JPH0237723A - Stress migration prevention method - Google Patents

Stress migration prevention method

Info

Publication number
JPH0237723A
JPH0237723A JP18697588A JP18697588A JPH0237723A JP H0237723 A JPH0237723 A JP H0237723A JP 18697588 A JP18697588 A JP 18697588A JP 18697588 A JP18697588 A JP 18697588A JP H0237723 A JPH0237723 A JP H0237723A
Authority
JP
Japan
Prior art keywords
wiring
stress migration
stress
heated
frequency heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18697588A
Other languages
Japanese (ja)
Inventor
Ensuke Ishibashi
石橋 延介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP18697588A priority Critical patent/JPH0237723A/en
Publication of JPH0237723A publication Critical patent/JPH0237723A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To prevent stress migration from being generated after producing LSI by performing high-frequency heating treatment entirely and relieving stress migration generated on a metallizing layer. CONSTITUTION:When a material is accumulated and grown on a semiconductor substrate 1, it is eliminated, impurity ions are implanted and diffused, heating and metallizing is performed to allow an integrated circuit to be formed and then an Al wiring 3 at the final state is completed, a high-frequency heating treatment is performed entirely to relieve residual stress generated at the metallizing layer. Thus, only the Al wiring 3 is heated by high-frequency heating and no SiO2 which is an insulation film 2 is heated. Also, since the periphery is fixed by SiO2 although the Al wiring 3 tries to expand, no expansion is possible, thus resulting in plastic deformation. Thus, continuous heating achieves recovery, recrystallization, and relieves residual tensile stress, thus preventing stress migration from occurring.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はLSI、特に、VLSIの配線に生じ得るスト
レスマイグレーシコンを防【ヒする方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for preventing stress migration from occurring in the wiring of an LSI, particularly a VLSI.

(従来の技術) 従来、大規模集積回路(LSI)において、種々の半導
体装置を所望のように形成する際、その種々の半導体領
域間の相互配線、及び外部装置への接続配線にΔl配線
を用いる場合が殆どである。近年I、S+及び超大規模
集積回路(VLSI)の高密度化及び寸法の微細化が進
むにつれて、多層配線構造が採用されるようになり、配
線自体の断面積も小さくなす、エレクトロマイグレーシ
ョン及びストレスマイグレーションと称される不所望な
現象の生じる問題が発生してきた。
(Prior Art) Conventionally, when forming various semiconductor devices as desired in a large-scale integrated circuit (LSI), Δl wiring is used for mutual wiring between the various semiconductor regions and connection wiring to external devices. It is used in most cases. In recent years, as the density and size of I, S+ and very large scale integrated circuits (VLSI) have increased, multilayer wiring structures have been adopted, and the cross-sectional area of the wiring itself has become smaller, resulting in electromigration and stress migration. A problem has arisen in which an undesirable phenomenon called .

(発明が解決しようとする課題) かかるAI配線においては、アルミニウム(AQ)配線
を行った後、層間絶縁膜として5iOy膜を蒸着するが
、蒸着時の温度上昇は約400℃にも達する。
(Problems to be Solved by the Invention) In such AI wiring, a 5iOy film is deposited as an interlayer insulating film after aluminum (AQ) wiring, but the temperature rise during deposition reaches about 400°C.

又、AIの蒸着温度はほぼ200’Cである。従って、
ΔlとS+O,の線熱膨張係数の相違(A I、 23
.5 : 5ift。
Further, the deposition temperature of AI is approximately 200'C. Therefore,
Difference in linear thermal expansion coefficient between Δl and S+O (A I, 23
.. 5: 5ift.

0.6(IF’℃−1))により、冷却後、Δlには引
張応力が残留したままとなる。従って、長期に亘って使
用するに従い、AI配線の一部に応力集中が発生し、こ
れが断線の原因になっていた。特に、この傾向は、サブ
ミクロン中位の半導体装置等Af配線が細(なる場合に
著しく広る。
0.6(IF'°C-1)), tensile stress remains in Δl after cooling. Therefore, as the AI wiring is used for a long period of time, stress concentration occurs in a portion of the AI wiring, which causes wire breakage. In particular, this tendency becomes more pronounced when the Af wiring becomes thin, such as in a semiconductor device of medium submicron size.

本発明は、上述した点に鑑みなされたもので、LS1製
造後に生じ得るストレスマイグレーションを防止する方
法を提供することを目的とする。
The present invention has been made in view of the above-mentioned points, and an object of the present invention is to provide a method for preventing stress migration that may occur after LS1 manufacturing.

(課題を解決するための手段) 本発明は、半導体基板上に、材料堆猜又は成長、材料除
去、不純物のイオン注入及び拡散、加熱、金属化等の処
理を施して集積回路を形成し、最終段階のAI配線を終
了した時点で、全体に高周波加熱処理を施して、金属化
層に生じていた残留応力を緩和し得るようにしたことを
特徴とするものである。
(Means for Solving the Problems) The present invention forms an integrated circuit by subjecting a semiconductor substrate to processes such as material deposition or growth, material removal, impurity ion implantation and diffusion, heating, metallization, etc. This is characterized in that when the final stage of AI wiring is completed, the entire structure is subjected to high-frequency heat treatment to relieve residual stress generated in the metallized layer.

又、本発明はAI配線のみならず、Au配線等の金属配
線にも適用し得ることは勿論である。
Furthermore, it goes without saying that the present invention can be applied not only to AI wiring but also to metal wiring such as Au wiring.

(作用) 高周波加熱を行うことによって、Afは導体であるから
加熱されるが、Sin、は絶縁物であるため殆ど加熱さ
れず、従って、A/配線のみが膨張し、周囲が固定され
ていることにより塑性変形を起こし、更に加熱すること
により回復し、再結晶するため、AI配線の残留引張応
力が緩和されるようになり、その後のストレスマイグレ
ーションをも防止することができる。
(Function) By performing high-frequency heating, Af is heated because it is a conductor, but Sin is hardly heated because it is an insulator, so only the A/wiring expands and the surrounding area is fixed. As a result, plastic deformation occurs, which is recovered and recrystallized by further heating, so that residual tensile stress in the AI wiring can be alleviated, and subsequent stress migration can also be prevented.

(実施例) 第2図は、LSI基板(例えばシリコン基板)1上に約
400°Cの温度で設けられた絶縁物(Sin、膜)2
及び4並びに200℃の温度で設けられたAt配線3の
一般的に構成されたLSI装置を断面で示す。この構成
から明らかなように、At配線3はS+Ot膜2及び4
によって剛固に固着されている。この状態は、Sin、
膜2及び4の熱処理温度が400℃であり、At配線3
の熱処理温度が200°Cであるため、加熱中に夫々の
線熱膨張係数で熱膨張し、その後の冷却によりAt配線
3に引張応力が残存している。これが長期の使用に従っ
てその一部分に応力集中を生ぜしめ、第3図に示すよう
に、AI配線にくびれが生じる。このくびれ部分5にさ
らに応力集中が生じ、断線へと発展するようになる。
(Example) Figure 2 shows an insulator (Sin, film) 2 provided on an LSI substrate (for example, a silicon substrate) 1 at a temperature of about 400°C.
4 and 4, and a generally configured LSI device with At wiring 3 provided at a temperature of 200° C. is shown in cross section. As is clear from this configuration, the At wiring 3 is connected to the S+Ot films 2 and 4.
It is firmly fixed by. This state is Sin,
The heat treatment temperature of films 2 and 4 is 400°C, and the At wiring 3
Since the heat treatment temperature is 200°C, the At wires 3 undergo thermal expansion according to their respective linear thermal expansion coefficients during heating, and tensile stress remains in the At wire 3 due to subsequent cooling. As a result of long-term use, stress concentration occurs in a portion of the wiring, resulting in a constriction in the AI wiring, as shown in FIG. Stress concentration further occurs in this constricted portion 5, leading to wire breakage.

従って、第1図に示すように、LSI又はyt、s+装
置の完成後、全体を高周波加熱装置により高温に加熱す
ると、Δl配線のみ加熱され、絶縁膜であるSiO2及
び半導体層は加熱されない。従って、Δl配線は膨張し
ようとするが、周りをSin、で固定されているため、
膨張できず、塑性変形を起こす。従って、そのまま加熱
を続けることにより回復し、再結晶し、その結果、残留
引張応力を緩和することができる。
Therefore, as shown in FIG. 1, when an LSI or yt, s+ device is completed and the entire device is heated to a high temperature using a high frequency heating device, only the Δl wiring is heated, and the insulating film SiO2 and the semiconductor layer are not heated. Therefore, the Δl wiring tries to expand, but since it is surrounded by Sin,
It cannot expand and undergoes plastic deformation. Therefore, by continuing to heat it, it recovers and recrystallizes, and as a result, the residual tensile stress can be alleviated.

(実験例) 本発明による高周波加熱を行ったLSIと、高周波加熱
を行っていない1.SIとのストレスマイグレーション
の発生数を比較したところ、次の通りであった。
(Experimental example) LSIs subjected to high frequency heating according to the present invention and 1. LSI not subjected to high frequency heating. A comparison of the number of stress migration occurrences with SI was as follows.

(発明の効果) 丘述したように、本発明によれば、高周波加熱によりA
tのみが加熱され、絶縁膜であるSio、は加熱されな
い。従って、へl配線は膨張しようとするが、周りをS
in、で固定されているため、膨張できず、塑性変形を
起こす。従って、そのまま加熱を続けることにより回復
し、再結晶し、残留引張応力を緩和することができる。
(Effects of the Invention) As described above, according to the present invention, A
Only t is heated, and the insulating film Sio is not heated. Therefore, although the Tol wiring tries to expand, the surrounding S
Since it is fixed in, it cannot expand and undergoes plastic deformation. Therefore, by continuing to heat it, it recovers, recrystallizes, and relieves the residual tensile stress.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるストレスマイグレーションの防止
方法によって製造された集積回路の一部分を示す断面図
、 第2図は、集積回路の基板」二に設けられたAI配線及
び層間絶縁層を示す断面図、 第3図は同じくその従来例を示す断面図である。 半導体基板(シリコン基板) 絶縁層(S102膜) A!配線 絶縁層(シリコン基板) 幅狭部分
FIG. 1 is a cross-sectional view showing a part of an integrated circuit manufactured by the method for preventing stress migration according to the present invention. FIG. 2 is a cross-sectional view showing AI wiring and interlayer insulation layers provided on the integrated circuit substrate. , FIG. 3 is a sectional view showing the conventional example. Semiconductor substrate (silicon substrate) Insulating layer (S102 film) A! Wiring insulating layer (silicon substrate) narrow part

Claims (1)

【特許請求の範囲】[Claims] 1、半導体基板上に、材料堆積又は成長、材料除去、不
純物のイオン注入及び拡散、加熱、金属化等の処理を施
して集積回路を形成した後、全体に高周波加熱処理を施
して、金属化層に生じていたストレスマイグレーション
を緩和するようにしたことを特徴とするストレスマイグ
レーションの防止方法。
1. After forming an integrated circuit on a semiconductor substrate by performing processes such as material deposition or growth, material removal, ion implantation and diffusion of impurities, heating, and metallization, the whole is subjected to high-frequency heat treatment to metallize it. A method for preventing stress migration, characterized in that stress migration occurring in a layer is alleviated.
JP18697588A 1988-07-28 1988-07-28 Stress migration prevention method Pending JPH0237723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18697588A JPH0237723A (en) 1988-07-28 1988-07-28 Stress migration prevention method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18697588A JPH0237723A (en) 1988-07-28 1988-07-28 Stress migration prevention method

Publications (1)

Publication Number Publication Date
JPH0237723A true JPH0237723A (en) 1990-02-07

Family

ID=16198001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18697588A Pending JPH0237723A (en) 1988-07-28 1988-07-28 Stress migration prevention method

Country Status (1)

Country Link
JP (1) JPH0237723A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009142739A (en) * 2007-12-13 2009-07-02 Panasonic Corp Apparatus and method for removal of nitrogen oxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009142739A (en) * 2007-12-13 2009-07-02 Panasonic Corp Apparatus and method for removal of nitrogen oxide

Similar Documents

Publication Publication Date Title
US5581125A (en) Interconnect for semiconductor devices and method for fabricating same
KR900001652B1 (en) Semiconductor device and manufacturing method thereof
JPS6043858A (en) Manufacture of semiconductor device
CA1238429A (en) Low resistivity hillock free conductors in vlsi devices
JPH0237723A (en) Stress migration prevention method
KR960000948B1 (en) Fabricating method of semiconductor device
US6638856B1 (en) Method of depositing metal onto a substrate
US5024969A (en) Hybrid circuit structure fabrication methods using high energy electron beam curing
JP3504211B2 (en) Method for manufacturing semiconductor device
JPS5918654A (en) Manufacture of dielectric isolation substrate
GB2169446A (en) Integrated circuit multilevel metallization and method for making same
JPS62165328A (en) Method of alloying metal after oxidization
JPH04354337A (en) Manufacture of semiconductor device
KR0170478B1 (en) Fabrication method of metal wire by multiple annealing method
KR100192168B1 (en) Multilayered wiring production on semiconductor device
KR930002662B1 (en) Fine metal wiring building method
JPS62243343A (en) Multilayer interconnection electrode film structure semiconductor device
KR0140735B1 (en) Semiconductor cevice fabrication method
JPH01298744A (en) Manufacture of semiconductor device
JPH04326521A (en) Semiconductor integrated circuit device and its manufacture
KR930011461B1 (en) Method of forming submicron wiring of semiconductor integrated circuit
KR0137813B1 (en) Metal wiring method of mosfet
JPH0666312B2 (en) Method for manufacturing semiconductor device
JPH06209001A (en) Manufacture of semiconductor device
JPS62117344A (en) Wiring forming method