JP2008188641A - High-strength welded steel tube of excellent welding softening resistance and excellent fatigue characteristic - Google Patents

High-strength welded steel tube of excellent welding softening resistance and excellent fatigue characteristic Download PDF

Info

Publication number
JP2008188641A
JP2008188641A JP2007026343A JP2007026343A JP2008188641A JP 2008188641 A JP2008188641 A JP 2008188641A JP 2007026343 A JP2007026343 A JP 2007026343A JP 2007026343 A JP2007026343 A JP 2007026343A JP 2008188641 A JP2008188641 A JP 2008188641A
Authority
JP
Japan
Prior art keywords
mass
weld
softened
width
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007026343A
Other languages
Japanese (ja)
Inventor
Shinichi Kodama
真一 児玉
Takashi Matsumoto
孝 松元
Toshihiro Kondo
敏洋 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2007026343A priority Critical patent/JP2008188641A/en
Publication of JP2008188641A publication Critical patent/JP2008188641A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a welded steel tube capable of improving the fatigue characteristic by reducing a softened area and a softening ratio of a weld heat affected zone of the welded steel tube manufactured of a high-strength steel plate subjected to the work reinforcement as a material. <P>SOLUTION: A cold-rolled steel plate as a material is formed of a low-alloy steel containing Ti, Nb and B, and further containing 0.01-0.30 mass% Mo as necessary with C equivalent defined by the formula (4) C equivalent = C+1/6Mn+1/24Si+5B+1/4Mo to be 0.25-0.6 mass%. A welded steel tube is formed of the steel plate satisfying an inequality ΔHV × width of softened part ≤150, where ΔHV of the weld softened part and the width of the softened part are defined as (1) ΔHV of the weld softened part = hardness of base material - hardness of the mostly softened part of the weld, and (2) the width of softened part = the width (mm) of the softened part in which its hardness is lower than that of the base material by the welding heat input. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高強度で安価な、自動車,自転車等の構造部材や補強材に使用される耐溶接軟化性及び疲労特性に優れた高強度溶接鋼管に関する。   The present invention relates to a high-strength welded steel pipe excellent in weld softening resistance and fatigue characteristics, which is used for structural members and reinforcing materials such as automobiles and bicycles, which are high-strength and inexpensive.

自動車,自転車等の構造部材や補強部材に使用される溶接鋼管においては、所定の強度と疲労特性が要求される。また自動車,自転車等の用途で要求される軽量化を図る上でも、機械的強度が高く、薄肉化しても所望強度レベルを満足することが重要となる。しかも安価な手法で高強度化が図れることが望ましい。
鋼材の強化機構としては、固溶体強化法や変態組織強化法、あるいは加工強化法などがある。しかしながら、固溶体強化法や変態組織強化法では、Si,Mn等の特殊な合金元素を多量に添加する必要があり、添加量に伴って強度は向上するものの、必然的に鋼材コストが高くなる。
In welded steel pipes used for structural members and reinforcing members such as automobiles and bicycles, predetermined strength and fatigue characteristics are required. Also, in order to reduce the weight required for applications such as automobiles and bicycles, it is important that the mechanical strength is high and that the desired strength level is satisfied even if the thickness is reduced. Moreover, it is desirable to increase the strength by an inexpensive method.
Examples of the strengthening mechanism of steel include a solid solution strengthening method, a transformation structure strengthening method, and a work strengthening method. However, in the solid solution strengthening method and the transformation structure strengthening method, it is necessary to add a large amount of special alloy elements such as Si and Mn, and the strength increases with the added amount, but the steel material cost inevitably increases.

一方、冷間圧延等による加工強化法は、安価に高強度化を達成し得る点で効率的な方法である。低炭素鋼であって、酸洗によって熱延スケールが除去された熱延鋼帯を圧下率10〜50%で1パス圧延した後、得られた鋼帯の幅方向両端部を溶接した高強度溶接鋼管が特許文献1で提案されている。
本発明者等も、C−Mn系の熱延鋼板を、圧下率10〜75%で冷間圧延し、冷間圧延したままの鋼帯の幅方向両端部を溶接することにより、高強度溶接鋼管を製造する方法を特許文献2で提案している。
特開2002−327245号公報 特開2005−29882号公報
On the other hand, the work strengthening method such as cold rolling is an efficient method in that high strength can be achieved at low cost. High-strength steel that is low-carbon steel, hot-rolled steel strip from which hot-rolled scale has been removed by pickling is rolled for one pass at a rolling reduction of 10 to 50%, and then both ends in the width direction of the obtained steel strip are welded. A welded steel pipe is proposed in Patent Document 1.
The present inventors also cold rolled a C-Mn-based hot-rolled steel sheet at a reduction rate of 10 to 75%, and welded both ends in the width direction of the steel strip as it was cold-rolled. Patent Document 2 proposes a method for manufacturing a steel pipe.
JP 2002-327245 A JP 2005-29882 A

ところが、上記特許文献2にも開示されているとおり、C−Mn系の熱延鋼板を高圧下率で冷間圧延することにより加工硬化させた鋼板から高強度溶接鋼管を製造する場合の最大の課題は、高強度化を容易に達成できても、溶接時の入熱により溶接熱影響部において軟化が生じることである。また、自動車,自転車等に用いられる構造部材には、アーク溶接やTiG溶接など種々の溶接が施されるが、この溶接の際の入熱量が大きい場合にも溶接軟化が生じる。溶接熱影響部に溶接軟化域が生じると、溶接熱影響のない領域に比較してこの部材の強度及び耐疲労性が非常に低下してしまう。他の強化法により高強度化した鋼板でも溶接時の熱影響により強度の低下が認められるが、加工硬化した鋼材における溶接軟化は他の強化法による鋼材よりも顕著である。
溶接軟化の対策としては、通常、鋼板にTi,Nb等の元素を複合添加するとともに、C当量の適正化により溶接熱影響部の軟化を極力抑えるようにする。しかし、加工硬化した鋼材を素材として製造した溶接鋼管の強度及び疲労特性が低下する課題の解決には不十分である。
However, as disclosed in Patent Document 2 mentioned above, the maximum in the case of producing a high-strength welded steel pipe from a steel sheet work-hardened by cold rolling a C-Mn hot-rolled steel sheet at a high pressure reduction rate. The problem is that even if high strength can be achieved easily, softening occurs in the heat affected zone due to heat input during welding. In addition, various types of welding such as arc welding and TiG welding are performed on structural members used in automobiles, bicycles, etc., but welding softening also occurs when the amount of heat input during the welding is large. If a weld softening zone is generated in the weld heat affected zone, the strength and fatigue resistance of this member will be greatly reduced as compared to a zone where there is no welding heat affected zone. Even in steel sheets that have been strengthened by other strengthening methods, a decrease in strength is observed due to the heat effect during welding, but weld softening in work-hardened steel materials is more noticeable than steel materials by other strengthening methods.
As a measure for welding softening, elements such as Ti and Nb are usually added to the steel sheet in combination, and the softening of the weld heat affected zone is suppressed as much as possible by optimizing the C equivalent. However, it is insufficient for solving the problem that the strength and fatigue characteristics of a welded steel pipe manufactured using work-hardened steel as a raw material are lowered.

本発明は、このような問題を解消すべく案出されたものであり、C−Mn系の鋼板にTi,Nbに加えてBを添加し、さらに必要に応じてMoを添加することと、C当量の適正化と、溶接熱影響部の軟化域及び軟化率を小さく抑えることを特徴とする耐溶接軟化性及び疲労特性に優れた高強度溶接鋼管を提供することを目的とする。   The present invention has been devised to solve such problems, adding B in addition to Ti and Nb to a C-Mn steel sheet, further adding Mo as required, An object is to provide a high-strength welded steel pipe excellent in weld softening resistance and fatigue characteristics characterized by optimizing the C equivalent and suppressing the softening region and softening ratio of the weld heat-affected zone to be small.

本発明の耐溶接軟化性及び疲労特性に優れた高強度溶接鋼管は、その目的を達成するため、オープンパイプ状に成形した冷延鋼板の端部同士を溶接により接合して製造した溶接鋼管であって、接合部の溶接金属の近傍における溶接軟化部のΔHV及び軟化部幅をそれぞれ次の(1)式,(2)式のように定義するとき、溶接軟化部のΔHV×軟化部幅≦150であることを特徴とする。
溶接軟化部のΔHV=母材硬さ−溶接部最軟化部の硬さ ・・・(1)
軟化部幅=溶接の入熱によって母材より硬さが軟化した部分の幅(mm) ・・・(2)
The high strength welded steel pipe excellent in weld softening resistance and fatigue characteristics of the present invention is a welded steel pipe manufactured by welding the ends of cold-rolled steel sheets formed into an open pipe shape to achieve the purpose. When the ΔHV and the softened portion width of the weld softened portion in the vicinity of the weld metal of the joint portion are defined as the following formulas (1) and (2), respectively, ΔHV × softened portion width of the weld softened portion ≦ 150.
ΔHV of welded softened portion = base metal hardness−hardness of welded softest portion (1)
Softened part width = width of the part softened from the base metal by welding heat input (mm) (2)

前記冷延鋼板としては、質量%で、C:0.01〜0.20質量%,Si:1.5質量%以下,Mn:2.5質量%以下,P:0.05質量%以下,S:0.02質量%以下,酸可溶Al:0.005〜0.10質量%,B:0.0005〜0.005質量%,Ti:0.01〜0.15質量%,及びNb:0.01〜0.10質量%を、さらに必要に応じてMo:0.01〜0.30質量%を含有し、残部がFe及び不可避的不純物からなり、かつ下記(3)又は(4)式で定義されるC当量が0.25〜0.6質量%に調整された成分組成を有するものが好ましい。
C当量=C+1/6Mn+1/24Si+5B ・・・(3)
C当量=C+1/6Mn+1/24Si+5B+1/4Mo ・・・(4)
As the cold-rolled steel sheet, C: 0.01 to 0.20% by mass, Si: 1.5% by mass or less, Mn: 2.5% by mass or less, P: 0.05% by mass or less, S: 0.02 mass% or less, acid-soluble Al: 0.005-0.10 mass%, B: 0.0005-0.005 mass%, Ti: 0.01-0.15 mass%, and Nb : 0.01 to 0.10% by mass, further containing Mo: 0.01 to 0.30% by mass as necessary, the balance being Fe and inevitable impurities, and the following (3) or (4 It is preferable to have a component composition in which the C equivalent defined by the formula is adjusted to 0.25 to 0.6% by mass.
C equivalent = C + 1 / 6Mn + 1 / 24Si + 5B (3)
C equivalent = C + 1 / 6Mn + 1 / 24Si + 5B + 1 / 4Mo (4)

本発明は、高強度溶接鋼管の疲労特性の劣化を抑制するため、まず、溶接熱影響部における軟化率と軟化部の大きさを著しく小さく抑えることを要件とし、溶接軟化部のΔHV及び軟化部幅を前出の(1),(2)式のように定義するとき、溶接軟化部のΔHV×軟化部幅≦150とする。さらに、溶接軟化部の軟化率と大きさを制御できる手段は、鋼組成と溶接条件である。そこで、C−Mn鋼にTi,Nbに加えてBを添加し、さらに必要に応じてMoを添加することと、C当量を適正化することにより、広範な溶接条件においても溶接熱影響部の軟化率及び軟化部を小さく抑えることができ、疲労特性を改善した溶接鋼管を提供できるものである。   In order to suppress deterioration of fatigue characteristics of a high-strength welded steel pipe, the present invention firstly requires that the softening rate and the size of the softened portion in the weld heat affected zone be extremely small. When the width is defined as in the above formulas (1) and (2), ΔHV of the weld softened portion × softened portion width ≦ 150. Furthermore, means for controlling the softening rate and size of the weld softened part are the steel composition and welding conditions. Therefore, by adding B to C-Mn steel in addition to Ti and Nb, and further adding Mo as necessary, and optimizing the C equivalent, the welding heat-affected zone can be improved even under a wide range of welding conditions. It is possible to provide a welded steel pipe that can suppress the softening rate and the softened portion to be small and has improved fatigue characteristics.

このような成分組成の熱延鋼板を基材として、さらに通常の冷間圧延による冷間加工を付与することにより高強度化を図るとともに、素材鋼板の組成的な特徴である溶接鋼管製造時の溶接熱影響部の軟化や、構造材料として使用する際の溶接熱影響部の軟化を抑制することができる。高価な合金元素を多量に使用するものでもないので、本発明により、耐溶接軟化性及び疲労特性に優れた高強度溶接鋼管を安価に提供することができる。   Using the hot-rolled steel sheet of such a component composition as a base material, and further increasing the strength by applying cold working by ordinary cold rolling, and at the time of manufacturing a welded steel pipe, which is a compositional characteristic of the material steel sheet Softening of the weld heat affected zone and softening of the weld heat affected zone when used as a structural material can be suppressed. Since high-priced alloy elements are not used in large quantities, the present invention can provide a high-strength welded steel pipe excellent in weld softening resistance and fatigue characteristics at low cost.

次に、本発明における溶接熱影響部の軟化率及び軟化部幅を限定した理由について説明する。
溶接軟化部のΔHV×軟化部幅≦150
溶接鋼管が構造部材として用いられる場合、部材の形状や荷重負荷の状況によってこの溶接部分に高い応力が発生すると、溶接軟化部が基点となって疲労による亀裂が発生、伝播することがある。これを抑制するためには、溶接軟化部の軟化の程度と領域をできるだけ小さくすることが好ましい。詳細は実施例の記載に譲るが、発明者らは、種々の合金組成、溶接条件により溶接鋼管を製造し、溶接軟化部の評価や溶接部の強度特性、疲労特性を評価することによって、溶接軟化部のΔHV×軟化部幅が150を超えると強度特性の低下が著しく、耐疲労特性も劣化することを見出した。このため、上記ΔHV×軟化部幅を150以下に限定する。
なお、図1に示すように、溶接軟化部のΔHVは母材の硬さから溶接軟化部の硬さを引いた値であり、軟化部幅は溶接入熱によって母材より硬さが軟化した部分の幅(単位はmm)である。
Next, the reason why the softening rate and the softened portion width of the weld heat affected zone in the present invention are limited will be described.
ΔHV of weld softened portion × width of softened portion ≦ 150
When a welded steel pipe is used as a structural member, if a high stress is generated in the welded part depending on the shape of the member or the load load, a crack due to fatigue may occur and propagate based on the weld softened part. In order to suppress this, it is preferable to make the degree and area of softening of the weld softened portion as small as possible. Details will be given in the description of the examples, but the inventors manufactured welded steel pipes with various alloy compositions and welding conditions, and evaluated the weld softened part, the welded part's strength characteristics, and the fatigue characteristics. It has been found that when ΔHV × softened part width of the softened part exceeds 150, the strength characteristics are remarkably lowered and the fatigue resistance characteristics are also deteriorated. For this reason, the ΔHV × softened portion width is limited to 150 or less.
In addition, as shown in FIG. 1, ΔHV of the weld softened portion is a value obtained by subtracting the hardness of the weld softened portion from the hardness of the base metal, and the softened portion width is softened from the base metal by welding heat input. The width of the part (unit is mm).

溶接軟化部のΔHVと軟化部幅は、鋼板の組成と溶接による材料への入熱量の影響を大きく受ける。鋼板の組成は、請求項2または3に開示した成分の組成を採用する必要がある。また、溶接による材料への入熱が大きいほど溶接軟化部のΔHVと軟化部幅は大きくなるので、ΔHV×軟化部幅を150以下にするための具体的な手段のひとつは溶接による入熱量の調整であり、溶接電流や溶接速度の調整によることが一般的である。溶接電流が大きいほど、あるいは溶接速度が小さいほど、溶接による入熱量は大きくなる。   The ΔHV of the weld softened portion and the width of the softened portion are greatly affected by the composition of the steel sheet and the amount of heat input to the material by welding. The composition of the component disclosed in claim 2 or 3 needs to be adopted as the composition of the steel sheet. Moreover, since the ΔHV and the softened portion width of the weld softened portion increase as the heat input to the material by welding increases, one of the specific means for reducing the ΔHV × softened portion width to 150 or less is the amount of heat input by welding. Adjustment is generally performed by adjusting the welding current and welding speed. The greater the welding current or the lower the welding speed, the greater the heat input by welding.

次に、本発明における基材鋼の化学成分の作用及び含有量を限定した理由について個別に説明する。
C:0.01〜0.20質量%
Cは鋼板の高強度化に有効な合金成分である。0.01質量%以上でCによる強化作用がみられる。しかし、過剰量のCの含有は、焼入れ性に対して大きな影響を与え、溶接部の加工性を劣化させ、割れの発生原因にもなる。延性及び溶接部の靭性の面から、上限値は0.20質量%とした。
Next, the reasons for limiting the action and content of the chemical components of the base steel in the present invention will be described individually.
C: 0.01 to 0.20% by mass
C is an alloy component effective for increasing the strength of the steel sheet. The strengthening effect by C is seen at 0.01 mass% or more. However, inclusion of an excessive amount of C greatly affects the hardenability, degrades the workability of the welded part, and causes cracking. From the viewpoint of ductility and weld toughness, the upper limit value was set to 0.20% by mass.

Si:1.5質量%以下
強度向上に有効な合金成分であり、0.05質量%以上でSiの添加効果がみられる。しかし、1.5質量%を超えて添加すると、強度が上昇するものの冷間加工性や表面性状が劣化しやすい。
Si: 1.5% by mass or less Si is an effective alloy component for improving the strength, and the effect of adding Si is seen at 0.05% by mass or more. However, if added over 1.5% by mass, the cold workability and surface properties are likely to deteriorate although the strength increases.

Mn:2.5質量%以下
強度向上に寄与する合金成分であり、Mnによる強度改善効果は0.30質量%以上で見られ、Mn含有量が多いほど顕著になる。しかし、過剰量のMnの含有は溶接性を著しく劣化させる。さらに、Mnは焼入れ性を向上させる元素であり、C当量を増大させて溶接部の加工性を劣化させ、割れの原因にもなる。この点で、Mn含有量は低いほど好ましく、本成分系では上限値は2.5質量%とした。好ましくは1.0〜2.0質量%とする。
Mn: 2.5% by mass or less Mn is an alloy component that contributes to strength improvement. The strength improvement effect by Mn is seen at 0.30% by mass or more, and becomes more remarkable as the Mn content increases. However, the excessive amount of Mn significantly deteriorates the weldability. Furthermore, Mn is an element that improves the hardenability, and increases the C equivalent, thereby degrading the workability of the welded part and causing cracks. In this respect, the Mn content is preferably as low as possible. In this component system, the upper limit value is set to 2.5% by mass. Preferably it is 1.0-2.0 mass%.

P:0.05質量%以下
0.05質量%を超えて含有させると低温靭性が低下する。そのため、P含有量は低いほど好ましく、本成分系では上限値を0.05質量%とした。好ましくは0.02質量%以下とする。
P: 0.05 mass% or less If it contains more than 0.05 mass%, low temperature toughness will fall. Therefore, the lower the P content, the better. In this component system, the upper limit value was set to 0.05 mass%. Preferably it is 0.02 mass% or less.

S:0.02質量%以下
Sは熱間加工性,冷間加工性に有害な成分であることから、可能な限りその含有量を低減することが好ましい。通常不可避的に含有されるS:0.02質量%以下である限り、溶接鋼管の特性に悪影響は現れない。好ましくは0.005質量%以下とする。
S: 0.02 mass% or less Since S is a component harmful to hot workability and cold workability, it is preferable to reduce the content thereof as much as possible. Usually, as long as it is unavoidably contained: 0.02% by mass or less, there is no adverse effect on the properties of the welded steel pipe. Preferably it is 0.005 mass% or less.

酸可溶Al:0.005〜0.10質量%
Alは、製鋼段階で脱酸剤として添加される合金成分である。十分な脱酸効果を得るためには、酸可溶Alとして0.005質量%以上の添加が必要である。Al脱酸効果は酸可溶Al:0.10質量%で飽和し、それ以上の添加は却って鋼材コストの上昇を招く。好ましくは、Al添加量を0.02〜0.04質量%の範囲とする。
Acid-soluble Al: 0.005 to 0.10% by mass
Al is an alloy component added as a deoxidizer in the steelmaking stage. In order to obtain a sufficient deoxidation effect, it is necessary to add 0.005% by mass or more as acid-soluble Al. The Al deoxidation effect is saturated at 0.10% by mass of acid-soluble Al, and addition beyond this causes an increase in steel material cost. Preferably, the amount of Al added is in the range of 0.02 to 0.04% by mass.

Ti:0.01〜0.15質量%
Tiは鋼中の固溶C,S及びNを析出物として固定する成分であり、析出強化により鋼板の高強度化に有効な成分である。析出物は、溶接熱影響部に導入された加工歪みの回復を抑制するとともに、溶接加熱時の固溶,再析出によって溶接熱影響部の軟化を防止する。また、NをTiNとして固定することにより、後述の有効B量の低減を防止する上でも有効な成分である。高強度化に及ぼすTiの添加効果は0.01質量%以上でみられるが、0.15質量%を超える過剰添加は、却って製造コストの上昇を招く。好ましくは0.01〜0.05質量%の範囲でTi含有量を選定する。
Ti: 0.01-0.15 mass%
Ti is a component that fixes solute C, S, and N in steel as precipitates, and is an effective component for increasing the strength of a steel sheet by precipitation strengthening. The precipitate suppresses the recovery of processing strain introduced into the weld heat affected zone, and prevents softening of the weld heat affected zone by solid solution and reprecipitation during welding heating. Further, by fixing N as TiN, it is an effective component in preventing the reduction of the effective B amount described later. The effect of addition of Ti on increasing the strength is seen at 0.01% by mass or more, but excessive addition exceeding 0.15% by mass leads to an increase in production cost. The Ti content is preferably selected in the range of 0.01 to 0.05 mass%.

Nb:0.01〜0.10質量%
NbはTiと同様にCと反応して析出物を生成し、析出強化により鋼板の高強度化に有効な成分である。Nbはまた、金属組織を微細化して鋼材の強度を向上させる。さらに、溶接部においてはTiと同様に加工歪みの回復を抑制するとともに、溶接加熱時の固溶,再析出によって溶接熱影響部の軟化を防止する。Nbの添加効果は0.01質量%以上でみられるが、0.10質量%を超える過剰添加では、その効果は飽和し、製造コストの上昇を招く。好ましくは0.01〜0.05質量%の範囲でNb含有量を選定する。
Nb: 0.01 to 0.10% by mass
Nb reacts with C in the same manner as Ti to produce precipitates, and is an effective component for increasing the strength of steel sheets by precipitation strengthening. Nb also refines the metal structure and improves the strength of the steel material. Further, in the welded portion, the recovery of processing strain is suppressed similarly to Ti, and the weld heat affected zone is prevented from being softened by solid solution and reprecipitation during welding heating. The effect of Nb addition is observed at 0.01% by mass or more, but when it exceeds 0.10% by mass, the effect is saturated and the manufacturing cost increases. The Nb content is preferably selected in the range of 0.01 to 0.05% by mass.

B:0.0005〜0.005質量%
Bは、本発明における特徴的な成分である。鋼材の焼入れ性を高めて、高強度化に極めて有効な成分である。また、Ti,Nbとの複合添加により、溶接熱影響部に導入された加工歪みの回復を抑制する効果を発揮し、溶接熱影響部の軟化部幅を狭くするとともに、軟化率も著しく小さくすることができる。
それらの効果は、0.0005質量%に満たないと認められず、0.005質量%を超えて含有させると強度は高くなるものの加工性が著しく低下する。したがって、B添加量は0.0005〜0.005質量%の範囲とする。好ましくは0.001〜0.003質量%の範囲である。
B: 0.0005-0.005 mass%
B is a characteristic component in the present invention. It is an extremely effective component for enhancing the hardenability of steel and increasing its strength. Moreover, the combined addition with Ti and Nb exerts an effect of suppressing recovery of processing strain introduced into the weld heat affected zone, narrows the softened portion width of the weld heat affected zone, and significantly reduces the softening rate. be able to.
Those effects are not recognized to be less than 0.0005% by mass, and if the content exceeds 0.005% by mass, the workability is remarkably lowered although the strength is increased. Therefore, the B addition amount is set to a range of 0.0005 to 0.005% by mass. Preferably it is the range of 0.001 to 0.003 mass%.

Mo:0.01〜0.30質量%
必要に応じて添加される合金成分であり、高強度化と溶接部の靭性向上に寄与する成分である。Moの添加効果は0.01質量%以上でみられる。性質改善効果は添加量が多いほど顕著であるが、0.30質量%の添加でその効果は飽和する。それ以上の添加は却って製造コストの上昇を招く。Moを添加する場合は0.01〜0.30質量%の範囲、好ましくは0.05〜0.1質量%の範囲で選定する。
Mo: 0.01 to 0.30% by mass
It is an alloy component that is added as necessary, and is a component that contributes to increasing the strength and improving the toughness of the weld. The addition effect of Mo is seen at 0.01 mass% or more. The effect of improving properties is more remarkable as the amount added is increased, but the effect is saturated by the addition of 0.30% by mass. On the other hand, the addition of more causes an increase in production cost. When Mo is added, it is selected in the range of 0.01 to 0.30% by mass, preferably in the range of 0.05 to 0.1% by mass.

C当量:0.25〜0.6質量%
C当量は、溶接熱影響部の軟化抑制に大きな影響を及ぼす指標である。本発明では、Moを含まない場合には式(3)を、Moを含む場合には式(4)を用いてC当量を求める。C含有量が主要因子であるが、C以外にも強度向上のために添加するMn及びSi、軟化率と軟化部幅を著しく小さく抑えることに有効なBやMoの含有量も因子である。
前述のように、加工強化により高強度化した冷延鋼板に対し、溶接による入熱が加わると、溶接部近傍の熱影響部に顕著な溶接軟化域が生じることが問題である。このとき、軟化の程度はC当量が大きい材料ほど軟化率及び軟化幅が小さく抑えられるため、溶接鋼管の特性を満足させる上で、C当量は0.25質量%以上が必要である。しかし、0.6質量%を超えるほどに増加すると、溶接部が著しく硬化し、溶接部の加工性が著しく損なわれるばかりでなく、溶接割れの原因にもなる。そこで、C当量が0.25〜0.6質量%の範囲に調整されるように成分設計されることが好ましい。
C当量=C+1/6Mn+1/24Si+5B ・・・(3)
C当量=C+1/6Mn+1/24Si+5B+1/4Mo ・・・(4)
C equivalent: 0.25 to 0.6% by mass
The C equivalent is an index that greatly affects the suppression of softening of the weld heat affected zone. In the present invention, the C equivalent is determined by using Equation (3) when Mo is not included and by Equation (4) when Mo is included. The C content is a major factor, but besides C, the contents of Mn and Si added to improve the strength, and the content of B and Mo which are effective in suppressing the softening rate and the width of the softened portion are also factors.
As described above, when heat input by welding is applied to a cold-rolled steel sheet that has been strengthened by work strengthening, there is a problem that a remarkable weld softening region occurs in a heat-affected zone near the weld. At this time, the degree of softening is such that the higher the C equivalent, the smaller the softening rate and softening width. Therefore, in order to satisfy the properties of the welded steel pipe, the C equivalent needs to be 0.25% by mass or more. However, if the amount is increased to exceed 0.6% by mass, the welded portion is markedly cured, and not only the workability of the welded portion is remarkably impaired, but also causes a weld crack. Therefore, it is preferable to design the components so that the C equivalent is adjusted to a range of 0.25 to 0.6 mass%.
C equivalent = C + 1 / 6Mn + 1 / 24Si + 5B (3)
C equivalent = C + 1 / 6Mn + 1 / 24Si + 5B + 1 / 4Mo (4)

続いて、本発明の溶接鋼管の製造方法について簡単に説明する。
熱間圧延
熱間強度の安定化を図るためAr3変態点以上の仕上げ温度で熱間圧延した後、450℃以上600℃以下の温度域で巻取り、変態により高強度化させる。仕上げ温度がAr3変態点を下回ると、変態に伴う熱間強度の変動が大きく圧延方向に板厚が大きく変動するゲージハンチングや幅絞り等により板厚精度が劣化しやすい。巻取り温度が高いほど鋼帯の延性が向上するが、600℃を超える温度域で巻取ると鉄系炭化物の生成に起因して強度が著しく低下する。巻取り温度の低下に伴って強度は上昇するが、過度に低い450℃未満の温度で巻取ると低温変態相によって硬質化し、冷間圧延時の板厚精度や冷間圧延後の形状が劣化しやすくなる。
したがって、熱間圧延は、仕上げ温度:Ar3変態点以上,巻取り温度:450℃以上600℃以下の条件で行うことが好ましい。
Then, the manufacturing method of the welded steel pipe of this invention is demonstrated easily.
In order to stabilize the hot rolling hot strength, after hot rolling at a finishing temperature not lower than the Ar 3 transformation point, winding is performed in a temperature range of 450 ° C. or higher and 600 ° C. or lower, and the strength is increased by transformation. When the finishing temperature is below the Ar 3 transformation point, the thickness accuracy is likely to deteriorate due to gauge hunting, width drawing, or the like in which the variation in hot strength accompanying transformation is large and the thickness changes greatly in the rolling direction. The higher the coiling temperature, the better the ductility of the steel strip. However, when coiled in a temperature range exceeding 600 ° C., the strength is significantly reduced due to the formation of iron-based carbides. The strength increases as the coiling temperature decreases, but if it is coiled at an excessively low temperature of less than 450 ° C, it becomes hard due to the low-temperature transformation phase, and the sheet thickness accuracy during cold rolling and the shape after cold rolling deteriorate. It becomes easy to do.
Therefore, the hot rolling is preferably performed under the conditions of finishing temperature: Ar 3 transformation point or higher and winding temperature: 450 ° C. or higher and 600 ° C. or lower.

冷間圧延
酸洗後の冷間圧延では、加工強化によって鋼帯を高強度化するため冷延率を10%以上に設定することが好ましい。10%に満たないと強度の上昇が小さい。10%以上の冷延率は、板厚精度を確保する上でも有効である。しかし、冷延率の増加に応じて高強度化も進行するが、過度に大きな冷延率は製造コストの上昇を招くので冷延率の上限を75%に設定する。
このように、酸洗後の冷延は、冷延率:10〜75%で行うことが好ましい。
In cold rolling after cold rolling pickling, it is preferable to set the cold rolling rate to 10% or more in order to increase the strength of the steel strip by work strengthening. If it is less than 10%, the increase in strength is small. A cold rolling rate of 10% or more is also effective in ensuring plate thickness accuracy. However, although the strength increases as the cold rolling rate increases, an excessively large cold rolling rate increases the manufacturing cost, so the upper limit of the cold rolling rate is set to 75%.
Thus, it is preferable to perform cold rolling after pickling at a cold rolling rate of 10 to 75%.

造管工程
熱延板は、TiやNbが鋼中のC,N,S等を析出物として固定することによって析出強化されている。さらに冷間圧延工程において加工強化によって高強度化された冷延鋼帯は、焼鈍工程を経ずに所定幅に裁断され、造管ラインに送られる。造管ラインでは、鋼帯をロール成形又はロールレス成形してオープンパイプ状に加工し、高周波溶接等により鋼帯の幅方向両端部を接合することにより、所定直径の溶接鋼管を製造する。
In the pipe forming process hot-rolled sheet, Ti and Nb are strengthened by precipitation by fixing C, N, S and the like in the steel as precipitates. Further, the cold-rolled steel strip, which has been strengthened by work strengthening in the cold rolling process, is cut into a predetermined width without going through the annealing process and sent to the pipe making line. In a pipe making line, a steel strip is roll-formed or roll-less shaped and processed into an open pipe shape, and both ends of the steel strip in the width direction are joined by high-frequency welding or the like to produce a welded steel pipe having a predetermined diameter.

また、所定幅に裁断された鋼帯を長手方向に切断して切板とし、板巻き成形とTIG溶接,MIG溶接,レーザ溶接等の種々の溶接方法により切板の両端部を溶接して所定直径の単管を製造することもできる。
このとき、本発明に従う耐溶接軟化性及び疲労特性に優れた高強度溶接鋼管とするためには、この造管工程の溶接の際に、得られる接合部の溶接金属近傍における溶接軟化部のΔHV×軟化部幅を150以下とする必要がある。ここで、前記したように、溶接軟化部のΔHVと軟化部幅を制御する具体的な手段のひとつがこの溶接の際の入熱量の調整であり、入熱量の調整は溶接電流や溶接速度の調整により行うことが一般的である。溶接電流が大きいほど、あるいは溶接速度が小さいほど溶接による入熱量は大きくなり、それに伴って溶接軟化部のΔHV及び軟化部幅は大きくなる。そこで、ΔHV×軟化部幅を150以下とするためには、溶接接合部に健全な溶接金属を形成できる入熱量を下回らない範囲で、できるだけ少ない入熱量で溶接を行うように溶接条件を選定する必要がある。
In addition, a steel strip cut to a predetermined width is cut in the longitudinal direction to form a cut plate, and both end portions of the cut plate are welded by various welding methods such as plate winding, TIG welding, MIG welding, laser welding and the like. A single tube of diameter can also be produced.
At this time, in order to obtain a high-strength welded steel pipe excellent in weld softening resistance and fatigue properties according to the present invention, the ΔHV of the weld softened part in the vicinity of the weld metal of the joint to be obtained at the time of welding in this pipe forming process. X The softened part width needs to be 150 or less. Here, as described above, one of the specific means for controlling the ΔHV of the weld softened portion and the width of the softened portion is the adjustment of the heat input during the welding, and the adjustment of the heat input is performed by adjusting the welding current and the welding speed. This is generally done by adjustment. As the welding current increases or the welding speed decreases, the heat input by welding increases, and accordingly, ΔHV and the width of the softened portion of the weld softened portion increase. Therefore, in order to set the ΔHV × softened portion width to 150 or less, the welding conditions are selected so that welding is performed with as little heat input as possible within a range that does not fall below the heat input capable of forming a sound weld metal in the weld joint. There is a need.

実施例1:
表1に示す成分組成の鋼スラブを1230℃に加熱し、Ar3変態点以上の温度で仕上げ圧延し、560℃で巻き取り、熱間圧延して板厚3.2mmの熱延鋼帯を製造した。各熱延鋼帯を酸洗した後、引き続き、圧延率10〜60%の冷間圧延を行って造管用鋼帯を用意した。
Example 1:
A steel slab having the composition shown in Table 1 is heated to 1230 ° C., finish-rolled at a temperature equal to or higher than the Ar 3 transformation point, wound at 560 ° C., and hot-rolled to form a hot-rolled steel strip having a thickness of 3.2 mm. Manufactured. After pickling each hot-rolled steel strip, cold rolling was subsequently performed at a rolling rate of 10 to 60% to prepare a steel strip for pipe making.

Figure 2008188641
Figure 2008188641

用意した造管用鋼帯のうち、鋼No.5とNo.10の圧延率60%の冷間圧延を施した試験片を用意し、平板状のまま溶接速度を変化させることにより溶接入熱を変化させ、入熱量に対する溶接軟化部のΔHV,軟化率,軟化部幅との関係を評価した。この際、溶接方法はMIG溶接法、溶接条件としては、電圧14V,電流70A,溶接速度は60〜85mm/分の範囲で変化させた。ここでは、溶接速度を変更することで入熱量を変化させたが、溶接電流によって行っても差し支えない。
なお、溶接熱影響部の軟化率,軟化部幅について、溶接部の断面を埋め込んで、JIS Z3101の「溶接熱影響部の最高硬さ試験方法」に準じて熱影響部の硬さをビッカース硬度計で測定し、次式により溶接軟化部のΔHV及び軟化率を求めた。また図1に示す関係を基準として軟化部幅を求めた。
溶接軟化部のΔHV=母材硬さ−溶接軟化部の硬さ
軟化率(%)=〔(母材硬さ−溶接軟化部の硬さ)/母材硬さ〕×100 ・・・(2)
その結果を表2に示した。
Among the prepared steel strips for pipe making, prepare test pieces that were cold-rolled with steel No. 5 and No. 10 with a rolling rate of 60%, and change the welding speed while maintaining a flat plate shape. The relationship between ΔHV of the weld softened part, the softening rate, and the softened part width with respect to the heat input was evaluated. At this time, the welding method was the MIG welding method, and the welding conditions were a voltage of 14 V, a current of 70 A, and a welding speed of 60 to 85 mm / min. Here, the heat input amount is changed by changing the welding speed, but it may be performed by a welding current.
Regarding the softening rate and softening width of the weld heat affected zone, the cross section of the weld zone is embedded and the hardness of the heat affected zone is determined according to JIS Z3101 “Maximum hardness test method for weld heat affected zone”. It measured with the meter, and calculated | required (DELTA) HV and the softening rate of the weld softening part by following Formula. Moreover, the softened part width | variety was calculated | required on the basis of the relationship shown in FIG.
ΔHV of weld softened portion = hardness of base metal−hardness of weld softened portion Softening rate (%) = [(base material hardness−hardness of weld softened portion) / base material hardness] × 100 (2 )
The results are shown in Table 2.

Figure 2008188641
Figure 2008188641

表2に示す結果からもわかるように、溶接速度を遅くして材料への入熱量を増加させれば、材料によらず溶接軟化部のΔHV及び軟化率は大きくなる。また軟化部幅も大きくなる。このように、溶接条件は、溶接軟化部のΔHV×軟化部幅を制御する手段のひとつである。
また、同一の溶接条件で鋼No.5とNo.10に溶接を行った場合、No.5(本発明鋼)はNo.10(比較鋼)よりも溶接軟化部のΔHV,軟化率,軟化部幅のいずれの点でも小さい。このように鋼組成もΔHV×軟化部幅を制御する手段のひとつであり、本発明鋼は、溶接軟化部のΔHV,軟化率,軟化部幅を小さく抑えることができていることがわかる。
As can be seen from the results shown in Table 2, if the welding speed is decreased to increase the heat input to the material, the ΔHV and the softening rate of the weld softened portion increase regardless of the material. Also, the width of the softened portion is increased. Thus, the welding condition is one of means for controlling ΔHV × softened part width of the weld softened part.
Moreover, when welding to steel No. 5 and No. 10 under the same welding conditions, No. 5 (steel of the present invention) has a ΔHV, softening rate, softening of the weld softened part than No. 10 (comparative steel). Small in any part width. Thus, the steel composition is also one of means for controlling ΔHV × softened portion width, and it can be seen that the steel of the present invention can suppress ΔHV, the softening rate, and the softened portion width of the weld softened portion.

一方、比較例の鋼No.10のようにΔHV,軟化率,軟化部幅が大きくなりやすい鋼では、ΔHV×軟化部幅≦150を満たす溶接条件を選定することが困難である。これは、次のような理由による。ΔHV,軟化率,軟化部幅が大きくなりやすい鋼であっても溶接による材料の入熱を少なくすればΔHV×軟化部幅を小さくすることは可能である。しかし溶接鋼管は管状に成形した冷延鋼板の端部同士をつき合わせ、溶接により接合して製造することから、入熱量が不足すると接合部の溶込みが不十分になり、健全な溶接金属が形成されないなどの不具合を生じる。したがって、健全な溶接部を形成させるために必要な入熱量を供給する溶接条件を採用すると、鋼の組成によっては溶接軟化部のΔHV×軟化部幅を150以下とする入熱量を上回ってしまうことがある。
すなわち、本発明の鋼組成を採用することと溶接条件を適正に選定することにより、溶接軟化部のΔHV×軟化部幅を150以下とすることが実現できる。
On the other hand, it is difficult to select a welding condition satisfying ΔHV × softening portion width ≦ 150 in a steel in which ΔHV, softening rate, and softening portion width are likely to be large like steel No. 10 of the comparative example. This is due to the following reason. Even if the steel tends to have a large ΔHV, softening rate, and softened part width, it is possible to reduce the ΔHV × softened part width by reducing the heat input of the material by welding. However, welded steel pipes are manufactured by joining the ends of cold-rolled steel sheets formed into a tubular shape and joining them together by welding. Therefore, if the heat input is insufficient, penetration of the joints becomes insufficient, and a sound weld metal is produced. Problems such as not being formed. Therefore, if the welding conditions for supplying the heat input necessary for forming a sound weld are adopted, depending on the steel composition, the heat input may exceed the heat input by setting the ΔHV × softened part width of the weld softened part to 150 or less. There is.
That is, by adopting the steel composition of the present invention and appropriately selecting the welding conditions, it is possible to achieve ΔHV × softened portion width of the weld softened portion of 150 or less.

実施例2:
次に、実施例1で用意した造管用鋼帯をスリットした後、ロール成形によりオープンパイプ状に加工し、鋼帯幅方向の両端部を溶接して直径31.8mmの溶接鋼管を製造した。この際、溶接方法はMIG溶接、溶接条件は、電圧14V,電流70A,溶接速度70mm/分とした。
溶接熱影響部のΔHV,軟化率及び軟化部幅を実施例1と同様の方法で求めた。ただし、鋼No.6から製造した溶接鋼管は、溶接部の断面を埋め込むために溶接鋼管を切断した際に溶接部から割れを生じた。このことは、C当量が大きい鋼No.6の素材は溶接部が脆いことを示している。
なお、冷間圧延して得られた鋼板について、JIS Z2201の5号試験片を用い、JIS Z2241に準じた室温での引張試験を行い、母材の引張強さを測定した。これらの結果を表3に示した。
Example 2:
Next, after the steel strip for pipe making prepared in Example 1 was slit, it was processed into an open pipe by roll forming, and both ends in the width direction of the steel strip were welded to produce a welded steel pipe having a diameter of 31.8 mm. At this time, the welding method was MIG welding, and the welding conditions were a voltage of 14 V, a current of 70 A, and a welding speed of 70 mm / min.
The ΔHV, softening rate, and softened part width of the weld heat affected zone were determined in the same manner as in Example 1. However, steel no. The welded steel pipe manufactured from No. 6 cracked from the welded part when the welded steel pipe was cut to embed the cross section of the welded part. This indicates that the material of steel No. 6 having a large C equivalent has a brittle weld.
In addition, about the steel plate obtained by cold rolling, the tensile test at room temperature according to JISZ2241 was done using the No. 5 test piece of JISZ2201, and the tensile strength of the base material was measured. These results are shown in Table 3.

Figure 2008188641
Figure 2008188641

表3の各試験片のうち、圧延率が60%である試験片(No.1,3,5,7,9,13,15,16,17,18)について、C当量と溶接軟化部の軟化率の関係を図2に示す。これらは、冷間圧延率が60%と高いために、いずれの試験片も引張強さが900N/mm2を超える高強度材である。
前述のように、加工強化により高強度化した冷延鋼板に対して溶接による入熱が加わると、溶接部近傍の熱影響部に顕著な溶接軟化域が生じる問題がある。このとき、本発明鋼であって、C当量が0.25〜0.6の範囲であれば、十分に高強度化した鋼板であっても軟化率を小さく抑えることができる。
Among each test piece of Table 3, about the test piece (No. 1, 3, 5, 7, 9, 13, 15, 16, 17, 18) whose rolling rate is 60%, C equivalent and welding softening part The relationship of the softening rate is shown in FIG. Since these have a high cold rolling rate of 60%, all the test pieces are high strength materials having a tensile strength exceeding 900 N / mm 2 .
As described above, when heat input by welding is applied to a cold-rolled steel sheet that has been strengthened by work strengthening, there is a problem that a remarkable weld softening region occurs in the heat-affected zone near the weld. At this time, if it is steel of this invention and C equivalent is the range of 0.25-0.6, even if it is the steel plate fully strengthened, a softening rate can be restrained small.

実施例3:
また、表3の各試験片のうち、圧延率が60%である試験片(No.1,3,5,7,9,13,15,16,17,18)について、造管用鋼帯を平板状のままで端面同士を付き合わせ溶接し、それからJIS5号試験片を切り出して溶接部付き引張試験片を作製した。溶接条件は、電圧14V,電流70A,溶接速度70mm/分のMIG溶接法とした。作製した溶接部付き引張試験片を用いて溶接部の引張強さを評価し、次式により引張強さの強度低下率を求めた。
強度低下率(%)=〔(冷延まま材の引張強さ−溶接部の引張強さ)/冷延まま材の引張強さ〕×100
また、疲労特性を評価するために、片振り引張疲労試験片を作製し、JIS Z3103の「アーク溶接継手の片振り引張疲れ試験方法」及びJIS Z2273「金属材料の疲れ試験方法通則」に準じて疲れ限度を測定し、疲れ限度比を求め、疲れ限度比0.5以上を合格とした。このように評価した溶接部の強度低下率と疲れ限度比を表4に示した。また、ΔHV×軟化部幅と疲れ限度比の関係を図3に示した。
なお、試験片No.10(鋼No.6)は溶接部が脆く加工性に乏しいため、強度低下率及び疲れ限度比の評価は行わなかった。
Example 3:
Moreover, about each test piece of Table 3, the steel strip for pipe making is used about the test piece (No.1,3,5,7,9,13,15,16,17,18) whose rolling rate is 60%. The end surfaces were attached to each other while being flat and welded, and then a JIS No. 5 test piece was cut out to produce a tensile test piece with a weld. The welding conditions were a MIG welding method with a voltage of 14 V, a current of 70 A, and a welding speed of 70 mm / min. The tensile strength of the welded portion was evaluated using the prepared tensile test piece with welded portion, and the strength reduction rate of the tensile strength was determined by the following formula.
Strength reduction rate (%) = [(tensile strength of cold-rolled material−tensile strength of welded portion) / tensile strength of cold-rolled material] × 100
In addition, in order to evaluate the fatigue characteristics, a single-swing tensile fatigue test specimen was prepared, and in accordance with JIS Z3103 “One-sided tensile fatigue test method for arc welded joints” and JIS Z2273 “General fatigue test method for metal materials”. The fatigue limit was measured to determine the fatigue limit ratio, and a fatigue limit ratio of 0.5 or higher was accepted. Table 4 shows the strength reduction rate and fatigue limit ratio of the welds evaluated in this way. Further, FIG. 3 shows the relationship between ΔHV × softened portion width and fatigue limit ratio.
In addition, since test piece No. 10 (steel No. 6) had a weak welded part and poor workability, the strength reduction rate and fatigue limit ratio were not evaluated.

Figure 2008188641
Figure 2008188641

表4に示すように、本発明鋼の溶接部は、比較鋼と比べて溶接軟化部のΔHV×軟化部幅が小さく、溶接部の強度低下も小さい。また、比較鋼と比べて疲労限度比は高い水準を示しており、本発明鋼による溶接部の耐疲労特性が優れていることが分かる。
このように、加工強化を適用した素材を用いる場合でも、本発明により、耐溶接軟化性及び疲労特性に優れた高強度溶接鋼管を得ることができる。
As shown in Table 4, the welded portion of the steel of the present invention has a smaller ΔHV × softened portion width of the weld softened portion and a lower strength reduction of the welded portion than the comparative steel. Further, the fatigue limit ratio is higher than that of the comparative steel, indicating that the fatigue resistance characteristics of the welded portion of the steel of the present invention are excellent.
As described above, even when a material to which work strengthening is applied is used, a high-strength welded steel pipe excellent in weld softening resistance and fatigue characteristics can be obtained by the present invention.

溶接熱影響部の軟化部幅及びΔHVを決める基準を説明する図The figure explaining the standard which determines the softening part width | variety and (DELTA) HV of a welding heat affected zone C当量と溶接軟化部の軟化率の関係を示した図The figure which showed the relationship between C equivalent and the softening rate of a weld softened part ΔHV×軟化部幅が疲れ限界比に及ぼす影響を示した図Diagram showing the effect of ΔHV × softening width on the fatigue limit ratio

Claims (3)

オープンパイプ状に成形した冷延鋼板の端部同士を溶接により接合して製造した溶接鋼管であって、前記接合部の溶接金属の近傍における溶接軟化部のΔHV及び軟化部幅をそれぞれ次の(1)式,(2)式のように定義するとき、溶接軟化部のΔHV×軟化部幅≦150であることを特徴とする耐溶接軟化性及び疲労特性に優れた高強度溶接鋼管。
溶接軟化部のΔHV=母材硬さ−溶接部最軟化部の硬さ ・・・(1)
軟化部幅=溶接の入熱によって母材より硬さが軟化した部分の幅(mm) ・・・(2)
A welded steel pipe manufactured by welding the ends of a cold-rolled steel sheet formed into an open pipe shape by welding, and the ΔHV and the width of the softened part in the vicinity of the weld metal of the joint are as follows: A high strength welded steel pipe excellent in weld softening resistance and fatigue characteristics, characterized in that ΔHV × softened part width ≦ 150 of the weld softened part when defined as in formulas (1) and (2).
ΔHV of welded softened portion = base metal hardness−hardness of welded softest portion (1)
Softened part width = width of the part softened from the base metal by welding heat input (mm) (2)
冷延鋼板が、C:0.01〜0.20質量%,Si:1.5質量%以下,Mn:2.5質量%以下,P:0.05質量%以下,S:0.02質量%以下,酸可溶Al:0.005〜0.10質量%,B:0.0005〜0.005質量%,Ti:0.01〜0.15質量%,及びNb:0.01〜0.10質量%を含有し、残部がFe及び不可避的不純物からなり、かつ下記(3)式で定義されるC当量が0.25〜0.6質量%になるように調整された成分組成を有する冷延鋼板である請求項1に記載の耐溶接軟化性及び疲労特性に優れた高強度溶接鋼管。
C当量=C+1/6Mn+1/24Si+5B ・・・(3)
Cold-rolled steel sheet has C: 0.01 to 0.20 mass%, Si: 1.5 mass% or less, Mn: 2.5 mass% or less, P: 0.05 mass% or less, S: 0.02 mass% % Or less, acid-soluble Al: 0.005 to 0.10% by mass, B: 0.0005 to 0.005% by mass, Ti: 0.01 to 0.15% by mass, and Nb: 0.01 to 0 .10 mass%, the balance is composed of Fe and inevitable impurities, and the component composition adjusted so that the C equivalent defined by the following formula (3) is 0.25 to 0.6 mass% The high-strength welded steel pipe excellent in weld softening resistance and fatigue characteristics according to claim 1, which is a cold-rolled steel sheet.
C equivalent = C + 1 / 6Mn + 1 / 24Si + 5B (3)
冷延鋼板が、C:0.01〜0.20質量%,Si:1.5質量%以下,Mn:2.5質量%以下,P:0.05質量%以下,S:0.02質量%以下,酸可溶Al:0.005〜0.10質量%,B:0.0005〜0.005質量%,Ti:0.01〜0.15質量%,Nb:0.01〜0.10質量%,及びMo:0.01〜0.30質量%を含有し、かつ下記(4)式で定義されるC当量が0.25〜0.6質量%になるように調整された成分組成を有する冷延鋼板である請求項1に記載の耐溶接軟化性及び疲労特性に優れた高強度溶接鋼管。
C当量=C+1/6Mn+1/24Si+5B+1/4Mo ・・・(4)
Cold-rolled steel sheet has C: 0.01 to 0.20 mass%, Si: 1.5 mass% or less, Mn: 2.5 mass% or less, P: 0.05 mass% or less, S: 0.02 mass% %, Acid-soluble Al: 0.005-0.10 mass%, B: 0.0005-0.005 mass%, Ti: 0.01-0.15 mass%, Nb: 0.01-0. 10% by mass, and Mo: a component containing 0.01 to 0.30% by mass and adjusted so that the C equivalent defined by the following formula (4) is 0.25 to 0.6% by mass The high-strength welded steel pipe excellent in weld softening resistance and fatigue characteristics according to claim 1, which is a cold-rolled steel sheet having a composition.
C equivalent = C + 1 / 6Mn + 1 / 24Si + 5B + 1 / 4Mo (4)
JP2007026343A 2007-02-06 2007-02-06 High-strength welded steel tube of excellent welding softening resistance and excellent fatigue characteristic Withdrawn JP2008188641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007026343A JP2008188641A (en) 2007-02-06 2007-02-06 High-strength welded steel tube of excellent welding softening resistance and excellent fatigue characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007026343A JP2008188641A (en) 2007-02-06 2007-02-06 High-strength welded steel tube of excellent welding softening resistance and excellent fatigue characteristic

Publications (1)

Publication Number Publication Date
JP2008188641A true JP2008188641A (en) 2008-08-21

Family

ID=39749246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007026343A Withdrawn JP2008188641A (en) 2007-02-06 2007-02-06 High-strength welded steel tube of excellent welding softening resistance and excellent fatigue characteristic

Country Status (1)

Country Link
JP (1) JP2008188641A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102102162A (en) * 2009-12-22 2011-06-22 鞍钢股份有限公司 Steel plate with low M-A content in high heat input welding heat affected zone
JP2015209560A (en) * 2014-04-25 2015-11-24 新日鐵住金株式会社 Full hard cold rolled steel sheet
JP2018062712A (en) * 2017-12-15 2018-04-19 新日鐵住金株式会社 Full hard cold rolled steel sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102102162A (en) * 2009-12-22 2011-06-22 鞍钢股份有限公司 Steel plate with low M-A content in high heat input welding heat affected zone
JP2015209560A (en) * 2014-04-25 2015-11-24 新日鐵住金株式会社 Full hard cold rolled steel sheet
JP2018062712A (en) * 2017-12-15 2018-04-19 新日鐵住金株式会社 Full hard cold rolled steel sheet

Similar Documents

Publication Publication Date Title
JP5200932B2 (en) Bend pipe and manufacturing method thereof
JP4761993B2 (en) Manufacturing method of ferritic stainless steel welded pipe for spinning
JP4948998B2 (en) Ferritic stainless steel and welded steel pipe for automotive exhaust gas flow path members
JP5151008B2 (en) Hot-rolled steel sheet for sour-resistant and high-strength ERW pipe with excellent HIC resistance and weld toughness and method for producing the same
JP4252974B2 (en) Clad steel base material and method for producing clad steel using the clad steel base material
RU2677554C1 (en) Steel plates for construction pipes or tubes, steel plates for construction pipes or tubes manufacturing method, and construction pipes or tubes
JP4655670B2 (en) Manufacturing method of high strength welded steel pipe with low yield ratio and excellent weld toughness
JP5641741B2 (en) High strength Zn-Al-Mg plated steel sheet with excellent bendability and molten metal embrittlement resistance
WO2012141220A1 (en) High-strength steel plate and high-strength steel pipe having excellent deformability and low-temperature toughness, and manufacturing methods therefor
EP1746175A1 (en) Super high strength uoe steel pipe and method for production thereof
JP5447698B2 (en) High-strength steel for steam piping and method for manufacturing the same
JP6288288B2 (en) Steel plate for line pipe, manufacturing method thereof and steel pipe for line pipe
JP6008042B2 (en) Steel plate for thick-walled steel pipe, method for producing the same, and thick-walled high-strength steel pipe
JP2007119861A (en) Method for producing high tensile-strength steel for welding structure excellent in high temperature strength and low temperature toughness
JP2000178688A (en) Resistance welded tube for hollow stabilizer, excellent in fatigue endurance
JP5028761B2 (en) Manufacturing method of high strength welded steel pipe
JP2008188641A (en) High-strength welded steel tube of excellent welding softening resistance and excellent fatigue characteristic
JP4741715B2 (en) High strength steel pipe and manufacturing method thereof
JP4193308B2 (en) Low carbon ferrite-martensitic duplex stainless steel welded steel pipe with excellent resistance to sulfide stress cracking
JP2005029882A (en) Method for manufacturing structural high-strength electric welded steel tube of excellent welding softening resistance
JPH05245657A (en) Production of high ni alloy clad steel sheet excellent in brittleness propagation stoppage property of base metal
JP4493447B2 (en) Manufacturing method of automobile frame material made of high-strength ERW steel pipe with excellent tapping properties
KR20190137300A (en) Cold-rolled steel sheet for flux cored wire and manufacturing the same
JP3491625B2 (en) Fe-Cr alloy with excellent initial rust resistance, workability and weldability
JP2000355729A (en) High strength line pipe excellent in low temperature toughness

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100406