明によれば、低電流短絡移行溶接条件でオーステナイト系ステンレス鋼溶接の際にアークの安定性が向上にあって、良好な溶接ビード形状が得られ、スパッタ発生量も減少され、結果として溶接品質および作業性を向上させられる効果が得られる。
【図面の簡単な説明】
【図1】図1は、低電流短絡移行アーク溶接の短絡周期とその時の電流および電圧の関係を示す。
【図2】図2は、ワイヤがダイスを通過するときの減面接触部と矯正接触部を説明する。[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to an austenitic stainless steel welding wire, and more particularly, an austenitic stainless steel that can improve wire feedability and arc stability during low current, high speed welding, thereby achieving high quality welding quality. The present invention relates to a steel welding wire.
[0002]
[Prior art]
Stainless steel is a kind of alloy steel in which chromium is added to steel to improve corrosion resistance, and is roughly divided into chromium and chromium-nickel depending on the composition, and depending on the metal structure, martensite, ferrite, There are five types: austenitic, austenitic-ferrite, and precipitation hardened.
[0003]
Austenitic stainless steel is chromium-nickel, and typical examples include 18-8 stainless steel of 18% chromium-8% nickel, which is known as the most economical composition. Has been developed.
[0004]
Recently, high-speed and high-efficiency welding is required to improve productivity throughout the industry. Therefore, even in stainless steel welding, the low current of a thin film (3 mm or less) and the stability of the welding arc in high-speed welding are urgently needed. This is the situation that is required.
[0005]
Problems with such low current, high speed welding can be broadly divided into arc stability and wire feedability, but if the arc stability is not good, welding may not be performed at the time of arc start. The arc may break during welding.
[0006]
In particular, when the above-described situation occurs in automatic welding, additional post-processes such as grinding and repair welding are required, leading to an increase in manufacturing cost. Also, in some cases, defective products are produced, which causes the manufacturing quality to deteriorate. Moreover, if the arc stability is not good, changes in the arc length and welding current will increase, resulting in large spatters. In this case, there is a risk of fire due to spatter removal work and spatter scattering. Accompanying sex.
[0007]
In order to improve the stability of the arc, there is a method of adding various trace elements in the steelmaking process, but unless the feedability in high-speed welding is secured, it is difficult to secure a stable welding arc only by adding the elements. There are disadvantages.
[0008]
On the other hand, if the wire feedability is not good, the wire feed becomes poor during high-speed welding, so that it is difficult to pass through the welding cable, and the arc may be cut off. The phenomenon that the arc breaks makes the wire feeding unstable, changes the length of the arc, and makes the electron movement between the base metal and the filler metal unstable. Such unstable electron movement is a major cause of arc breakage and weld bead discontinuities as well as rapid movement of the weld pool by high-speed welding.
[0009]
On the other hand, conventionally, a method of applying lubricating oil to the surface of the wire in order to improve the feedability of the wire (Japanese Patent No. 2668214, Japanese Patent Publication No. 11-147174, Japanese Patent Publication No. 2000-94178). Etc.) and a method of making the surface shape uniform (Korean Patent No. 134857, etc.), but if the length of the welding cable is long or twisted only by controlling the surface of such a wire, A large amount of load will be received, and the wire may be twisted or refracted, resulting in poor feeding.
[0010]
[Problems to be solved by the invention]
The present invention has been made in view of the above problems, and austenitic stainless steel that can obtain high quality welding quality by improving the stability of the arc during the low current and high speed welding of austenitic stainless steel. The purpose is to provide a steel welding wire.
[0011]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention improves the feedability by adjusting the hardness difference between the central part and the surface on the cross section of the austenitic stainless steel welding wire and the hardness difference in the longitudinal direction. The purpose of the present invention is to provide an austenitic stainless steel welding wire capable of obtaining high welding quality by adjusting the trace elements contained in the steel to a certain range.
[0012]
That is, the austenitic stainless steel welding wire according to the present invention has excellent austenitic stainless steel welding that exhibits excellent arc stability under a short circuiting transfer welding condition with a welding speed of 30 to 70 CPM (cm / min). The wire has a hardness difference of 18 or less between the center portion and the surface of the wire on the basis of an Hv1 hardness tester (Vickers hardness tester, hereinafter referred to as Hv1), and is arbitrary with respect to the longitudinal direction of the wire. The hardness difference measured at 200 mm intervals is 15 or less, and the value of the trace element (Si + P + S + N) / Mn contained in the wire is 0.19 to 0.62.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
This application is related to Korean Patent Application No. 2000-36126 (corresponding to Japanese Patent Application No. 2001-189298) filed on June 28, 2000, which is hereby incorporated by reference. Reference is made to the present specification as if fully disclosed.
[0014]
The wire mentioned in the specification and claims of the present application means a solid wire for welding austenitic stainless steel for MIG welding, and the term “arbitrary section” is 0 .When a section to be welded for 1 second is arbitrarily selected, the section is arbitrarily selected.
[0015]
The inventor of the present application, when welding at a welding speed of 30 to 70 CPM under the low current short circuit transfer welding conditions of the austenitic stainless steel welding wire, the coefficient of variation ratio (the coefficient of variation of the welding current / the welding voltage) When the value of the coefficient of variation) is kept in the range of 0.3 to 0.7, it has been found that the stability of the arc is remarkably improved. The hardness difference between the center of the wire cross section and the surface on the basis of the hardness meter is 18 or less, the hardness difference measured at an arbitrary 200 mm interval with respect to the longitudinal direction of the wire is 15 or less, and is contained in the wire. In addition, when the value of the trace element (Si + P + S + N) / Mn is 0.19 to 0.62, it was found that the wire feeding property and the arc stability are excellent.
[0016]
First, based on the experiment results of the present inventors, when the welding speed is welded to 30 to 70 CPM under the low current short circuit transition welding conditions of the austenitic stainless steel welding wire, the coefficient of variation ratio, that is, the fluctuation of the welding current The phenomenon that the stability of the arc is improved when the coefficient / coefficient of variation of the welding voltage 'value is maintained in the range of 0.3 to 0.7 will be described.
[0017]
First, the short circuit transition will be described with reference to FIG.
As shown in FIG. 1, arc welding is performed while a short-circuit section in which the arc is short-circuited and an arc generation section in which the arc is held are repeated successively. In the short circuit section, no arc appears in the period during which the droplets are moved from the filler metal to the base material. However, when the movement of the droplet ends, a new arc is generated to melt the filler material and generate a new droplet. Arc welding is performed while this process is repeated.
[0018]
On the other hand, the reason why the variation coefficient ratio is limited to 0.3 to 0.7 is as follows.
When the variation coefficient ratio exceeds 0.7, the variation coefficient of the welding current becomes larger than the variation coefficient of the welding voltage. This is because the variation of the welding voltage with respect to the arc length is too small or the variation of the welding current is small. This means that it is too large, but under such conditions, the short-circuit transition is not sufficiently performed in any section where the measurement is performed, or the maximum value of the current increases due to excessive fluctuations in the welding current, resulting in large grains (1 mm The above-mentioned spatter is generated.
[0019]
On the other hand, if the variation coefficient ratio is less than 0.3, the variation coefficient of the welding voltage is larger than the variation coefficient of the welding current. This is because the variation of the welding voltage with respect to the arc length is too large or the variation of the welding current. In such a condition, there are too many short-circuit transitions in any section where measurement is performed, and there is a possibility that instantaneous short-circuits (2 msec or less) that are not normal short-circuits occur frequently. If the fluctuation of the arc is too small, the arc generation time is extended, and this may cause insufficient short-circuiting. Therefore, when the fluctuation coefficient ratio is less than 0.3, it cannot be evaluated that the arc is stable.
[0020]
Therefore, the present inventor limited the variation coefficient ratio expressed as 'variation coefficient of welding current / variation coefficient of welding voltage' to a range of 0.3 to 0.7 to ensure the stability of the arc. Was set.
[0021]
On the other hand, it is important to keep the short circuit variation coefficient within a predetermined range for the smooth generation of the next arc even in the short circuit section, but the short circuit variation coefficient (standard deviation / average time) in the short circuit section is 0.25 to 0.25. Holding in the range of 0.6 further improves the arc stability. The reason for this is that if the short-circuit variation coefficient is less than 0.25 or exceeds 0.6, the next arc generation will be somewhat irregular and smooth short-circuit transition will not proceed. Appearance is difficult to obtain.
[0022]
Therefore, the present inventor has obtained a selective but more effective result for ensuring arc stability and a beautiful weld bead when welding at a welding speed of 30 to 70 CPM under low current short circuit transfer welding conditions. The short-circuit variation coefficient in the short-circuit section expressed as “standard deviation / average time” as a condition to be maintained is within 0.25 to 0.6.
[0023]
As described above, objective criteria for evaluating the arc stability of austenitic stainless steel welding wire for low-current, high-speed welding are set, and the coefficient of variation ratio or coefficient of variation ratio and short-circuit variation are measured under short-circuit transfer welding conditions. As a result of diligent research on the means for maintaining both of the coefficients in the above range, when the Hv1 hardness tester is used as a reference, the difference in hardness between the center of the wire cross section and the surface is 18 or less, and the length of the wire When the hardness difference measured at an arbitrary 200 mm interval is 15 or less and the value of trace element (Si + P + S + N) / Mn contained in the wire is 0.19 to 0.62, the coefficient of variation ratio or coefficient of variation Both the ratio and the short circuit variation coefficient were included in the range proposed in the present invention, and the arc stability appeared to be the most satisfactory.
[0024]
In the wire of the present invention, when the Hv1 hardness tester is used as a reference, the hardness difference between the central portion and the surface on the cross section of the wire is 18 or less, and the hardness difference measured at an arbitrary 200 mm interval with respect to the longitudinal direction of the wire is 15 The reason set below is to improve the wire feedability by making the residual stress distribution of the final product line uniform, and this is related to Korean Patent Application No. 2000- filed on June 28, 2000. No. 36126 (Japanese Patent Application No. 2001-189298), and only the gist thereof will be described below.
[0025]
In general, various types of wires, including welding wires, pass through dice of various sizes from the initial original wire (ROD) to the final product wire, and are gradually reduced from a large diameter to a small diameter. Be drawn on the product line.
[0026]
In the wire drawing (WIRE DRAWING) process, factors related to the wire feedability include wire drawing schedule according to the area reduction rate for drawing the final product wire to the desired wire diameter (wire drawing), wire tensile strength and drawing rate. There may be distribution of internal stress through adjustment of the deviation of the wire, straightness of the wire, and the like. Among these, the uniformity of the internal stress distribution of the wire is the most important factor to be considered in the wire feedability.
[0027]
Conventionally, the management in the wire drawing process for improving the wire feedability is considered only by the area reduction rate of the formula that simply changes the large diameter to the small diameter, or the deviation of the tensile strength of the wire and the draw ratio It is common to consider the uniform distribution of internal stress through adjustment.
[0028]
However, in the wire drawing process, every time wire drawing (drawing) overlaps, the outside of the wire, that is, the surface portion that comes into contact with the die is hardened with a more dense structure than the center portion. Not only does such hardening overlap, the wire is not stretched, but the distribution of residual stresses on the exterior and center of the wire becomes more uneven. Therefore, there is a limit in making the distribution of residual stress between the outside and the inside of the final product line uniform as the adjustment of the drawing schedule by the conventional simple area reduction and the management of the tensile strength of the drawing wire.
[0029]
Also, the hardening of the wire surface following continuous wire drawing induces wear on the die that contacts the wire and damages the surface of the wire drawing, which has a negative impact on the quality of the final product line. As a result, smooth welding of the wire is hindered during welding.
[0030]
The wear of the die following the contact between the surface-hardened wire and the die causes the contact area with the wire to be non-uniform, and therefore the distribution of the residual stress in the longitudinal direction of the final product line is also non-uniform become.
[0031]
Accordingly, the present inventor has made the distribution of the internal stress of the wire uniform by adjusting the hardness deviation of the wire cross section and the hardness deviation in the longitudinal direction of the wire in the wire drawing process, thereby improving the wire feedability.
[0032]
On the other hand, as shown in FIG. 2, the method of equalizing the distribution of the internal stress of the wire is a contact area that is actually reduced when the wire passes through the die. When the contact portion where the wire diameter is corrected is referred to as the correction contact portion 200 and the area thereof is referred to as the correction contact area, this can be achieved by managing the total area of the reduced contact area and the correction contact area.
[0033]
The reduced surface contact area and the correction contact area will be described in detail with reference to FIG.
The contact area between the wire (W) and the die (D) is largely determined. I) The contact area between the die (D) and the wire (W) where the actual surface reduction of the wire (W) is performed. Ii) The straight area of the wire and the contact area between the wire (W) and the bearing part (200) according to the straight line of the wire. The diameter of the wire is corrected by the bearing portion (200), and straightness is improved.
[0034]
First, when considering the former case, if the contact area of the portion where the wire (W) is actually reduced (reduction contact portion) is too small, the inside of the (circular) cross section of the wire ( The difference in residual stress between the center) and the outside (surface) increases, and the difference in hardness between the outside of one side of the wire and the outside of the other side increases, so that it can be received when the wire passes the feed roller during welding. Inability to withstand a continuous local load, the wire is twisted, leading to tip tip swinging, which can cause arc instability.
[0035]
If the contact area is too large, local work hardening phenomenon will adversely affect the surface quality of the wire, and if severe, the stress deviation between the inside (center) of the wire and the outside The wire becomes large and drawing may be impossible.
[0036]
Next, considering the latter case, when the contact area between the drawn wire (W) and the bearing portion (200) is too small, the deviation of the internal stress in the longitudinal direction of the wire (W). And the wire feeding is not smooth, which means that the wire cannot withstand the continuous and local load that is received when the wire passes through the feeding roller, and is twisted or twisted from the feeding roller. The wire (W) may become detached or the straightness of the wire (W) may be insufficient, and the wire is likely to be deformed after passing through the feed roller during welding or after passing through the cable, even after the wire passes through the contact tip. Inability to have the property causes welding defects (meandering beads).
[0037]
Conventionally, as a method for managing the deviation of the internal stress, the deviation of the tensile strength and the drawing rate of the product line due to the stable reduction in area was managed. There is a limit to managing the stress on the external surface that receives a load during feeding and the stress in the center of the wire that transmits the load from the surface.
[0038]
Therefore, as shown in FIG. 2, the present inventor referred to the contact area that is actually reduced when the wire passes through the die as the reduced surface contact portion 20 and the area thereof as the reduced surface contact area, and the wire diameter of the wire. The contact portion where the contact is corrected is called the correction contact portion 200 and the area thereof is called the correction contact area, and the distribution of internal stress is made uniform by managing the total area of the reduced contact area and the correction contact area. I found.
[0039]
Next, the influence of the components contained in the welding wire on the variation coefficient ratio was considered as part of maintaining the variation coefficient ratio within the above range. As a result of intensive studies on the contents of Mn, Si, S, N, and P, which are added in a small amount but affect the stability of the arc or the stability of austenite, the value of (Si + P + S + N) / Mn is 0. It was found that the variation coefficient ratio range can be easily maintained when it is within the range of 19 to 0.62.
[0040]
Each component of the trace element will be described as follows.
Mn has a deoxidizing effect on the weld metal and acts as an austenite stabilizing element. However, if Mn is added in an excessive amount, the corrosion resistance and oxidation resistance deteriorate, the surface tension formed at the wire tip during welding increases, and the transition of the droplets is hindered in the low current short circuit transition section. Causes extension.
[0041]
Si is an effective deoxidizer and an arc stabilizer. The addition of Si increases the oxidation resistance and has the effect of improving the wettability of the molten metal, but if added in excess, it causes weld solidification cracking.
[0042]
S is added to improve the bead shape during MIG welding and to stabilize the welding arc and reduce the amount of spatter. It is also added for the purpose of preventing MnS formation and preventing grain coarsening during hot working, but when added excessively, the amount of slag formed on the bead is increased to form a low-melting compound to form hot cracks. Excessive addition is not preferable.
[0043]
P and N are usually elements that are not useful for improving weldability. When excessive amounts are added, there is a problem of hot workability during wire production. Therefore, P and N are generally adjusted to the minimum amount. In the present invention, a small amount is added to stabilize the welding arc.
[0044]
Considering the above points, the inventors of the present application decided to set the value of the trace element (Si + P + S + N) / Mn contained in the wire in a range of 0.19 to 0.62.
[0045]
The effects of the present invention will be described below with reference to invention examples included in the above-mentioned range proposed by the present invention and comparative examples outside the scope of the present invention.
[0046]
Table 1 below shows the solid wire for austenitic stainless steel used in the test, and the unit of spatter generation is g. Table 2 shows the low current short circuit transfer welding conditions.
[Table 1]
Figure 0004062498
[Table 2]
Figure 0004062498
[0047]
The wires in Table 1 were obtained by gradually changing the composition of trace elements based on the AWS ER309 standard, and the surface area of the wire was 5.5 mm → 1.2 mm.
[0048]
The feedability test shown in Table 1 is performed in two turns, and the wire drawing process is performed in the order of primary wire drawing → heat treatment → secondary wire drawing → heat treatment → third wire drawing (final wire drawing). The stage is performed by separating the drawing (drawing) into two stages, changing the contact area ratio in each drawing stage (in the final drawing process), and for each wire, Vickers hardness tester (Vickers Hardness was measured with a hardness tester (hereinafter abbreviated as Hvl).
[0049]
In the wire drawing process, the heat treatment is performed after the primary wire drawing and before the final wire drawing, and the heat treatment after the primary wire drawing is subjected to a lot of work hardening in the case of stainless steel. Therefore, the heat treatment before the final wire drawing is a heat treatment for minimizing and uniforming the internal residual stress of the final product wire.
[0050]
This is because the stress relaxation when the wire passes through the die is important, but the distribution of the residual stress of the lead-in wire (the lead-in wire) is also important.
[0051]
In addition, the heat treatment before the final wire drawing is relieved to some extent after the primary wire drawing, but the distribution of the residual stress inside is not uniform due to the continuous secondary wire drawing, resulting in good feedability. Since it is difficult to obtain a residual stress distribution as shown, the heat treatment before final drawing is an important process.
[0052]
In the case of cross-sectional hardness deviation, the hardness deviation is obtained by measuring the hardness of the cross-sectional center and the surface of the wire to obtain the difference. In the longitudinal direction, the hardness is measured five times continuously at an arbitrary 200 mm interval of the wire. Is arithmetically averaged (arithmetic average of three samples).
[0053]
The wire drawing in the final wire drawing (ie, tertiary wire drawing) is separated into two steps, and the first step regulates the surface reduction contact area through adjustment of the surface reduction contact ratio, ie, the contact angle between the wire and the die. In the second stage, the correction contact ratio, that is, the correction contact area in the stage of correcting the wire diameter is regulated, the hardness deviation in the cross section of the wire and the hardness deviation in the longitudinal direction are reduced, and the residual stress of the wire is reduced. The distribution is uniform.
[0054]
That is, in the first stage, the angle at which the wire and the die contact each other is reduced, the hardness deviation on the wire cross section is reduced, and the tip tip swing due to the twisting of the wire during welding is prevented. The length of the bearing part where the wire is straightened, reduce the hardness deviation in the longitudinal direction of the wire, and weld defects caused by bending or twisting as the wire passes through the cable ( (Meandering bead) was prevented. In the above description, the contact area ratio is 3 to 3 in terms of the degree of contact angle ratio between the wire and the die in the first wire drawing stage and the length of the bearing portion in the second stage. Both are required to be about 1/3 (1 to 1.17) to 1/2 (1.5 to 1.75) within the range of .5.
[0055]
Tables 3, 4 and 5 below show welding currents, welding voltages and welding voltages in arbitrary 13 sections for each wire while performing low-current short-circuit transition welding using the wires in Table 1 under the welding conditions in Table 2. The coefficient of variation ratio is measured and expressed. Table 3 shows a welding speed of 30 CPM, Table 4 shows a welding speed of 50 CPM, and Table 5 shows a welding speed of 70 CPM.
[0056]
Welding current, welding voltage, and coefficient of variation ratio were measured by using Arc Monitoring WAM-4000D version 1.0 of Monitek Korea. The variation coefficient ratio means 'the variation coefficient of the welding current / the variation coefficient of the welding voltage'. Moreover, when welding the wire of Table 1 25cm, the short circuit area average time in the arbitrary area, its standard deviation, and the short circuit variation coefficient were represented. Here, the short circuit variation coefficient means “standard deviation / average time”. In order to examine the influence of the measured coefficient of variation ratio and the short circuit coefficient of variation on the weld bead, the standard deviation based on n = 50 with respect to the weld bead width measured from 1.5 cm after the start of the welding arc. And the results are shown together. On the other hand, in Table 3, Table 4 and Table 5, the “current” item means the coefficient of variation of the welding current, the “voltage” item means the coefficient of variation of the welding voltage, and the “average” item means the average time. .
[0057]
[Table 3]
Figure 0004062498
[Table 4]
Figure 0004062498
[Table 5]
Figure 0004062498
[0058]
When Table 3, Table 4 and Table 5 are summarized, first, in Comparative Examples 1 to 3, since trace elements are included in the scope of the present invention, the hardness deviation of the wire exceeds the range proposed by the present invention. The feeding load appeared greatly, and the range of the minimum and maximum values of the coefficient of variation ratio and short circuit coefficient of variation appeared.
[0059]
In Comparative Examples 4 to 6, the hardness deviation of the wire was included in the range proposed in the present invention, and the feeding load appeared to be somewhat low, but the trace elements were outside the range proposed in the present invention, and the coefficient of variation The width of the minimum value and the maximum value of the ratio and the short-circuit variation coefficient appeared greatly as in Comparative Examples 1 to 3. In addition, it was found that spatter was generated much more than the invention example.
[0060]
On the other hand, in Comparative Examples 7 to 9, neither the hardness deviation of the wire nor the content of trace elements deviated from the range proposed in the present invention, and it was proved that neither the evaluation item of the feeding load nor the amount of spatter generation was good. It can also be seen that the range of the minimum value and the maximum value of the coefficient of variation ratio and the short circuit coefficient of variation is the largest.
[0061]
However, in Invention Examples 10 to 12, since the hardness deviation of the wire and the content of trace elements are included in the range proposed in the present invention, the feeding load is low, the amount of spatter generation is small, and the variation coefficient ratio and It can be seen that the minimum value and the maximum value of the short circuit variation coefficient are the smallest.
[0062]
The invention example showed that the bead width standard deviation was less than 0.25, and that a substantially constant bead width was obtained, but the comparative example was difficult to obtain a constant bead width with a standard deviation of the bead width of 0.26 or more. Appeared.
[0063]
Also, in the amount of spatter of 1 mm or more generated during welding (see Table 1) and the feeding load, the invention example in which the variation coefficient ratio and the short circuit variation coefficient are kept within a certain range is generated as compared with the comparative example. I understand that
[0064]
From these results, the austenitic stainless steel welding wire exhibiting excellent arc stability under low-current short-circuit transfer welding conditions with a welding speed of 30 to 70 CPM, the hardness of the center and surface on the wire cross section on the basis of the Hv1 hardness meter The difference is 18 or less, the hardness difference measured at an arbitrary 20 mm interval with respect to the longitudinal direction of the wire is 15 or less, and the value of the trace element (Si + P + S + N) / Mn contained in the wire is 0.19 to 0 It can be seen that it should be limited to a range of .62.
[0065]
【The invention's effect】
As described above, according to the present invention, the stability of the arc is improved when welding austenitic stainless steel under low current short circuit transfer welding conditions, a good weld bead shape is obtained, and the amount of spatter generated is also reduced. As a result, an effect of improving the welding quality and workability can be obtained.
[Brief description of the drawings]
FIG. 1 shows the relationship between the short-circuit period of low-current short-circuit transfer arc welding and the current and voltage at that time.
FIG. 2 illustrates the reduced surface contact portion and the straightening contact portion as the wire passes through the die.

Claims (1)

ワイヤに含有される微量元素(Si+P+S+N)/Mnの値が0.19〜0.62であり、Hv1硬度計を基準として該ワイヤの断面上の中心部と表面の硬度差が18以下であり、該ワイヤの長手方向に対し任意の200mm間隔に測定した硬度差が15以下である、溶接速度30から70CPMの低電流短絡移行溶接条件で優れたアーク安定性を表すオ−ステナイト系ステンレス鋼溶接用ワイヤであって、前記ワイヤの断面と中心部と表面の硬度差および前記ワイヤの長手方向の硬度差は,下記の式に定義される接触面積比を3ないし3.5の範囲に特定することによって調整することを特徴とするオーステナイト系ステンレス鋼溶接用ワイヤ。
接触面積比=減面接触比+矯正接触比
ただし,減面接触比=減面接触面積/引込線断面積
矯正接触比=矯正接触面積/引出線断面積
The value of the trace element (Si + P + S + N) / Mn contained in the wire is 0.19 to 0.62, and the hardness difference between the central portion and the surface on the cross section of the wire is 18 or less based on the Hv1 hardness meter, For austenitic stainless steel welding exhibiting excellent arc stability under low current short-circuit transition welding conditions with a welding speed of 30 to 70 CPM, wherein the hardness difference measured at an arbitrary 200 mm interval with respect to the longitudinal direction of the wire is 15 or less For the wire, the difference in hardness between the cross section, the center and the surface of the wire and the hardness difference in the longitudinal direction of the wire shall specify a contact area ratio defined by the following formula within a range of 3 to 3.5: An austenitic stainless steel welding wire, characterized by being adjusted by:
Contact area ratio = Area reduction contact ratio + Straightening contact ratio However, area reduction contact ratio = Area reduction contact area / leading wire cross-sectional area Straightening contact ratio = straightening contact area / leading wire cross-sectional area
JP2002212115A 2001-07-26 2002-07-22 Austenitic stainless steel wire for low current, high speed welding Expired - Fee Related JP4062498B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2001-0045238A KR100427544B1 (en) 2001-07-26 2001-07-26 Wire for austenitic stainless steel
KR2001-045238 2001-07-26

Publications (2)

Publication Number Publication Date
JP2003103396A JP2003103396A (en) 2003-04-08
JP4062498B2 true JP4062498B2 (en) 2008-03-19

Family

ID=19712580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002212115A Expired - Fee Related JP4062498B2 (en) 2001-07-26 2002-07-22 Austenitic stainless steel wire for low current, high speed welding

Country Status (3)

Country Link
JP (1) JP4062498B2 (en)
KR (1) KR100427544B1 (en)
CN (1) CN1240514C (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2711130B2 (en) * 1989-04-03 1998-02-10 新日本製鐵株式会社 Gas shielded arc welding wire
JPH11199979A (en) * 1998-01-16 1999-07-27 Nippon Steel Corp High strength extra fine steel wire excellent in fatigue characteristic and its production
KR100359482B1 (en) * 2000-06-28 2002-10-31 고려용접봉 주식회사 Wire for arc-welding and wire drawing method

Also Published As

Publication number Publication date
JP2003103396A (en) 2003-04-08
KR100427544B1 (en) 2004-04-28
CN1400080A (en) 2003-03-05
CN1240514C (en) 2006-02-08
KR20030010335A (en) 2003-02-05

Similar Documents

Publication Publication Date Title
JP3457652B2 (en) Arc welding wire and wire drawing method
WO2018230619A1 (en) Arc welding method and solid wire
KR20030062217A (en) Low carbon high speed metal wire
JP2007098397A (en) Method for manufacturing low yield ratio seam welded steel pipe for line pipe
JP6715622B2 (en) Solid wire
KR20000057813A (en) Solid wire
JP2010131637A (en) Gas shielded arc welding method
JPS62183994A (en) Wire for gas shielded arc welding of stainless steel
JP4062498B2 (en) Austenitic stainless steel wire for low current, high speed welding
JP4657186B2 (en) Solid wire for gas shielded arc welding
WO2006062053A1 (en) Low carbon free-cutting steel
JP6928641B2 (en) Solid wire
JPH05337690A (en) Flux cored wire for submerged arc welding having excellent wear resistance and bead mark resistance
JP6407357B2 (en) Method for manufacturing TIG welded stainless steel pipe, TIG welded stainless steel pipe, and TIG welded stainless steel member
JPH07100687A (en) Wire for arc welding
JP3908532B2 (en) Aluminum alloy wire for welding
JP3182984B2 (en) Manufacturing method of high strength extra fine steel wire
JPH0451274B2 (en)
JP3867000B2 (en) Solid wire for gas shielded arc welding and its original wire
JP2899994B2 (en) Steel wire for gas shielded arc welding with carbon dioxide as the main gas
WO2017209282A1 (en) Method for producing tig welded stainless steel tube, tig welded stainless steel tube, and tig welded stainless member
JPH0237829B2 (en)
JPH0852588A (en) Steel wire for gas shielded arc welding and its production
JP4504115B2 (en) Welding wire for gas shielded arc welding
JPH0938791A (en) Flux cored wire for welding

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20060607

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060612

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070813

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees