JPH0237817B2 - - Google Patents

Info

Publication number
JPH0237817B2
JPH0237817B2 JP59055789A JP5578984A JPH0237817B2 JP H0237817 B2 JPH0237817 B2 JP H0237817B2 JP 59055789 A JP59055789 A JP 59055789A JP 5578984 A JP5578984 A JP 5578984A JP H0237817 B2 JPH0237817 B2 JP H0237817B2
Authority
JP
Japan
Prior art keywords
casting
temperature
mold
heat
cooling gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59055789A
Other languages
Japanese (ja)
Other versions
JPS60199562A (en
Inventor
Reijiro Hirata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHATAI KOGYO KK
Original Assignee
SHATAI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHATAI KOGYO KK filed Critical SHATAI KOGYO KK
Priority to JP5578984A priority Critical patent/JPS60199562A/en
Publication of JPS60199562A publication Critical patent/JPS60199562A/en
Publication of JPH0237817B2 publication Critical patent/JPH0237817B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/04Influencing the temperature of the metal, e.g. by heating or cooling the mould

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】 本発明は低融点合金の鋳造方法に関する。[Detailed description of the invention] The present invention relates to a method for casting low melting point alloys.

従来の低融点合金の鋳造方法は凝固時の収縮に
よる欠肉又はひけ巣欠陥を防止するため、押し湯
とか冷し金を併用し、鋳造欠陥の対策として鋳物
に余分の肉をつけて補い、或いは欠陥部分の位置
移動を図るために発熱剤を鋳型の局部に使つた
り、断熱材を使つたり、ヒーターで補熱する方法
がとられていた。更に鋳造材料に耐熱衝撃性を保
有させたり、熱変形量を最小にできるセラミツク
鋳型材料を用いたり、耐熱バインダーを使用する
ことがあつた。しかし、何れの方法も、大型の鋳
造物の寸法精度を出すことは不可能に近い。鋳造
材料の材質によつて異る収縮率が正確に解つてい
ても、鋳造物の形状や肉厚に変化がある場合は計
算通りの収縮や変化が行なわれない場合がある。
また、不規則な形状の鋳造物の場合は、鋳造時に
凝固から常温になる迄に温度降下する時間が局部
的に異る。即ち、同一の鋳造物の内部で温度差が
生ずることは、熱応力が発生することであり、鋳
造物は必ず捻れを生ずる。現在迄、捻れについて
原理的に納得できる対応工法が確立されて居ら
ず、通常1mにつき±1.0mm、2mにつき±4mm
の精度に鋳造することが限界と考えられ、一般の
鋳造品では1mにつき5乃至10mm、2mで7乃至
15mmの変形又は捻れが発生する。
Conventional casting methods for low melting point alloys use a riser or chiller in combination to prevent underfilling or shrinkage cavities due to shrinkage during solidification, and as a countermeasure for casting defects, extra thickness is added to the casting to compensate. Alternatively, in order to move the position of the defective part, methods have been used, such as using a heating agent locally in the mold, using a heat insulating material, or replenishing heat with a heater. Furthermore, casting materials have been made to have thermal shock resistance, ceramic mold materials that can minimize the amount of thermal deformation have been used, and heat-resistant binders have been used. However, with either method, it is nearly impossible to achieve dimensional accuracy for large-sized castings. Even if the shrinkage rate, which varies depending on the quality of the casting material, is accurately determined, if there are changes in the shape or wall thickness of the casting, the shrinkage or change may not occur as calculated.
Furthermore, in the case of irregularly shaped castings, the time it takes for the temperature to drop from solidification to room temperature during casting varies locally. That is, when a temperature difference occurs within the same casting, thermal stress is generated, and the casting inevitably becomes twisted. Until now, no method has been established to deal with twisting in principle, and it is usually ±1.0mm per 1m and ±4mm per 2m.
It is considered that the limit is to cast to an accuracy of
Deformation or twisting of 15mm occurs.

本発明は低融点合金を鋳造する場合に、鋳造物
内に熱センサーを内蔵させ、また鋳型内に冷却用
気体噴出器及びヒーターを内蔵させ、凝固時に於
ける鋳造物の内部の温度を平均化することによつ
て鋳造物の仕上りの精度を高めることを目的とし
た発明である。
When casting a low melting point alloy, the present invention incorporates a heat sensor inside the casting, and also incorporates a cooling gas jet and a heater inside the mold to average the temperature inside the casting during solidification. This invention aims to improve the finishing accuracy of castings by doing so.

本発明の実施例を図面について説明する。 Embodiments of the present invention will be described with reference to the drawings.

1は鋳型上部、2は前記鋳型上部1に対向させ
た鋳型下部で、該鋳型下部2の内部に凹部2aが
形成してあり、該凹部2aには造形冷し金3を内
包した通気性を有する凸型のセラミツク鋳型4が
固定してある。そして、鋳型上部1内の底部1a
と鋳型下部2内の左右の側部2b,2b及び底部
2cの上方と造形冷し金3内の左右の側方3a,
3aとに、前記鋳型上部1と鋳型下部2とによつ
て成形される鋳造物イに接近して対向させた複数
個所に冷却用気体噴出器5と電熱ヒーター6を
夫々複数個づつ埋設する。前記冷却用気体噴出器
5は、例えば窒素ガスの如き冷却用気体を供給す
る機器(図示せず)に接続してあるパイプ7に、
多数の噴出孔5aを穿設してある頭部5bを接続
して形成してある。また、前記電熱ヒーター6は
電源(図示せず)に導線8によつて接続してあ
る。更に、鋳造下部2の凹部2a内には、冷却用
気体噴出器5の夫々に接近して対向した位置に
夫々熱センサー9を設置し、夫々の熱センサー9
は温度計測用コンピユーター(図示せず)に接続
してある。
Reference numeral 1 indicates an upper part of the mold, and 2 indicates a lower part of the mold which faces the upper part 1 of the mold. A recess 2a is formed inside the lower part 2 of the mold, and the recess 2a contains an air permeable cooling mold 3. A convex ceramic mold 4 is fixed therein. And the bottom part 1a inside the mold upper part 1
and above the left and right side parts 2b, 2b and bottom part 2c in the mold lower part 2, and the left and right sides 3a in the shaping chiller 3,
3a, a plurality of cooling gas ejectors 5 and a plurality of electric heaters 6 are buried in a plurality of locations close to and facing the casting A formed by the mold upper part 1 and the mold lower part 2. The cooling gas blower 5 connects to a pipe 7 connected to a device (not shown) that supplies cooling gas such as nitrogen gas, for example.
It is formed by connecting a head 5b having a large number of ejection holes 5a. Further, the electric heater 6 is connected to a power source (not shown) through a conductive wire 8. Further, in the recess 2a of the casting lower part 2, a thermal sensor 9 is installed at a position close to and facing each of the cooling gas ejectors 5.
is connected to a temperature measuring computer (not shown).

図中、10は皮シボ模様である。 In the figure, 10 is a leather grain pattern.

次に本発明による鋳造方法について説明する
と、鋳型下部2の凹部2aに、例えば溶湯状態の
亜鉛合金を注湯すると同時に各々の熱センサー9
に起電力が発生するので、その起電力をAD変換
器に導いてデジタル信号に変換して温度計測用コ
ンピユーターに入力すると、温度計測用コンピユ
ーターは各個所の熱センサー9からの信号を感知
して平均温度を計算する。そして鋳造物に於ける
平均温度より高い個所に対しては、該個所に最も
近い冷却用気体噴出器5を作動させるための電磁
バルブに「開」の信号を指令して冷却用気体噴出
器5から冷却用気体を噴出する。噴出した冷却用
気体は噴出器5の周辺に浸透して鋳造物イに於け
る局所的な熱を平均温度まで降下させる。また鋳
造物に於ける平均温度より低い個所に対しては、
該個所に最も近く配置してある電熱ヒーター6に
信号を与えてリレーを介して電熱ヒーター6に通
電して加熱し、該個所を平均温度まで上昇させ
る。かくの如く鋳造物の凝固開始時点から、鋳造
物の各個所に埋設した熱センサー9によつて30秒
又は1分単位間隔で各個所の温度を計測し、鋳造
物の平均温度をコンピユーターで計算し、平均温
度より高い温度の個所には該個所に配置されてい
る冷却用気体噴出器5にコンピユーターからの指
令を与えて冷却用気体を噴出させて該個所の周辺
の鋳型上部1或いは鋳型下部2に潜在している熱
エネルギーを持つた雰囲気空気を霧散させて局部
的に温度の低い界域を作り出すと、その界域に直
面する鋳造物の部位との間の熱落差が大きくな
り、その界域からより多くの熱が放出され、漸
次、鋳造物の一般部とその界域との熱落差も鋳造
物内部の熱移動も手伝つて平均温度に近づくよう
に収斂される。一方、平均温度より低い個所に対
しては、熱センサー9及びコンピユーターによ
り、その個所に配置されている電熱ヒーター6に
通電を指令して発熱を行うことによつて、その周
辺の鋳型と雰囲気の温度は上昇するので、鋳造物
から放出しようとする熱エネルギーの水準より高
くなつて、鋳造物の熱放出を阻止するので、その
他の高い温度部位から通常放熱又は強制制御によ
る冷却放熱と相俟つて、温度の低い部位も平均温
度へと収斂される。
Next, the casting method according to the present invention will be described. For example, a molten zinc alloy is poured into the recess 2a of the mold lower part 2, and at the same time each heat sensor 9 is
Since an electromotive force is generated in the area, the electromotive force is led to an AD converter, converted into a digital signal, and inputted to the temperature measurement computer.The temperature measurement computer senses the signals from the heat sensors 9 at each location. Calculate the average temperature. For areas where the temperature is higher than the average temperature in the casting, an "open" signal is commanded to the electromagnetic valve for operating the cooling gas ejector 5 closest to the area, and the cooling gas ejector 5 is activated. Cooling gas is ejected from the The ejected cooling gas permeates around the ejector 5 and lowers the local heat in the casting A to the average temperature. Also, for areas where the temperature is lower than the average temperature in the casting,
A signal is given to the electric heater 6 disposed closest to the location, and electricity is supplied to the electric heater 6 via the relay to heat the location and raise the temperature of the location to the average temperature. As described above, from the time when the casting starts to solidify, the temperature at each location is measured at intervals of 30 seconds or 1 minute using the heat sensor 9 embedded in each location of the casting, and the average temperature of the casting is calculated by a computer. However, at a point where the temperature is higher than the average temperature, a command is given from the computer to the cooling gas jetter 5 disposed at that point to blow out cooling gas to the upper part 1 of the mold or the lower part of the mold around the point. When atmospheric air with latent thermal energy is atomized to create a locally low-temperature boundary area, the thermal drop between the part of the casting facing that boundary area increases, and the More heat is released from the boundary area, and the temperature gradually converges toward the average temperature due to the heat drop between the general part of the casting and the boundary area, as well as the heat transfer within the casting. On the other hand, for areas where the temperature is lower than the average temperature, the heat sensor 9 and computer command the electric heater 6 placed at that area to generate heat, thereby reducing the surrounding mold and atmosphere. As the temperature rises, it becomes higher than the level of thermal energy that is to be released from the casting, and this prevents the casting from releasing heat, so that it is combined with normal heat radiation or cooling heat radiation by forced control from other high temperature parts. , lower temperature areas are also converged to the average temperature.

依つて、本発明によれば鋳造開始と同時に鋳型
の放熱を制御することにより、鋳造物の温度を均
衡させながら冷却するので、熱応力の発生が阻止
され、捻れがなく、且つ均一に収縮する精度の高
い鋳造物を得ることができ、例えば1mの鋳造物
につき、0.3mm程度、2mの鋳造物で0.5mm程度の
精度で鋳造することが可能で、従来の工法による
場合に比べ極めて高精度で鋳造出来る。従つて従
来は粗素材を機械加工した後に組立てるまでに必
要とされていた倣い加工と仕上加工が省畧出来、
例えば樹脂成形型(INJ、SMC、BMC)或いは
1.2mm乃至2.3mmの薄板鋼板を加工するためのプレ
ス絞り型或いは成形型等の各種の雄型や雌型の板
厚を介する精度出しを鋳造で作ることが出来、そ
の生産日時は在来の2分の1となり、また生産コ
ストも従来の2分の1乃至3分の1に削減され、
精度向上による工業的意義は極めて大である。
Therefore, according to the present invention, by controlling the heat dissipation of the mold at the same time as casting starts, the temperature of the cast is balanced and cooled, thereby preventing the generation of thermal stress, eliminating twisting, and uniformly shrinking. It is possible to obtain highly accurate castings, for example, it is possible to cast with an accuracy of about 0.3mm for a 1m casting, and about 0.5mm for a 2m casting, which is extremely high precision compared to conventional methods. Can be cast with Therefore, the profiling and finishing processes that were previously required after machining the rough material and before assembly can be saved.
For example, resin molds (INJ, SMC, BMC) or
It is possible to make various types of male and female molds such as press drawing molds or forming molds for processing thin steel sheets of 1.2 mm to 2.3 mm with precision through the plate thickness, and the production date and time are the same as conventional ones. The production cost has been reduced to one-half to one-third of the conventional cost.
The industrial significance of improved precision is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明により鋳造上型を鋳造する場合の装
置の断面図である。 符号、1……鋳型上部、2……鋳型下部、2a
……凹部、2b,2b……側部、2c……底部、
3……造形冷し金、3a,3a……側方、4……
セラミツク鋳型、5……冷却用気体噴出器、5a
……噴出孔、5b……頭部、6……電熱ヒータ
ー、7……パイプ、8……導線、9……熱センサ
ー、10……皮シボ模様、イ……鋳造物。
The figure is a sectional view of an apparatus for casting an upper mold according to the present invention. Code, 1...Mold upper part, 2...Mold lower part, 2a
... recessed part, 2b, 2b ... side part, 2c ... bottom part,
3... Modeling cold metal, 3a, 3a... Side, 4...
Ceramic mold, 5... Cooling gas blower, 5a
...Blowout hole, 5b...Head, 6...Electric heater, 7...Pipe, 8...Conductor, 9...Heat sensor, 10...Leather grain pattern, A...Cast.

Claims (1)

【特許請求の範囲】[Claims] 1 鋳造用鋳型の内部に電熱ヒーターと冷却用気
体噴出器を配置し、鋳造物内部に熱センサーを埋
め込み、鋳造物の各箇所が凝固する際の放熱から
常温に至る迄の徐冷却過程の温度を熱センサーに
より経時的に計測し、熱センサーの温度計測信号
をコンピユーターに与えて温度の測定時点に於け
る鋳造物内の平均温度より高い個所には冷却用気
体噴出器より冷却用気体を噴出させて強制的に冷
却させ、平均温度より低い個所は電熱ヒーターに
より補熱し、鋳造物を取囲む鋳型に含蓄された熱
エネルギーを制御することにより、鋳造物全体の
温度を均衡させながら徐冷しつつ鋳造することを
特徴とする低融点合金の精密鋳造方法。
1. An electric heater and a cooling gas jet are placed inside the casting mold, and a thermal sensor is embedded inside the casting to measure the temperature during the gradual cooling process from heat dissipation when each part of the casting solidifies to room temperature. is measured over time by a heat sensor, and the temperature measurement signal from the heat sensor is sent to a computer. Cooling gas is ejected from a cooling gas ejector to areas where the temperature inside the casting is higher than the average temperature at the time of temperature measurement. The temperature of the entire casting is balanced by forcing it to cool down, supplementing heat with an electric heater in areas where the temperature is lower than the average temperature, and controlling the thermal energy stored in the mold that surrounds the casting. A precision casting method for low melting point alloys, which is characterized by casting.
JP5578984A 1984-03-23 1984-03-23 Casting method of low melting alloy Granted JPS60199562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5578984A JPS60199562A (en) 1984-03-23 1984-03-23 Casting method of low melting alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5578984A JPS60199562A (en) 1984-03-23 1984-03-23 Casting method of low melting alloy

Publications (2)

Publication Number Publication Date
JPS60199562A JPS60199562A (en) 1985-10-09
JPH0237817B2 true JPH0237817B2 (en) 1990-08-27

Family

ID=13008674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5578984A Granted JPS60199562A (en) 1984-03-23 1984-03-23 Casting method of low melting alloy

Country Status (1)

Country Link
JP (1) JPS60199562A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61172602A (en) * 1985-01-28 1986-08-04 Sumitomo Metal Ind Ltd Manufacture of one-side flat, different-thickness steel sheet
FR2679161B1 (en) * 1991-07-19 1995-12-08 Giat Ind Sa PROCESS AND CAST MOLD FOR IMPROVING THE FINESSE OF GRAIN OF MOLDED METAL PARTS.
GB9209308D0 (en) * 1992-04-30 1992-06-17 Burdett Savile Casting technique
JPH06126383A (en) * 1992-10-23 1994-05-10 Sintokogio Ltd Method for controlling die temperature in die casting equipment and device therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5841941A (en) * 1981-09-03 1983-03-11 株式会社豊田自動織機製作所 Apparatus for measuring length of weft yarn

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5841941A (en) * 1981-09-03 1983-03-11 株式会社豊田自動織機製作所 Apparatus for measuring length of weft yarn

Also Published As

Publication number Publication date
JPS60199562A (en) 1985-10-09

Similar Documents

Publication Publication Date Title
WO2011081016A1 (en) Casting method and casting device for cast-metal object
US3931847A (en) Method and apparatus for production of directionally solidified components
US5415219A (en) Grid casting mold for the casting of lead grids for accumulators and methods for its manufacture
JPH0237817B2 (en)
EP1038987A1 (en) Method of reducing distortion in a spray formed rapid tool
US20230219129A1 (en) Hybrid casting process for structural castings
US5832981A (en) Construction and method of making heat-exchanging cast metal forming tool
CN1022174C (en) Method for controlling expansion of metal mould and continuous metal casting machine
JPH05200485A (en) Graphite casting mold
JPS5911383B2 (en) Low-pressure casting mold for tire molding and vulcanization
US5213149A (en) Mold and method for making variable thickness cast articles
JPH07155897A (en) Mold structure and casting method
CN100418671C (en) Improvement of feeding efficiency by laser heating of metal in riser head
US20020170700A1 (en) Metal-casting method and apparatus, casting system and cast-forging system
CN111185576A (en) Casting tool, such as a core shooting tool or a permanent mold, and corresponding casting method
US3954132A (en) Manufacture of cast ferrous metal dies
JP2632379B2 (en) Mold cooling method and apparatus
CN208825476U (en) A kind of effective elbow casting mold of production radiation
JP2004090064A (en) Method for controlling temperature of die-casting mold
JP2001096578A (en) Plastic molding apparatus
JPS57171565A (en) Cooling method for die
JP2581982Y2 (en) Mold
JPS58157548A (en) Production of mold
JPH0647148B2 (en) Mold
JPH07156151A (en) Mold