JP2003103396A - Wire for low current high-speed welding for austenite- based stainless steel - Google Patents

Wire for low current high-speed welding for austenite- based stainless steel

Info

Publication number
JP2003103396A
JP2003103396A JP2002212115A JP2002212115A JP2003103396A JP 2003103396 A JP2003103396 A JP 2003103396A JP 2002212115 A JP2002212115 A JP 2002212115A JP 2002212115 A JP2002212115 A JP 2002212115A JP 2003103396 A JP2003103396 A JP 2003103396A
Authority
JP
Japan
Prior art keywords
wire
welding
stainless steel
hardness
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002212115A
Other languages
Japanese (ja)
Other versions
JP4062498B2 (en
Inventor
Zaikei Lee
李在炯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KISSWELL KK
Original Assignee
KISSWELL KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KISSWELL KK filed Critical KISSWELL KK
Publication of JP2003103396A publication Critical patent/JP2003103396A/en
Application granted granted Critical
Publication of JP4062498B2 publication Critical patent/JP4062498B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wire for welding austenite-based stainless steel exhibiting excellent arc stability under the welding condition of low current short circuiting transfer of welding speed 30-70 CPM. SOLUTION: By providing the wire for welding the austenite-based stainless steel, wherein on the basis of a Hv 1 hardness tester, the difference between the center part of the wire and the surface part is 18 or less, the difference among the hardness measured at a distance of arbitrary 200 mm in the longitudinal direction of the wire is 15 or less, and the value of a trace element (Si+P +S+N)/Mn is 0.19-0.62, the arc stability is enhanced, and excellent welding quality and welding workability are secured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、オーステナイト系
ステンレス鋼溶接用ワイヤに関し、さらに詳細には、低
電流、高速溶接時にワイヤ送給性およびアークの安定性
を向上させ、それによる高品質の溶接品質が獲得できる
オーステナイト系ステンレス鋼溶接用ワイヤに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an austenitic stainless steel welding wire, and more specifically, it improves wire feedability and arc stability during low current and high speed welding, thereby providing high quality welding. The present invention relates to an austenitic stainless steel welding wire that can achieve quality.

【0002】[0002]

【従来の技術】ステンレス鋼は、鋼にクロムを添加し、
耐食性を向上させた一種の合金鋼であり、その組成によ
ってクロム系とクロム−ニッケル系とに大別され、金属
組織によってはマルテンサイト系、フェライト系、オー
ステナイト系、オーステナイト−フェライト系および析
出硬化型の5種類に分類される。
2. Description of the Related Art Stainless steel is made by adding chromium to steel.
It is a type of alloy steel with improved corrosion resistance and is roughly classified into chromium type and chromium-nickel type depending on its composition, and depending on the metal structure, martensite type, ferrite type, austenite type, austenite-ferrite type and precipitation hardening type. It is classified into 5 types.

【0003】また、オーステナイト系ステンレス鋼はク
ロム−ニッケル系であり、その代表例には、最も経済的
な組成として知られる18%クロム−8%ニッケルの1
8−8ステンレス鋼があり、これを改良した各種鋼が開
発されている。
Austenitic stainless steel is a chromium-nickel system, and a typical example thereof is 18% chromium-8% nickel, which is known as the most economical composition.
There is 8-8 stainless steel, and various types of improved steels have been developed.

【0004】最近、産業全般に亘って生産性向上のため
に高速、高能率の溶接が必要となり、したがって、ステ
ンレス鋼の溶接においても薄膜(3mm以下)の低電
流、高速溶接における溶接アークの安定性が切実に要求
されている状況である。
Recently, high-speed and high-efficiency welding is required to improve productivity throughout the industry. Therefore, even in the welding of stainless steel, the thin-film (3 mm or less) low current and stable welding arc in high-speed welding are required. It is a situation in which sex is urgently required.

【0005】かかる低電流、高速溶接における問題点
は、アークの安定性とワイヤの送給性とに大別できる
が、アークの安定性がよくない場合にはアークスタート
の際に溶接が施されないこともあり、溶接中にアークが
切れる可能性もある。
The problems in the low current and high speed welding can be roughly classified into the stability of the arc and the feedability of the wire, but if the stability of the arc is not good, the welding is not performed at the start of the arc. In some cases, the arc may break during welding.

【0006】特に、自動溶接で前述のような状況が発生
すると、グラインディングおよび補修溶接などの追加の
後工程が必要となり、製造コストのアップにつながる。
また場合によっては、不良品が生産されて製造品質を劣
化させる原因となる。しかも、アークの安定性がよくな
いと、アークの長さの変化および溶接電流の変化が大き
くなって大粒のスパッタを生じてしまい、この場合には
スパッタ除去作業およびスパッタの飛散りによる火災の
危険性を伴う。
In particular, if the above-mentioned situation occurs in automatic welding, additional post-processes such as grinding and repair welding are required, leading to an increase in manufacturing cost.
Further, in some cases, defective products are produced, which causes deterioration of manufacturing quality. Moreover, if the arc stability is not good, the change in arc length and the change in welding current will be large and large spatters will be generated.In this case, there is a risk of fire due to spatter removal work and spatter scattering. With sex.

【0007】かかるアークの安定性を改善するために製
鋼工程で種々の微量元素を添加する方法もあるが、高速
溶接における送給性を確保しないと、前記元素の添加だ
けでは安定した溶接アークの確保が難しいという短所が
ある。
There is also a method of adding various trace elements in the steelmaking process in order to improve the stability of the arc, but if the feedability in high-speed welding is not secured, a stable welding arc can be obtained only by adding the above elements. It is difficult to secure.

【0008】一方、ワイヤの送給性がよくないと、高速
溶接時にワイヤの送給が不良になるため、溶接ケーブル
を通過することが困難であり、アークが切れる現象が引
き起こされる恐れもある。アークが切れる現象は、ワイ
ヤの送給を不安定にし、アークの長さを変化させ、母材
と溶加材との電子移動は不安定になる。かかる不安定な
電子の移動は、高速溶接による溶融池の速い移動ととも
に、アークの切れおよび溶接ビードの不連続点を誘起す
る主な原因となる。
On the other hand, if the wire feeding property is not good, the wire feeding becomes poor during high-speed welding, so that it is difficult to pass through the welding cable, and there is a possibility that the arc may break. The phenomenon that the arc breaks makes the wire feeding unstable, changes the length of the arc, and makes the electron transfer between the base material and the filler material unstable. Such unstable electron movement is the main cause of arc breakage and welding bead discontinuity, together with rapid movement of the molten pool due to high speed welding.

【0009】一方、従来ではワイヤの送給性を改善する
ためにワイヤの表面に潤滑油を塗布する方法(日本国特
許第2682814号、日本国特許公開平11−147
174号、日本国特許公開2000−94178号な
ど)と表面の形状を均一にする方法(韓国特許第134
857号など)などがあるが、このようなワイヤの表面
の管理だけでは溶接ケーブルの長さが長い場合や、捩じ
れている場合、送給負荷を多く受けることになり、ワイ
ヤが捩じれたり、屈折したりして送給不良が起こる恐れ
がある。
On the other hand, conventionally, a method of applying a lubricating oil to the surface of the wire in order to improve the feeding property of the wire (Japanese Patent No. 2682814, Japanese Patent Publication No. 11-147).
174, Japanese Patent Publication No. 2000-94178, etc.) and a method for making the surface shape uniform (Korean Patent No. 134).
No. 857) etc., but if the welding cable length is long or twisted only by controlling the surface of the wire, the wire will be subjected to a large load, and the wire will be twisted or bent. There is a risk that feeding failure will occur.

【0010】[0010]

【発明が解決しようとする課題】本発明は、前記問題点
に鑑みてなされたものであり、オーステナイト系ステン
レス鋼の低電流、高速溶接の際、アークの安定性を向上
させることによって,高品質の溶接品質が獲得できるオ
ーステナイト系ステンレス鋼溶接用ワイヤを提供するこ
とにその目的がある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and improves the arc stability at the time of low current and high speed welding of austenitic stainless steel to obtain high quality. It is an object of the present invention to provide an austenitic stainless steel welding wire capable of obtaining the above welding quality.

【0011】[0011]

【課題を解決するための手段】前記課題を解決するため
に、本発明は、オーステナイト系ステンレス鋼溶接用ワ
イヤの断面上の中心部と表面の硬度差および長手方向の
硬度差を調節して送給性を改善し、且つ前記ワイヤに含
有される微量元素を一定範囲に調節することにより、高
い溶接品質を獲得可能なオーステナイト系ステンレス鋼
溶接用ワイヤを提供することにその目的がある。
In order to solve the above-mentioned problems, the present invention adjusts the hardness difference between the central portion and the surface on the cross section of the austenitic stainless steel welding wire and the hardness difference in the longitudinal direction, and sends the wire. It is an object of the present invention to provide an austenitic stainless steel welding wire capable of obtaining high welding quality by improving the feedability and adjusting the trace elements contained in the wire within a certain range.

【0012】すなわち、本発明によるオーステナイト系
ステンレス鋼溶接用ワイヤは、溶接速度30〜70CP
M(cm/分)の低電流短絡移行(short cir
cuiting transfer)溶接条件で優れた
アークの安定性を表すオーステナイト系ステンレス鋼溶
接用ワイヤとして、Hv1硬度計(Vickersha
rdness tester、以下、 Hv1と称す
る)を基準として前記ワイヤの断面上の中心部と表面と
の硬度差が18以下であり、前記ワイヤの長手方向に対
して任意の200mm間隔に測定した硬度差が15以下
であり、前記ワイヤに含有された微量元素(Si+P+
S+N)/Mnの値が0.19〜0.62であることを
特徴とする。
That is, the austenitic stainless steel welding wire according to the present invention has a welding speed of 30 to 70 CP.
M (cm / min) low current short circuit transition (short cir)
Hv1 hardness tester (Vickerssha) as an austenitic stainless steel welding wire that exhibits excellent arc stability under welding transfer conditions.
rdness tester (hereinafter referred to as Hv1) as a reference, the hardness difference between the central portion and the surface on the cross section of the wire is 18 or less, and the hardness difference measured at an arbitrary 200 mm interval in the longitudinal direction of the wire is 15 or less, a trace element (Si + P +) contained in the wire.
The value of (S + N) / Mn is 0.19 to 0.62.

【0013】[0013]

【発明の実施の形態】以下、添付の図面を参照しつつ、
本発明を詳細に説明する。本出願は2000年6月28
日付にて出願された韓国特許出願第2000−3612
6号(これに対応する日本国特許出願第2001−18
9298号)と関連しており、該出願は本明細書で完全
に開示されたと同様に本明細書の一部として参照され
る。
DETAILED DESCRIPTION OF THE INVENTION Referring to the accompanying drawings,
The present invention will be described in detail. This application is June 28, 2000
Korean Patent Application No. 2000-3612 filed on the date
No. 6 (Japanese Patent Application No. 2001-18 corresponding thereto)
9298), which is hereby incorporated by reference as if fully set forth herein.

【0014】また、本出願の明細書および特許請求の範
囲中に言及されるワイヤとは、MIG溶接用オーステナ
イト系ステンレス鋼溶接用ソリッドワイヤを意味し、任
意の区間という用語は、ワイヤ全部分の中で0.1秒間
溶接される区間を任意的に選択した時、その任意的に選
択された区間を意味する。
The wire referred to in the description and claims of the present application means a solid wire for welding austenitic stainless steel for MIG welding, and the term arbitrary section refers to all parts of the wire. When the section to be welded for 0.1 second is arbitrarily selected, it means the arbitrarily selected section.

【0015】本出願の発明者は、オーステナイト系ステ
ンレス鋼溶接用ワイヤの低電流短絡移行溶接条件で溶接
速度を30〜70CPMで溶接するとき、任意の区間で
変動係数比(溶接電流の変動係数/溶接電圧の変動係
数)の値が0.3〜0.7の範囲に保持されると、アー
クの安定性が著しく向上するということを見出し、前記
条件に合うワイヤを探すために鋭意に研究した結果、H
v1硬度計を基準としてワイヤ断面上の中心部と表面の
硬度差が18以下であり、ワイヤの長手方向に対して任
意の200mm間隔に測定した硬度差が15以下であ
り、また、ワイヤに含有された微量元素(Si+P+S
+N)/Mnの値が0.19〜0.62である場合はワ
イヤの送給性およびアーク安定性に優れていることが分
かった。
The inventor of the present application, when welding at a welding speed of 30 to 70 CPM under a low current short-circuit transfer welding condition for austenitic stainless steel welding wire, the variation coefficient ratio (variation coefficient of welding current / It was found that the arc stability was significantly improved when the value of the variation coefficient of the welding voltage) was kept in the range of 0.3 to 0.7, and the inventors conducted diligent research to find a wire that meets the above conditions. As a result, H
The difference in hardness between the central portion and the surface on the wire cross section is 18 or less based on the v1 hardness tester, and the hardness difference measured at any 200 mm interval in the longitudinal direction of the wire is 15 or less. Trace elements (Si + P + S
It was found that when the value of + N) / Mn is 0.19 to 0.62, the wire feedability and arc stability are excellent.

【0016】まず、本発明者の実験結果に基づき、オー
ステナイト系ステンレス鋼溶接用ワイヤの低電流短絡移
行溶接条件で溶接速度を30〜70CPMに溶接したと
き任意の区間で変動係数比、すなわち‘溶接電流の変動
係数/溶接電圧の変動係数’値が0.3〜0.7の範囲
に保持されるとアークの安定性が向上されるという現象
について説明する。
First, based on the experimental results of the present inventor, when the welding speed was welded to 30 to 70 CPM under the low current short-circuit transfer welding condition of the austenitic stainless steel welding wire, the variation coefficient ratio, ie, 'welding' was obtained. A phenomenon in which the stability of the arc is improved when the value of the coefficient of variation of current / the coefficient of variation of welding voltage 'is maintained in the range of 0.3 to 0.7 will be described.

【0017】まず、図1を参照して短絡移行について説
明する。アーク溶接は、図1に示すように、アークが短
絡される短絡区間とアークが保持されるアーク発生区間
が続いて繰り返されながら行われる。短絡区間では、溶
滴が溶加材から母材に移動される期間で、アークが表れ
ない。しかし、溶滴の移動が終わると、新たにアークが
発生して溶加材を溶かし、新規の溶滴を生成する。この
過程が繰り返されながらアーク溶接が行われる。
First, the transition to a short circuit will be described with reference to FIG. As shown in FIG. 1, arc welding is performed while a short circuit section in which the arc is short-circuited and an arc generation section in which the arc is held are subsequently repeated. In the short circuit section, the arc does not appear during the period in which the droplets are moved from the filler material to the base material. However, when the movement of the droplets ends, a new arc is generated to melt the filler material and generate new droplets. Arc welding is performed while repeating this process.

【0018】一方、変動係数比を0.3〜0.7に限定
した理由は次の通りである。変動係数比が0.7を超え
ると溶接電圧の変動係数に比べて溶接電流の変動係数が
大きくなり、これは、アークの長さに対する溶接電圧の
変動が小さすぎるか、または溶接電流の変動が大きすぎ
るということを意味するが、このような条件では測定の
行われた任意の区間で短絡移行が十分になされなかった
り、過度の溶接電流の変動で電流の最大値が大きくな
り、大粒(1mm以上)のスパッタを生成させることに
なる。
On the other hand, the reason why the variation coefficient ratio is limited to 0.3 to 0.7 is as follows. When the variation coefficient ratio exceeds 0.7, the variation coefficient of the welding current becomes larger than that of the welding voltage, which means that the variation of the welding voltage with respect to the arc length is too small or the variation of the welding current is small. It means that it is too large, but under such conditions, the short circuit transition is not sufficiently performed in any section where the measurement is performed, or the maximum value of the current becomes large due to the excessive fluctuation of the welding current. The above) will generate spatter.

【0019】一方、変動係数比が0.3未満であれば、
溶接電流の変動係数に比べて溶接電圧の変動係数が大き
くなり、これはアーク長さに対する溶接電圧の変動が大
きすぎる、あるいは溶接電流の変動が小さすぎること等
を意味し、このような条件では測定の行われた任意の区
間で短絡移行が多すぎ、正常の短絡でない瞬間短絡(2
msec以下)が多発する可能性があり、また、電流の
変動が小さすぎるとアーク発生時間を延ばし、これによ
り十分な短絡がなされないこともあり得るので、変動係
数比が0.3未満である場合はアークが安定とは評価で
きない。
On the other hand, if the variation coefficient ratio is less than 0.3,
The variation coefficient of the welding voltage is larger than the variation coefficient of the welding current, which means that the variation of the welding voltage with respect to the arc length is too large or the variation of the welding current is too small. Instantaneous short circuit (2)
(msec or less) may occur frequently, and if the fluctuation of the current is too small, the arc generation time may be extended, which may result in insufficient short circuit. Therefore, the fluctuation coefficient ratio is less than 0.3. In this case, the arc cannot be evaluated as stable.

【0020】従って、本発明者は‘溶接電流の変動係数
/溶接電圧の変動係数’と表れる変動係数比を0.3〜
0.7の範囲内に限定することをアークの安定性を確保
するための条件と設定した。
Therefore, the inventor of the present invention sets the variation coefficient ratio expressed as "variation coefficient of welding current / variation coefficient of welding voltage" to 0.3 to.
It was set as a condition for ensuring the stability of the arc that it was limited to the range of 0.7.

【0021】一方、短絡区間でも次アークの順調な発生
のために短絡変動係数を所定の範囲内に保持することが
重要であるが、短絡区間における短絡変動係数(標準偏
差/平均時間)を0.25〜0.6の範囲に保持すると
アークの安定性がさらに向上される。その理由は、短絡
変動係数が0.25未満であるか、0.6を超えると、
次のアーク発生が多少不規則になって順調な短絡移行が
進まないからで、この場合は綺麗なビード外観が得難
い。
On the other hand, it is important to keep the short-circuit variation coefficient within a predetermined range in order to smoothly generate the next arc even in the short-circuit section, but the short-circuit variation coefficient (standard deviation / average time) in the short-circuit section is 0. The stability of the arc is further improved by maintaining it in the range of 0.25 to 0.6. The reason is that if the short circuit variation coefficient is less than 0.25 or exceeds 0.6,
This is because the next arc generation becomes somewhat irregular and the smooth short-circuit transition does not proceed. In this case, it is difficult to obtain a beautiful bead appearance.

【0022】従って、本発明者は、低電流短絡移行溶接
条件で溶接速度を30〜70CPMに溶接する際、アー
ク安定性および綺麗な溶接ビードを確保するための、選
択的であるがさらに有効な結果が得られる条件として
‘標準偏差/平均時間’と表れる短絡区間における短絡
変動係数を0.25〜0.6以内に保持することにし
た。
Therefore, the present inventor is selective but more effective for ensuring arc stability and a clean weld bead when welding at a welding speed of 30 to 70 CPM under low current short circuit transfer welding conditions. As a condition for obtaining the result, the short-circuit variation coefficient in the short-circuit section, which is expressed as “standard deviation / average time”, is kept within 0.25 to 0.6.

【0023】前述のように、低電流高速溶接のためのオ
ーステナイト系ステンレス鋼溶接用ワイヤのアーク安定
性を評価するための客観的基準を設定し、短絡移行溶接
条件で変動係数比或いは変動係数比および短絡変動係数
のいずれも前記範囲に保持するための手段を鋭意研究し
た結果、Hv1硬度計を基準とするとき、ワイヤ 断面
上の中心部と表面の硬度差が18以下であり、ワイヤの
長手方向に対して任意の200mm間隔に測定した硬度
差が15以下であり、且つワイヤに含有された微量元素
(Si+P+S+N)/Mnの値が0.19〜0.62
である場合は、変動係数比或いは変動係数比および短絡
変動係数のいずれも本発明で提案した範囲に含まれアー
ク安定性が最も満足的なものと表れた。
As described above, the objective standard for evaluating the arc stability of the austenitic stainless steel welding wire for low current high speed welding is set, and the variation coefficient ratio or the variation coefficient ratio is set under the short-circuit transfer welding condition. As a result of earnest research on means for keeping both the short-circuit variation coefficient and the short-circuit variation coefficient within the above range, when the Hv1 hardness tester is used as a reference, the hardness difference between the center and the surface on the wire cross section is 18 or less, and the length of the wire is The hardness difference measured at an arbitrary 200 mm interval with respect to the direction is 15 or less, and the value of the trace element (Si + P + S + N) / Mn contained in the wire is 0.19 to 0.62.
In this case, the variation coefficient ratio or the variation coefficient ratio and the short circuit variation coefficient are all included in the range proposed by the present invention, and the arc stability was found to be the most satisfactory.

【0024】本発明のワイヤにおいて、Hv1硬度計を
基準とするとき、ワイヤ断面上の中心部と表面の硬度差
が18以下であり、ワイヤの長手方向に対して任意の2
00mm間隔に測定した硬度差を15以下に設定した理
由は、最終製品線の残留応力分布を均一にしてワイヤの
送給性を改善するためであり、これについては2000
年6月28日付にて出願された韓国特許出願第2000
−36126号(日本国特許出願第2001−1892
98号)に詳細に開示されており、以下にその要旨だけ
を説明する。
In the wire of the present invention, when the Hv1 hardness tester is used as a reference, the hardness difference between the central portion and the surface on the wire cross section is 18 or less, and any 2 in the longitudinal direction of the wire.
The reason why the hardness difference measured at intervals of 00 mm is set to 15 or less is to make the residual stress distribution of the final product line uniform and improve the feedability of the wire.
Korean Patent Application No. 2000 filed on June 28, 2012
-36126 (Japanese Patent Application No. 2001-1892)
98), and only the gist thereof will be described below.

【0025】一般に、溶接用ワイヤを含む各種のワイヤ
は、最初の原線(ROD)から最終製品のワイヤになる
まで多様なサイズのダイスを通過し、太径から細径に段
階的に減面され、最終製品線に伸線されるようになる。
Generally, various kinds of wires including welding wires are passed through dies of various sizes from the first original wire (ROD) to the final product wire, and the surface is gradually reduced from a large diameter to a small diameter. The finished product line is drawn.

【0026】伸線(WIRE DRAWING)工程に
おいて、ワイヤの送給性に関わる因子としては、最終製
品線を望む線径に引き抜く(伸線)ための減面率に従う
伸線スケジュール、ワイヤの引張強度や延伸率の偏差の
調整を通じての内部応力の分布、ワイヤの直進性等が有
り得る。このうち、ワイヤの内部応力分布の均一性が、
ワイヤの送給性において最も重要に考慮されるべき因子
である。
In the wire drawing (WIRE DRAWING) process, as factors relating to the wire feedability, the drawing schedule according to the area reduction rate for drawing the final product wire to the desired wire diameter (wire drawing), and the tensile strength of the wire The distribution of internal stress through adjustment of the deviation of the drawing ratio, the straightness of the wire, and the like are possible. Of these, the uniformity of the internal stress distribution of the wire is
It is the most important factor to consider in the wire feedability.

【0027】従来では、ワイヤの送給性の向上のための
伸線工程における管理は、単純に太径を細径にする式の
減面率のみを考慮する、あるいはワイヤの引張強度や延
伸率の偏差の調整を通じての内部応力の分布の均一化を
考慮するのが一般的であった。
Conventionally, in the wire drawing process for improving the wire feedability, only the area reduction rate of the formula of simply changing the large diameter to the small diameter is taken into consideration, or the tensile strength and the drawing rate of the wire are taken into consideration. It was common to consider the homogenization of the distribution of internal stress through the adjustment of the deviation of.

【0028】しかし、伸線工程において、ワイヤの延伸
(伸線)が重なる度にワイヤの外部、即ち、ダイスと接
触される表面部は、中心部に比して組織がもっと緻密に
なって硬化され、このような硬化が重なる度にワイヤの
延伸は不可能になるのみならず、ワイヤの外部と中心部
の残留応力の分布はもっと不均一になる。従って、従来
の単純な減面率による伸線スケジュールの調整と伸線線
の引張強度の管理として、最終製品線における外部と内
部との残留応力の分布を均一にするには限界がある。
However, in the wire drawing step, every time wire drawing (wire drawing) overlaps, the outside of the wire, that is, the surface contacting with the die, has a denser structure than the center and hardens. However, each time such hardening is overlapped, the wire cannot be stretched, and the distribution of residual stress in the outer portion and the central portion of the wire becomes more uneven. Therefore, in adjusting the drawing schedule and controlling the tensile strength of the drawn wire by the conventional simple reduction of area, there is a limit to making the distribution of residual stress inside and outside the final product wire uniform.

【0029】また、連続されるワイヤの伸線に従うワイ
ヤ表面の硬化は、ワイヤと接触するダイスの摩耗を誘発
させ、伸線線の表面に損傷を加えることになり、最終製
品線の品質によくない影響を及ぼし、結果的には、溶接
時、円滑なワイヤの送給を妨害することになる。
Further, the hardening of the wire surface following the continuous wire drawing induces wear of the die that comes into contact with the wire and damages the surface of the drawn wire, thus improving the quality of the final product wire. It has no effect and, as a result, hinders smooth wire feeding during welding.

【0030】かかる表面が硬化されたワイヤとダイスと
の接触に従うダイスの摩耗は、ワイヤとの接触面積を不
均一にする原因になり、このため、最終製品線の長手方
向への残留応力の分布も不均一になる。
The wear of the die due to the contact between the wire having the hardened surface and the die causes the contact area with the wire to be non-uniform, and therefore the distribution of residual stress in the longitudinal direction of the final product line is caused. Also becomes uneven.

【0031】そこで、本発明者は、伸線工程におけるワ
イヤ断面の硬度偏差とワイヤ長手方向の硬度偏差の調整
を通じてワイヤ内部応力の分布を均一にし、ワイヤ送給
性の向上を図った。
Therefore, the present inventor has attempted to improve the wire feeding property by making the distribution of the stress inside the wire uniform by adjusting the hardness deviation in the wire cross section and the hardness deviation in the wire longitudinal direction in the wire drawing step.

【0032】一方、ワイヤ内部応力の分布を均一化する
方法は、図2に示すように、ワイヤがダイスを通過する
とき実際に減面される接触部位を減面接触部20および
その面積を減面接触面積といい、ワイヤの線径が矯正さ
れる接触部位を矯正接触部200およびその面積を矯正
接触面積という時、前記減面接触面積と矯正接触面積を
合計した面積を管理することによって達成できる。
On the other hand, as shown in FIG. 2, the method of equalizing the distribution of the stress inside the wire reduces the contact area actually reduced when the wire passes through the die by reducing the contact area 20 and the area thereof. When the contact area where the wire diameter is corrected is called the correction contact portion 200 and the area is called the correction contact area, it is achieved by managing the total area of the reduced surface contact area and the correction contact area. it can.

【0033】前記減面接触面積と矯正接触面積について
は図2を参照して詳述する。ワイヤ(W)とダイス
(D)との接触面積を決定するのは、大きく、i)ワイ
ヤ(W)の実際的な減面が行われるダイス(D)とワイ
ヤ(W)との接触面積と、ii)ワイヤの直進性及びワ
イヤの直進性に従うワイヤ(W)とベアリング部(20
0)との接触面積である。前記ベアリング部(200)
でワイヤの線径は矯正され、直進性が向上される。
The reduced surface contact area and the correction contact area will be described in detail with reference to FIG. The contact area between the wire (W) and the die (D) is largely determined by i) the contact area between the die (D) and the wire (W) where the surface reduction of the wire (W) is actually performed. , Ii) The straightness of the wire and the wire (W) and the bearing portion (20) according to the straightness of the wire.
0) is the contact area. The bearing part (200)
The diameter of the wire is corrected by and the straightness is improved.

【0034】先ず、前者の場合を察してみると、ワイヤ
(W)が実際的に減面される部位(減面接触部)の接触
面積が少なすぎる場合には、ワイヤの(円形)断面上の
内部(中心部)と外部(表面)との残留応力の差が大き
くなり、ワイヤの一側外部と他側外部との硬度差が大き
くなって、溶接時、ワイヤが送給ローラーを通過する時
受けられる連続的な局部荷重に耐えられず、ワイヤが捩
じれてチップ先断の揺れを招くようになって、アーク不
安定の原因になり得る。
First, considering the former case, when the contact area of the portion where the wire (W) is actually reduced (reduced contact portion) is too small, on the (circular) cross section of the wire. The difference in residual stress between the inside (center) and the outside (surface) of the wire becomes large, and the hardness difference between the outside of one side of the wire and the outside of the other side becomes large, and the wire passes through the feed roller during welding. The continuous local load that is sometimes received cannot be withstood, and the wire is twisted, causing the tip of the tip to sway, which may cause arc instability.

【0035】また、接触面積が多すぎる場合には、局部
的な加工硬化現象によりワイヤの表面品質に悪い影響を
及ぼすようになり、酷い場合には、ワイヤの内部(中心
部)と外部との応力の偏差が大きくなって伸線が不可能
にもなり得る。
If the contact area is too large, the local work hardening phenomenon has a bad influence on the surface quality of the wire. The stress deviation may be so large that wire drawing may become impossible.

【0036】次に、後者の場合を察してみると、伸線さ
れるワイヤ(W)とベアリング部(200)との接触面
積が少なすぎる場合には、ワイヤ(W)の長手方向への
内部応力の偏差が大きくなってワイヤの送給は円滑にな
らず、これはワイヤが送給ローラーを通過する時受けら
れる連続的且つ局部的な荷重をワイヤが耐えられず、捻
れるか縺れて送給ローラーから離脱する原因になるか、
ワイヤ(W)の直進性が足りなくなって溶接時に送給ロ
ーラーの通過後、又はケーブル通過後ワイヤが変形され
やすく、これはワイヤがコンタクトチップを通過した後
にも、直進性を有することが出来ないことによって、溶
接欠陥(蛇行ビード)を招く。
Next, considering the latter case, when the contact area between the wire (W) to be drawn and the bearing (200) is too small, the inside of the wire (W) in the longitudinal direction is The stress deviation is so great that the wire is not fed smoothly, which means that the wire cannot withstand the continuous and localized load that the wire receives as it passes through the feed roller, twisting or entanglement. Is it the cause of separation from the feeding roller?
The straightness of the wire (W) is insufficient and the wire is likely to be deformed after passing through the feeding roller or the cable during welding, and the wire cannot have straightness even after passing through the contact tip. This causes welding defects (meandering beads).

【0037】従来では、かかる内部応力の偏差を管理す
る方法として、安定した減面率による製品線の引張強度
や延伸率の偏差を管理したが、かかる方法では、製品線
の微細な内部応力、即ちワイヤが送給時に荷重を受けら
れる外部表面の応力と、かかる表面からの荷重を伝達さ
れるワイヤ中心部の応力を管理するには限界がある。
Conventionally, as a method of controlling the deviation of the internal stress, the deviation of the tensile strength and the drawing rate of the product line due to the stable surface reduction rate is managed. That is, there is a limit to the control of the stress on the outer surface of the wire, which receives the load during feeding, and the stress on the central portion of the wire, which transmits the load from the surface.

【0038】そこで、本発明者は、図2に示すように、
ワイヤがダイスを通過するとき実際に減面される接触部
位を減面接触部20およびその面積を減面接触面積とい
い、ワイヤの線径が矯正される接触部位を矯正接触部2
00およびその面積を矯正接触面積といい、前記減面接
触面積と矯正接触面積とを合計した面積を管理すること
によって内部応力の分布を均一化になるのを見出した。
Therefore, the present inventor, as shown in FIG.
The contact area where the wire is actually reduced when passing through the die is referred to as a reduced contact area 20 and its area is referred to as a reduced contact area, and the contact area where the wire diameter is corrected is the corrective contact portion 2.
00 and the area thereof are referred to as a straightening contact area, and it was found that the distribution of the internal stress can be made uniform by controlling the total area of the reduced surface contact area and the straightening contact area.

【0039】次いで、変動係数比を前記範囲内に保持す
るための一環として溶接用ワイヤに含有されている構成
成分が変動係数比に及ぼす影響を考慮した。これによ
り、微量添加されるがアークの安定性またはオーステナ
イトの安定化に影響するMn、Si、S、N、およびP
の含量について集中的に研究した結果、(Si+P+S
+N)/Mnの値が0.19〜0.62の範囲内にある
時、前記変動係数比範囲を容易に保持し得ることが分か
った。
Next, the influence of the constituents contained in the welding wire on the coefficient of variation was considered as a part of keeping the coefficient of variation within the above range. As a result, Mn, Si, S, N, and P, which are added in a small amount but affect the stability of the arc or the austenite,
As a result of intensive research on the content of (Si + P + S
It has been found that when the value of + N) / Mn is in the range of 0.19 to 0.62, the variation coefficient ratio range can be easily maintained.

【0040】該微量元素の各成分について説明すると次
の通りである。Mnは、溶接金属に対する脱酸効果が得
られるものであり、オーステナイト安定化元素として作
用する。しかし、該Mnを過量添加すると、耐食性、耐
酸化性が劣化し、溶接中にワイヤ先端に形成される表面
張力が大きくなって、低電流短絡移行区間で溶滴の移行
を妨害し短絡区間を延長させる原因となる。
Each component of the trace element will be described as follows. Mn has a deoxidizing effect on the weld metal and acts as an austenite stabilizing element. However, if the Mn is added in an excessive amount, the corrosion resistance and the oxidation resistance are deteriorated, the surface tension formed at the wire tip during welding is increased, and the transfer of droplets is disturbed in the low current short circuit transition section, and the short circuit section is prevented. It will cause the extension.

【0041】Siは有効な脱酸剤であって、アーク安定
剤である。該Siの添加によって耐酸化性は増大され、
溶融金属の濡れ性がよくなる効果があるが、過量添加す
ると溶接凝固割れを発生させる原因となる。
Si is an effective deoxidizer and arc stabilizer. Oxidation resistance is increased by the addition of Si,
Although it has the effect of improving the wettability of the molten metal, if it is added in an excessive amount, it causes weld solidification cracking.

【0042】Sは、MIG溶接の際、ビードの形状を良
好にするために、また溶接アークの安定化およびスパッ
タ量を減少させるために添加する。またMnSを生成さ
せて熱間加工時結晶粒の粗大化を防止する目的として添
加するが、過剰添加時にはビード上に形成されるスラグ
の量を増加させ、低融点の化合物を形成して高温割れを
引き起こすため、過剰添加は好ましくない。
S is added during MIG welding in order to improve the bead shape and to stabilize the welding arc and reduce the amount of spatter. Also, MnS is added for the purpose of preventing coarsening of crystal grains during hot working, but when it is excessively added, the amount of slag formed on the bead is increased to form a compound having a low melting point and hot cracking. Excessive addition is not preferred because it causes

【0043】PとNは、通常、溶接性向上に役に立たな
い元素であって、過量添加時には線材製造の際、熱間加
工性を害する問題が起こるため、最小の量に調整するの
が一般的であるが、本発明では溶接アークの安定化効果
のために少量添加することにした。
P and N are usually elements that are not useful for improving the weldability, and when an excessive amount is added, the problem of impairing the hot workability occurs during the production of the wire rod, so it is generally adjusted to the minimum amount. However, in the present invention, it was decided to add a small amount in order to stabilize the welding arc.

【0044】以上のような点を勘案し、本出願の発明者
は、ワイヤに含有される前記微量元素(Si+P+S+
N)/Mnの値を0.19〜0.62の範囲に設定する
ことにした。
In consideration of the above points, the inventor of the present application has found that the trace elements (Si + P + S +) contained in the wire.
It was decided to set the value of (N) / Mn in the range of 0.19 to 0.62.

【0045】以下、本発明で提案した前記範囲内に含ま
れる発明例と本発明の範囲から外れる比較例に上げて本
発明の効果について述べる。
The effects of the present invention will be described below with reference to the invention examples included in the above-mentioned range proposed by the present invention and the comparative examples outside the scope of the present invention.

【0046】下記表1は試験に使用されたオーステナイ
ト系ステンレス鋼用ソリッドワイヤを表し、スパッタ発
生量の単位はgである。また、表2には低電流短絡移行
溶接条件を表す。
Table 1 below shows the solid wires for austenitic stainless steel used in the test, and the unit of the amount of spatter is g. Table 2 shows the low current short circuit transfer welding conditions.

【表1】 [Table 1]

【表2】 [Table 2]

【0047】表1のワイヤはAWS ER309規格を
基本として微量元素の組成を少しずつ変化させたもので
あり、ワイヤの減面は5.5mm→1.2mmであっ
た。
The wires in Table 1 were obtained by gradually changing the composition of trace elements based on the AWS ER309 standard, and the reduction area of the wires was 5.5 mm → 1.2 mm.

【0048】表1の送給性試験は、2ターン形態にし、
伸線工程は、1次伸線→熱処理→2次伸線→熱処理→3
次伸線(最終伸線)の順番に行い、最終伸線段階は、伸
線(引き抜き)を2段階に分離して遂行し、(最終伸線
工程での)各伸線段階における接触面積比を変更し、各
々のワイヤに対し、ビッカース硬度試験器(Vicke
rs hardness tester、以下、Hvl
と略称する)で硬度を測定した。
In the feedability test of Table 1, a two-turn form is used,
The wire drawing process is as follows: primary wire drawing → heat treatment → secondary wire drawing → heat treatment → 3
The subsequent wire drawing (final wire drawing) is performed in order, and the final wire drawing stage is performed by separating the wire drawing (drawing) into two stages, and the contact area ratio in each wire drawing stage (in the final wire drawing process). For each wire, the Vickers hardness tester (Vicke hardness tester
rs hardware tester, Hvl
Hardness) was measured.

【0049】伸線工程において、熱処理は1次伸線後、
及び最終伸線前に行うようにし、1次伸線後の熱処理
は、ステンレス鋼の場合には、加工硬化を多く受けるの
で、継続する伸線のために伸線線の加工硬化を解いてや
る熱処理であり、最終伸線前の熱処理は、最終製品線の
内部残留応力を最小化して均一化するための熱処理であ
る。
In the wire drawing step, heat treatment is performed after the primary wire drawing.
In addition, the heat treatment after the primary wire drawing is often performed before the final wire drawing, and in the case of stainless steel, a large amount of work hardening occurs. Therefore, the work hardening of the wire draw is solved for continuous wire drawing. The heat treatment, which is a heat treatment before the final wire drawing, is a heat treatment for minimizing and uniformizing the internal residual stress of the final product wire.

【0050】これは、ワイヤがダイスを通過する時の応
力の緩和も重要であるが、引込み線(引込みワイヤ)の
残留応力の分布も重要なためである。
This is because the relaxation of the stress when the wire passes through the die is important, but the distribution of the residual stress of the service wire (service wire) is also important.

【0051】また、最終伸線前の熱処理は、1次伸線
後、応力がある程度解消されるが、継続する2次伸線に
より内部の残留応力の分布が不均一であって、良好な送
給性を示す程度の残留応力分布を得難いので、最終伸線
前の熱処理は重要な工程になる。
In the heat treatment before the final wire drawing, the stress is relieved to some extent after the primary wire drawing, but the distribution of the residual stress inside is nonuniform due to the continuous secondary wire drawing, and the excellent wire feeding is achieved. Since it is difficult to obtain a residual stress distribution that exhibits feedability, heat treatment before final wire drawing is an important step.

【0052】硬度偏差は、断面硬度偏差の場合、ワイヤ
の断面中心部と表面の硬度を測定してその差を求め、長
手方向の場合、ワイヤの任意の200mm間隔で連続5
回硬度を測定してその差を算術平均する(3つの試料の
算術平均値)。
In the case of cross-section hardness deviation, the hardness deviation is obtained by measuring the hardness of the center and the surface of the cross-section of the wire, and in the case of the longitudinal direction, it is continuously measured at arbitrary 200 mm intervals of the wire.
The hardness is measured and the difference is arithmetically averaged (arithmetic mean value of three samples).

【0053】最終伸線(即ち、3次伸線)における伸線
を2段階に分離し、第1の段階は、減面接触比、即ちワ
イヤとダイスとの接触角の調整を通じて減面接触面積を
規制し、第2の段階では矯正接触比、即ち伸線の線径を
矯正する段階における矯正接触面積を規制し、ワイヤの
断面上の硬度偏差及び長手方向の硬度偏差を減少させ、
ワイヤの残留応力の分布を均一にしたものである。
The wire drawing in the final wire drawing (that is, the third wire drawing) is separated into two steps, and the first step is to adjust the area-reducing contact ratio, that is, the contact angle between the wire and the die, to reduce the area-reducing contact area. In the second step, the straightening contact ratio, that is, the straightening contact area in the step of straightening the wire diameter of the wire drawing is regulated to reduce the hardness deviation on the cross section of the wire and the hardness deviation in the longitudinal direction.
This is a uniform distribution of residual stress in the wire.

【0054】即ち、第1の段階ではワイヤとダイスとが
接触する角度を小さくし、ワイヤ断面上の硬度偏差を減
少させ、溶接時にワイヤの捩じれによるチップ先断の揺
れを防止し、第2の段階ではダイスのベアリング長さ、
即ちワイヤが矯正されるベアリング部の長手を長くし、
ワイヤの長手方向の硬度偏差を減少させ、ワイヤがケー
ブルを通過する時、折曲するか捩じれることによって生
じる溶接欠陥(蛇行ビード)を防止した。前記におい
て、第1の伸線段階でのワイヤとダイスとの接触角の大
きさと、第2の段階でのベアリング部の長さに対する接
触面積比への寄与程度は、接触面積比が3乃至3.5の
範囲内で両者とも約1/3(1乃至1.17)乃至1/
2(1.5乃至1.75)であることが要求される。
That is, in the first stage, the contact angle between the wire and the die is reduced, the hardness deviation on the wire cross section is reduced, and the tip breakage due to the twisting of the wire during welding is prevented. In the stage, the bearing length of the die,
That is, the length of the bearing part where the wire is straightened is lengthened,
The hardness deviation in the longitudinal direction of the wire was reduced to prevent welding defects (serpentine beads) caused by bending or twisting of the wire as it passed through the cable. In the above, the magnitude of the contact angle between the wire and the die in the first drawing step and the degree of contribution to the contact area ratio with respect to the length of the bearing portion in the second drawing step are as follows. Within the range of 0.5, both are about 1/3 (1 to 1.17) to 1 /
2 (1.5 to 1.75) is required.

【0055】下記表3、表4および表5は、前記表1の
ワイヤを使用して表2の溶接条件で低電流短絡移行溶接
を行いながら各ワイヤに対して任意の13区間における
溶接電流、溶接電圧および変動係数比を測定して表した
ものである。尚、表3は30CPM、表4は50CP
M、表5は70CPMの溶接速度である場合を表す。
Tables 3, 4, and 5 below show welding currents in arbitrary 13 sections for each wire while performing low-current short-circuit transfer welding under the welding conditions of Table 2 using the wires of Table 1 above. The welding voltage and the variation coefficient ratio are measured and represented. Table 3 is 30 CPM and Table 4 is 50 CP.
M, Table 5 shows the case where the welding speed is 70 CPM.

【0056】溶接電流、溶接電圧および変動係数比はモ
ニテックコリア社のArcモニタリングWAM−400
0D version 1.0を利用して測定した。変
動係数比とは‘溶接電流の変動係数/溶接電圧の変動係
数’を意味する。また、表1のワイヤを25cm溶接す
る際、任意の区間における短絡区間平均時間とその標準
偏差および短絡変動係数を表した。ここで、短絡変動係
数とは‘標準偏差/平均時間’を意味する。そして、前
記測定した変動係数比と短絡変動係数が溶接ビードに及
ぼした影響を調べるために、溶接アーク開始の後1.5
cm以降から測定した溶接部ビード幅に対してn=50
基準に標準偏差を求め、その結果も共に表した。一方、
表3、表4および表5で、‘電流’項目は溶接電流の変
動係数を意味し、‘電圧’項目は溶接電圧の変動係数を
意味し、‘平均’項目は平均時間を意味する。
The welding current, the welding voltage and the variation coefficient ratio are the Arc monitoring WAM-400 of Monitec Korea.
It was measured using 0D version 1.0. The coefficient of variation ratio means “variation coefficient of welding current / variation coefficient of welding voltage”. In addition, when welding the wire of Table 1 by 25 cm, the short-circuit section average time in any section, its standard deviation, and the short-circuit variation coefficient are shown. Here, the short circuit variation coefficient means'standard deviation / average time '. Then, in order to investigate the influence of the measured variation coefficient ratio and the short-circuit variation coefficient on the welding bead, 1.5 after the welding arc is started.
n = 50 for the weld bead width measured from cm onwards
The standard deviation was calculated as the standard, and the results are also shown. on the other hand,
In Tables 3, 4, and 5, the "current" item means the coefficient of variation of the welding current, the "voltage" item means the coefficient of variation of the welding voltage, and the "average" item means the averaging time.

【0057】[0057]

【表3】 [Table 3]

【表4】 [Table 4]

【表5】 [Table 5]

【0058】前記表3、表4および表5をまとめてみる
と、まず、比較例1〜3で、微量元素は本発明の範囲に
含まれるがワイヤの硬度偏差が本発明が提案した範囲を
超えるので、送給負荷が大きく表れたし、また変動係数
比および短絡変動係数の最小値と最大値の幅が大きく表
れた。
To summarize Tables 3, 4, and 5, first, in Comparative Examples 1 to 3, the trace elements are included in the scope of the present invention, but the hardness deviation of the wire falls within the range proposed by the present invention. Since it exceeded, the feeding load was greatly expressed, and the range between the minimum value and the maximum value of the coefficient of variation ratio and the coefficient of short circuit variation was also greatly expressed.

【0059】比較例4〜6では、ワイヤの硬度偏差が本
発明で提案した範囲に含まれ、送給負荷は多少低いもの
と表れたが、微量元素は本発明で提案した範囲から外れ
ており、変動係数比および短絡変動係数の最小値と最大
値の幅が比較例1〜3におけるものと同様に大きく表れ
た。その上、スパッタも発明例に比べて相当多く発生さ
れるものと表れた。
In Comparative Examples 4 to 6, the hardness deviation of the wire was included in the range proposed by the present invention, and the feeding load was slightly low, but the trace elements were out of the range proposed by the present invention. The width of the minimum value and the maximum value of the coefficient of variation ratio and the coefficient of variation in short circuit was large as in Comparative Examples 1 to 3. Moreover, it was revealed that spatter was generated in a considerably larger amount than in the inventive examples.

【0060】一方、比較例7〜9では、ワイヤの硬度偏
差や微量元素の含有量とも本発明で提案する範囲から外
れ、送給負荷およびスパッタ発生量の評価項目のいずれ
も良くないと判明された。また、変動係数比および短絡
変動係数の最小値と最大値の幅が最も大きいことが分か
る。
On the other hand, in Comparative Examples 7 to 9, both the hardness deviation of the wire and the contents of the trace elements deviate from the ranges proposed in the present invention, and it is proved that the evaluation items of the feed load and the spatter generation amount are not good. It was Further, it can be seen that the range of the minimum value and the maximum value of the variation coefficient ratio and the short circuit variation coefficient is the largest.

【0061】しかし、発明例10〜12では、ワイヤの
硬度偏差や微量元素の含有量とも本発明で提案する範囲
に含まれているため、送給負荷は低く、スパッタ発生量
は少なく、且つ変動係数比および短絡変動係数の最小値
と最大値の幅が最も小さいことが分かる。
However, in Inventive Examples 10 to 12, both the hardness deviation of the wire and the contents of trace elements are included in the range proposed in the present invention, so the feeding load is low, the spatter generation amount is small, and the fluctuations occur. It can be seen that the range of the minimum value and the maximum value of the coefficient ratio and the short circuit variation coefficient is the smallest.

【0062】発明例は、ビード幅標準偏差が0.25未
満であり、ほぼ一定したビード幅が得られるものと表れ
たが、比較例はビード幅の標準偏差が0.26以上と一
定したビード幅が得難いと表れた。
Inventive examples had a bead width standard deviation of less than 0.25, and it was shown that a substantially constant bead width was obtained, whereas in the comparative example, a bead width with a standard deviation of 0.26 or more was constant. It was revealed that it was difficult to obtain the width.

【0063】また、溶接時に発生される1mm以上のス
パッタの量(表1参照)と送給負荷においても、比較例
に比べて変動係数比および短絡変動係数が一定範囲に保
持される発明例が少なく発生されることが分かる。
Further, in the case of the amount of spatter of 1 mm or more generated during welding (see Table 1) and the feeding load, the invention example in which the variation coefficient ratio and the short circuit variation coefficient are maintained within a certain range as compared with the comparative example was obtained. It can be seen that it occurs less often.

【0064】かかる結果から、溶接速度30〜70CP
Mの低電流短絡移行溶接条件で優れたアーク安定性を表
すオーステナイト系ステンレス鋼溶接用ワイヤは、Hv
1硬度計を基準で前記ワイヤ断面上の中心部と表面の硬
度差が18以下であり、前記ワイヤの長手方向に対して
任意の20mm間隔に測定した硬度差が15以下であ
り、ワイヤに含有された微量元素(Si+P+S+N)
/Mnの値が0.19〜0.62の範囲に限定されるべ
きということが分かる。
From these results, the welding speed is 30 to 70 CP.
The austenitic stainless steel welding wire that exhibits excellent arc stability under the low current short circuit transfer welding condition of M is Hv
1 The hardness difference between the center and the surface of the wire cross section is 18 or less on the basis of the hardness meter, and the hardness difference measured at any 20 mm interval in the longitudinal direction of the wire is 15 or less, and the hardness is contained in the wire. Trace elements (Si + P + S + N)
It can be seen that the value of / Mn should be limited to the range of 0.19 to 0.62.

【0065】[0065]

【発明の効果】前述のように、本発明によれば、低電流
短絡移行溶接条件でオーステナイト系ステンレス鋼溶接
の際にアークの安定性が向上にあって、良好な溶接ビー
ド形状が得られ、スパッタ発生量も減少され、結果とし
て溶接品質および作業性を向上させられる効果が得られ
る。
As described above, according to the present invention, the arc stability is improved during austenitic stainless steel welding under low current short-circuit transfer welding conditions, and a good weld bead shape can be obtained. The amount of spatter generated is also reduced, and as a result, the effect of improving welding quality and workability is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、低電流短絡移行アーク溶接の短絡周期
とその時の電流および電圧の関係を示す。
FIG. 1 shows the relationship between the short circuit period of low current short circuit transfer arc welding and the current and voltage at that time.

【図2】図2は、ワイヤがダイスを通過するときの減面
接触部と矯正接触部を説明する。
FIG. 2 illustrates a reduced surface contact portion and a straightening contact portion as a wire passes through a die.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 溶接速度30〜70CPMの低電流短絡
移行溶接条件で優れたアーク安定性を表すオーステナイ
ト系ステンレス鋼溶接用ワイヤであり、 Hv1硬度計を基準として該ワイヤの断面上の中心部と
表面の硬度差が18以下であり、該ワイヤの長手方向に
対して任意の200mm間隔に測定した硬度差が15以
下であり、 該ワイヤに含有された微量元素(Si+P+S+N)/
Mnの値が0.19〜0.62であることを特徴とする
オーステナイト系ステンレス鋼溶接用ワイヤ。
1. An austenitic stainless steel welding wire exhibiting excellent arc stability under a low current short-circuit transfer welding condition with a welding speed of 30 to 70 CPM, the center of the cross section of the wire being based on an Hv1 hardness meter. The hardness difference of the surface is 18 or less, the hardness difference measured at an arbitrary 200 mm interval in the longitudinal direction of the wire is 15 or less, and the trace elements (Si + P + S + N) / contained in the wire are
Austenitic stainless steel welding wire having a Mn value of 0.19 to 0.62.
【請求項2】 前記ワイヤの断面の中心部と表面の硬度
差および前記ワイヤの長手方向の硬度差は、下記の式に
定義される接触面積比を3ないし3.5の範囲に特定す
ることによって調整することを特徴とする請求項1に記
載のオーステナイト系ステンレス鋼溶接用ワイヤ。 接触面積比=減面接触比+矯正接触比 ただし、減面接触比=減面接触面積/引込線断面積 矯正接触比=矯正接触面積/引出線断面積
2. The difference in hardness between the center and the surface of the cross section of the wire and the difference in hardness in the longitudinal direction of the wire are specified by a contact area ratio defined by the following formula within a range of 3 to 3.5. The austenitic stainless steel welding wire according to claim 1, which is adjusted by: Contact area ratio = Reduced surface contact ratio + Straightening contact ratio However, Reduced surface contact ratio = Reduced surface contact area / Drop wire cross-sectional area Straightening contact ratio = Straightening contact area / Leader wire cross-sectional area
JP2002212115A 2001-07-26 2002-07-22 Austenitic stainless steel wire for low current, high speed welding Expired - Fee Related JP4062498B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2001-0045238A KR100427544B1 (en) 2001-07-26 2001-07-26 Wire for austenitic stainless steel
KR2001-045238 2001-07-26

Publications (2)

Publication Number Publication Date
JP2003103396A true JP2003103396A (en) 2003-04-08
JP4062498B2 JP4062498B2 (en) 2008-03-19

Family

ID=19712580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002212115A Expired - Fee Related JP4062498B2 (en) 2001-07-26 2002-07-22 Austenitic stainless steel wire for low current, high speed welding

Country Status (3)

Country Link
JP (1) JP4062498B2 (en)
KR (1) KR100427544B1 (en)
CN (1) CN1240514C (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2711130B2 (en) * 1989-04-03 1998-02-10 新日本製鐵株式会社 Gas shielded arc welding wire
JPH11199979A (en) * 1998-01-16 1999-07-27 Nippon Steel Corp High strength extra fine steel wire excellent in fatigue characteristic and its production
KR100359482B1 (en) * 2000-06-28 2002-10-31 고려용접봉 주식회사 Wire for arc-welding and wire drawing method

Also Published As

Publication number Publication date
CN1400080A (en) 2003-03-05
CN1240514C (en) 2006-02-08
KR100427544B1 (en) 2004-04-28
KR20030010335A (en) 2003-02-05
JP4062498B2 (en) 2008-03-19

Similar Documents

Publication Publication Date Title
JP3457652B2 (en) Arc welding wire and wire drawing method
JP4442541B2 (en) Manufacturing method of low YR ERW steel pipe for line pipe
JP6573056B1 (en) Solid wire for gas shielded arc welding to thin steel plate
JPWO2013108861A1 (en) Steel strip for coiled tubing and manufacturing method thereof
JP6687112B2 (en) Steel wire
JP6715622B2 (en) Solid wire
JP4687268B2 (en) Manufacturing method of ERW steel pipe for high-strength thick-walled pipe with excellent weld toughness
JP2010131637A (en) Gas shielded arc welding method
JPS62183994A (en) Wire for gas shielded arc welding of stainless steel
JP2007015008A (en) Method for producing low yr electric resistance welded tube for line pipe
JP4062498B2 (en) Austenitic stainless steel wire for low current, high speed welding
JP6658385B2 (en) Manufacturing method of steel pipe
JP4657186B2 (en) Solid wire for gas shielded arc welding
WO2006062053A1 (en) Low carbon free-cutting steel
JPH07265941A (en) Manufacture of welded tube excellent in workability by rolless tube manufacturing method
JP6407357B2 (en) Method for manufacturing TIG welded stainless steel pipe, TIG welded stainless steel pipe, and TIG welded stainless steel member
JP2008188641A (en) High-strength welded steel tube of excellent welding softening resistance and excellent fatigue characteristic
CN111542634A (en) Cold-rolled steel sheet for flux-cored wire and method for manufacturing same
JP3867000B2 (en) Solid wire for gas shielded arc welding and its original wire
JP2020049547A (en) Solid wire
JP6809502B2 (en) Forge welding steel pipe manufacturing method
JP3174468B2 (en) Manufacturing method of ERW steel pipe for high strength line pipe
WO2017209282A1 (en) Method for producing tig welded stainless steel tube, tig welded stainless steel tube, and tig welded stainless member
JP2004314127A (en) Solid wire for arc-welding excellent in feedability and its producing method
JP2024068661A (en) Solid wire for gas shielded arc welding, method for manufacturing gas shielded arc welding joint, and automobile suspension part

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20060607

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060612

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070813

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees