JPH0237672A - Manufacture of alkaline secondary battery - Google Patents

Manufacture of alkaline secondary battery

Info

Publication number
JPH0237672A
JPH0237672A JP63188687A JP18868788A JPH0237672A JP H0237672 A JPH0237672 A JP H0237672A JP 63188687 A JP63188687 A JP 63188687A JP 18868788 A JP18868788 A JP 18868788A JP H0237672 A JPH0237672 A JP H0237672A
Authority
JP
Japan
Prior art keywords
cadmium
negative electrode
electrode plate
battery
battery case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63188687A
Other languages
Japanese (ja)
Other versions
JP2926233B2 (en
Inventor
Masayuki Yoshimura
公志 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP63188687A priority Critical patent/JP2926233B2/en
Publication of JPH0237672A publication Critical patent/JPH0237672A/en
Application granted granted Critical
Publication of JP2926233B2 publication Critical patent/JP2926233B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve discharge performance either by pouring an alkaline electrolyte into a battery case after inserting an electrode pile of specific cadmium negative poles or by reversing the sequence of pouring and insertion. CONSTITUTION:An electrode pile body comprising cadmium negative pole plates containing 40% or more by volume of cadmium oxide, positive pole plates, and separators is inserted into a battery case followed by the pouring of an alkaline electrolyte or the sequence of the insertion and pouring is reversed. As a result, the thickness of the negative pole plates increases because the cadmium negative electrode plates containing cadmium oxide come into contact with the alkaline electrolyte in the battery case. The overall thickness of the electrode pile also increases and the electrode pile body is favorable compressed and the distances between the electrodes become uniform. This makes it possible to reduce the variance in the discharge capacity and reduce the lowering of capacity during high rate discharging.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はカドミウム負極板を備えたアルカリ二次電池の
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing an alkaline secondary battery equipped with a cadmium negative electrode plate.

従来の技術とその課題 現在二次電池としては、主として鉛電池およびニッケル
ーカドミウム電池が用いられているが、特にニッケルー
カドミウム電池は、高率放電での特性が良好であること
や、鉛電池に比べて寿命が長い等の理由で需要が急増し
ている。
Conventional technology and its issues At present, lead batteries and nickel-cadmium batteries are mainly used as secondary batteries, but nickel-cadmium batteries in particular have good characteristics at high rate discharge, and lead batteries Demand is rapidly increasing due to factors such as longer lifespan compared to

密閉形のニッケルーカドミウム電池は、従来円筒形が主
流であったが、近年の電子機器の小型化。
Sealed nickel-cadmium batteries have traditionally been cylindrical, but electronic devices have become smaller in recent years.

軽量化などにともなって、電池の高容量化が検討された
結果、最近では角形の密閉電池が開発されている。
As a result of studies on increasing the capacity of batteries to reduce weight, rectangular sealed batteries have recently been developed.

角形密閉のニッケルーカドミウム電池は、従来の円筒形
密閉のものに比べて体積当りのエネルギー密度が40%
以上向上したが、その一方で高率放電における容量低下
が大きくまた放電容量のばらつきが大きいという問題点
を有していることが明らかになった。
Nickel-cadmium batteries with prismatic seals have 40% more energy density per volume than conventional cylindrical seals.
Although the above improvements have been made, it has become clear that, on the other hand, there are problems in that the capacity decreases greatly during high rate discharge and the dispersion of discharge capacity is large.

その理由は次のことにある。すなわち、円筒形電池では
、組み立て時に加圧下で電極の回旋体を制作するととも
に、テープ等で固定することによって極間距離が均一で
緩みのないものができる。
The reason is as follows. That is, in a cylindrical battery, the electrodes are made into a rotating body under pressure during assembly, and the electrodes are fixed with tape or the like, so that the distance between the electrodes is uniform and there is no loosening.

一方、角形電池のように平板状の電極を積層した偏平形
電池では、電i積層体を圧迫する手段として板バネを用
いる方法があるが、容量密度の低下とコスト上昇を招く
池、その効果はそれほど大きくないため実際にはほとん
ど用いられていない。
On the other hand, in flat batteries such as prismatic batteries in which flat electrodes are laminated, there is a method of using leaf springs as a means of compressing the electrode laminate, but this results in lower capacity density and higher cost. is not very large, so it is rarely used in practice.

つまり偏平形電池では、電極積層体を圧迫するに適した
方法が無いために、高率放電における容量低下が大きく
、また放電容量のばらつきも大きくなっていた。この傾
向は電解液量が少ない密閉形の電池において顕著である
In other words, in flat batteries, since there is no suitable method for compressing the electrode stack, the capacity decreases significantly during high rate discharge, and the dispersion of discharge capacity also increases. This tendency is remarkable in sealed batteries with a small amount of electrolyte.

なお、円筒形電池で用いられているテープ止めの方法は
、偏平形電池に適用することはできない。
Note that the tape fixing method used for cylindrical batteries cannot be applied to flat batteries.

その理由は、電極回旋体をテープで固定した場合は、テ
ープによる緊縛力が回旋体の各部分において等しく中心
に向かって働くのに対し、偏平形電池の場合には電極積
層体の断面の形状が方形であるために、平坦部と角部と
では作用する力が異なるためである。
The reason for this is that when the electrode rotating body is fixed with tape, the binding force from the tape acts equally toward the center on each part of the rotating body, whereas in the case of flat batteries, the shape of the cross section of the electrode stack This is because, since it is rectangular, the forces acting on the flat portion and the corner portion are different.

また次式に示したところの電極積層体の厚みとそれに対
応する電槽内寸との比(以後挿入係数という)は、電池
の性能および製造工程に次のような影響を及ぼすことが
わかった。
It was also found that the ratio between the thickness of the electrode laminate and the corresponding internal dimension of the battery case (hereinafter referred to as the insertion coefficient), as shown in the following equation, has the following effects on the battery performance and manufacturing process. .

電極積層体の厚み 挿入係数= 電極を積層する方向の電槽内寸 すなわち、挿入係数を1.0に近づけることによって電
池の性能は向上するが、一方電極積層体を電槽に挿入す
る際の活物質の脱落に起因する不良率の発生が著しく高
まることである。
Thickness of the electrode stack Insertion coefficient = Inner dimension of the battery case in the direction in which the electrodes are stacked, that is, battery performance is improved by bringing the insertion coefficient closer to 1.0, but on the other hand, when inserting the electrode stack into the battery case, This means that the defective rate due to dropout of the active material increases significantly.

具体的には、高率放電における容量低下や放電容量のば
らつきを小さくするには挿入係数を0.98以上にしな
ければならないが、一方電極積層体を電槽に挿入する際
の不良率を低く押さえるには挿入係数を0.95以下望
ましくは0.90以下にする必要がある。
Specifically, the insertion coefficient must be set to 0.98 or more in order to reduce the capacity drop and variation in discharge capacity during high-rate discharge, but on the other hand, it is necessary to lower the defective rate when inserting the electrode stack into the battery case. In order to suppress this, it is necessary to set the insertion coefficient to 0.95 or less, preferably 0.90 or less.

したがって、従来の製造方法では、製造工程における不
良率を低く抑え、しかも電池の高率放電における容量低
下や放電容量のばらつきを小さくすることができなかっ
た。
Therefore, with conventional manufacturing methods, it has not been possible to keep the defective rate low in the manufacturing process, and also to reduce capacity reduction and variation in discharge capacity during high rate discharge of batteries.

課題を解決するための手段 本発明はアルカリ二次電池の製造方法において、酸化カ
ドミウムの体積含有率が40%以上であるカドミウム負
極板と正極板とセパレーターとからなる電極積層体を用
い、該電極積層体を電槽に挿入した後にアルカリ電解液
を注入するかあるいは電槽にアルカリ電解液を注入した
後に該電極積層体を挿入することを特徴とする。
Means for Solving the Problems The present invention provides a method for manufacturing an alkaline secondary battery, using an electrode laminate consisting of a cadmium negative electrode plate, a positive electrode plate, and a separator in which the volume content of cadmium oxide is 40% or more; The electrode laminate is characterized in that an alkaline electrolyte is injected after the laminate is inserted into the battery container, or the electrode laminate is inserted after the alkaline electrolyte is injected into the battery container.

作用 本発明は、酸化カドミウムを含むカドミウム負極板、例
えば、酸化カドミウムを含む活物質ペーストを集電体に
塗着、乾燥したいわゆるペースト式のカドミウム負極板
や、活物質ペーストを金属繊維のマットに充填したいわ
ゆる金属m維マット方式のカドミウム負極板をアルカリ
電解液に浸漬すると、この負極板の厚みが増加すること
を見出したことに基づくものであり、この現象を利用し
て前述の問題を解決するものである。すなわち、本発明
は適当な量の酸化カドミウムを含むカドミウム負極板と
正極板とセパレーターとからなる電極積層体を電槽に挿
入した後にアルカリ電解液を注入するかあるいは電槽に
アルカリ電解液を注入した後に電極積層体を挿入するも
のである。そして電槽内で酸化カドミウムを含むカドミ
ウム負極板とアルカリ電解液とが接触することによって
、負極板の厚みが増加し、を極積層木全体の厚みも増加
する。
Function The present invention provides a cadmium negative electrode plate containing cadmium oxide, for example, a so-called paste-type cadmium negative electrode plate in which an active material paste containing cadmium oxide is applied to a current collector and dried, or an active material paste is applied to a mat of metal fibers. This is based on the discovery that when a filled cadmium negative electrode plate of the so-called metal fiber mat type is immersed in an alkaline electrolyte, the thickness of the negative electrode plate increases.Using this phenomenon, the above-mentioned problem was solved. It is something to do. That is, the present invention involves inserting an electrode stack consisting of a cadmium negative electrode plate, a positive electrode plate, and a separator containing an appropriate amount of cadmium oxide into a battery case, and then injecting an alkaline electrolyte into the battery case, or injecting an alkaline electrolyte into the battery case. After that, the electrode stack is inserted. When the cadmium negative electrode plate containing cadmium oxide comes into contact with the alkaline electrolyte in the battery case, the thickness of the negative electrode plate increases, and the thickness of the entire electrode laminated wood also increases.

つまり、電槽内でアルカリ電解液と接触した後の電極積
層体の挿入係数は、電極積層体を電槽に挿入する際の挿
入係数よりも大きくなるので、電極積層体の圧迫が良好
になり、極間距離も均一化される。
In other words, the insertion coefficient of the electrode stack after contact with the alkaline electrolyte in the battery case is greater than the insertion coefficient when inserting the electrode stack into the battery case, so the compression of the electrode stack is better. , the distance between poles is also made uniform.

したがって本発明によれば、電極積層体を電槽に挿入す
る際の挿入係数を小さくして不良率を低く抑えることが
でき、かつ電解液接触後の挿入係数を大きくして電池の
高率放電における容量低下や放電容量のばらつきを小さ
くすることがてきる。
Therefore, according to the present invention, it is possible to reduce the insertion coefficient when inserting the electrode laminate into the battery case to keep the defective rate low, and to increase the insertion coefficient after contact with the electrolyte to enable high rate discharge of the battery. It is possible to reduce the decrease in capacity and the variation in discharge capacity.

なお、酸化カドミウムを含むカドミウム負極板をアルカ
リ電解液に浸漬した際に、この負極板の厚みが増加する
現象は、(1)式に示す水和反応に基づく活物質の体積
の増加に起因するものと考えられる。
Furthermore, when a cadmium negative electrode plate containing cadmium oxide is immersed in an alkaline electrolyte, the phenomenon in which the thickness of the negative electrode plate increases is due to an increase in the volume of the active material based on the hydration reaction shown in equation (1). considered to be a thing.

CdO+ H20→Cd(O11□)・・・(1)実施
例 以下本発明を好適な実施例を用いて詳細に説明する。
CdO+ H20→Cd(O11□) (1) Examples The present invention will be explained in detail below using preferred examples.

まず、最初に酸化カドミウムを含むカドミウム負極板の
厚みの増加について説明する。
First, the increase in the thickness of the cadmium negative electrode plate containing cadmium oxide will be explained.

[実施例1] 酸化カドミウム粉末100重量部とエチレングリコール
401とを混合してペースト状にした。このペーストを
ニッケルめっきした穿孔鋼板に塗着し、次いで乾燥、加
圧して多孔度を40〜70%に調節した負極板群を製作
した。これを負極板群(イ)とする。なお、ニッケルめ
っきした穿孔鋼板は厚みが0.1+++nであり開孔率
は45%であった。また多孔度は(2)式に基づくもの
である。
[Example 1] 100 parts by weight of cadmium oxide powder and ethylene glycol 401 were mixed to form a paste. This paste was applied to a nickel-plated perforated steel plate, then dried and pressurized to produce a negative electrode plate group with a porosity adjusted to 40 to 70%. This is called the negative electrode plate group (a). The nickel-plated perforated steel plate had a thickness of 0.1+++n and an open area ratio of 45%. Moreover, the porosity is based on equation (2).

極板中の空孔体積 多孔度(%)=             ・・・(2
)極板の体積−集電体の体積 [実施例2] 実施例1における集電体すなわちニッケルめっきした穿
孔鋼板の変わりに多孔度が90%で厚みが0.7n1M
のニッケル繊維マットを用いた以外は、すべて実施例1
と同様にして多孔度を40〜70%に調節した負極板群
を制作した。これを負極板群(ロ)とする。
Hole volume porosity in the electrode plate (%) = ... (2
) Volume of electrode plate - Volume of current collector [Example 2] Instead of the current collector in Example 1, that is, a nickel-plated perforated steel plate, the porosity was 90% and the thickness was 0.7n1M.
All were the same as Example 1 except that a nickel fiber mat of
In the same manner as above, a negative electrode plate group with a porosity adjusted to 40 to 70% was produced. This is called the negative electrode plate group (b).

次にこれらの負極板の厚みを測定したのちに比重1.2
50(20°C)水酸化カリウム水溶液に2時間浸漬し
て酸化カドミウムのほぼすべてが水酸化カドミウムに変
化した後に電解液中から取り出し、再度負極板の厚みを
測定して(3)式および(4)式から膨張率を算出した
Next, after measuring the thickness of these negative electrode plates, the specific gravity was 1.2.
50 (20°C) potassium hydroxide aqueous solution for 2 hours so that almost all of the cadmium oxide has changed to cadmium hydroxide, it is taken out from the electrolyte, the thickness of the negative electrode plate is measured again, and formula (3) and ( 4) The expansion rate was calculated from the formula.

負極板群(イ)の場合 負極板群(ロ)の場合 第1図に浸漬前の負極板の多孔度と膨張率との関係を示
す、同図から、多孔度が40〜70%の範囲で、負極板
の厚みはi、igs倍〜1.100倍膨脹しておりご多
孔度が小さいほど膨張率が大きいことがわかる。また膨
張率に及ぼす集電体の違いによる影響としては゛、集電
体に穿孔鋼板を用いた負極板群(イ)の方が、金属繊維
マットを用いた負極板群(ロ)よりも膨張率は大きいが
、その差は僅かである。
In the case of the negative electrode plate group (a) In the case of the negative electrode plate group (b) Figure 1 shows the relationship between the porosity and expansion rate of the negative electrode plate before immersion.From the same figure, the porosity ranges from 40 to 70%. It can be seen that the thickness of the negative electrode plate is expanded by i, igs times to 1.100 times, and the smaller the porosity, the larger the expansion rate. In addition, regarding the influence of the difference in current collectors on the expansion rate, the negative electrode plate group (a) using a perforated steel plate as the current collector has a higher expansion rate than the negative electrode plate group (b) using a metal fiber mat. is large, but the difference is small.

なお多孔度を40〜70%に設定したのは以下の理由に
よる。
The reason why the porosity was set to 40 to 70% is as follows.

まず多孔度の上限を70%としたのは、加圧前の状態で
の負極板の多孔度が72%であったため、負極板表面の
僅かな凹凸を平坦化するのみにしたためである。多孔度
は、エチレングリコールの配合量を多くすることで幾分
かは高めることが可能であるが、この際、ペースト粘度
が低下して、塗着の作業性が悪くなるため好ましくない
First, the upper limit of the porosity was set to 70% because the porosity of the negative electrode plate before pressurization was 72%, so only slight irregularities on the surface of the negative electrode plate were flattened. The porosity can be increased to some extent by increasing the amount of ethylene glycol, but this is not preferable because the paste viscosity decreases and the workability of application deteriorates.

一方多孔度の下限を40%としたのは、多孔度をさらに
小さくするには極めて大きな加圧力(ioo。
On the other hand, the reason why the lower limit of porosity was set to 40% is that it requires an extremely large pressing force (ioo) to further reduce the porosity.

kg/−以上)が必要なためである。kg/- or more) is required.

以上で活物質原料として酸化カドミウムのみを用いた場
合について説明したが、通常は酸化カドミウムと金属カ
ドミウムとの混合系あるいは、さらに水酸化カドミウム
をも含む混合系で用いられることが多い、したがって次
に混合系の活物質を用いた負極板の膨張率について説明
する。
Above, we have explained the case where only cadmium oxide is used as an active material raw material, but it is usually used in a mixed system of cadmium oxide and metal cadmium, or in a mixed system that also contains cadmium hydroxide. The expansion rate of a negative electrode plate using a mixed active material will be explained.

[実施例3] 混合比を変えた酸化カドミウム粉末と金属カドミウム粉
末とに適量のエチレングリコールを加えて混合しペース
ト状とした。このペーストをニッケルめっきした穿孔鋼
板に塗着し、次いで乾燥。
[Example 3] An appropriate amount of ethylene glycol was added to and mixed with cadmium oxide powder and metal cadmium powder at different mixing ratios to form a paste. This paste is applied to a nickel-plated perforated steel plate and then dried.

加圧して多孔度が40%および70%の負極板群を製作
した。多孔度が40%のものを負極板群(ハ)とし、多
孔度が70%のらのを負極板群(ニ)とする。
Negative electrode plate groups with porosity of 40% and 70% were manufactured by applying pressure. Those with a porosity of 40% are designated as a negative electrode plate group (c), and those with a porosity of 70% are designated as a negative electrode plate group (d).

[実施例4] 実施例3における金属カドミウム力木の代わりに水酸化
カドミウム粉末を用いた以外は、全て実施例3と同様に
して多孔度が40%と70χの負極板群を製作した。多
孔度が40′Aのものを負極板群(ホ)とし、70%の
ものを負極板群(へ)とする。
[Example 4] A negative electrode plate group with a porosity of 40% and 70χ was manufactured in the same manner as in Example 3, except that cadmium hydroxide powder was used instead of the metal cadmium strength wood in Example 3. Those with a porosity of 40'A are referred to as a negative electrode plate group (E), and those with a porosity of 70% are referred to as a negative electrode plate group (E).

次にこれらの負極板群(ハ)、(ニ)、(ホ)および(
へ)について先の実施例と同様にして電極厚みの膨張率
を測定した。
Next, these negative electrode plate groups (c), (d), (e) and (
The expansion coefficient of the electrode thickness was measured in the same manner as in the previous example.

実施例3の負極板群(ハ)および(ニ)の結果を第2図
に、実施例4の負極板群(ホ)および(へ)の結果を第
3図に示す。
The results for the negative electrode plate groups (c) and (d) of Example 3 are shown in FIG. 2, and the results for the negative electrode plate groups (e) and (f) of Example 4 are shown in FIG.

なお図中横軸の酸化カドミウムの体積含有率は、浸漬前
の負極板について(5)式から求めたものである。
Note that the volume content of cadmium oxide on the horizontal axis in the figure was determined from equation (5) for the negative electrode plate before immersion.

酸化カドミウムの体積含有率(%) 第2図から酸化カドミウムの体積含有率が高いほど膨張
率が大きいことがわかる。また膨張率は、酸化カドミウ
ムの体積含有率が40%以上で特に高いことがわかる。
Volume content of cadmium oxide (%) From FIG. 2, it can be seen that the higher the volume content of cadmium oxide, the higher the expansion coefficient. Further, it can be seen that the expansion coefficient is particularly high when the volume content of cadmium oxide is 40% or more.

第3図からも第2図と同様のことがいえる。なお第3図
の水酸化カドミウム100%の極板は、電解液浸漬時の
活物質の脱落が著しいために、膨張率を測定することが
できなかった。
The same thing as in FIG. 2 can be said from FIG. Note that the expansion coefficient of the electrode plate made of 100% cadmium hydroxide shown in FIG. 3 could not be measured because the active material fell off significantly when immersed in the electrolytic solution.

以上のことから本発明の効果は、酸化カドミウムを含む
ペースト式あるいは金属m維マヅト方式のカドミウム負
極板を用いることによって得られることがわかる。そし
て特に酸化カドミウムの体積含有率が40%以上である
ことが望ましい。なお、実施例では集電体として穿孔板
と金属繊維マットとを用いて説明したが、これら以外に
金属発泡体を用いた場合にも同様の効果かえられる。
From the above, it can be seen that the effects of the present invention can be obtained by using a paste-type or metal fiber matte-type cadmium negative electrode plate containing cadmium oxide. In particular, it is desirable that the volume content of cadmium oxide is 40% or more. Although the embodiments have been described using a perforated plate and a metal fiber mat as the current collector, the same effect can be obtained when a metal foam is used in addition to these.

次に電池での実施例について述べる。Next, an example using a battery will be described.

[実施例5] 酸化カドミウム粉末70重量部と金属カドミウム粉末3
0重量部と長さ 1nnのポリプロピレン族の短繊維0
.1重量部とを1.0重量%のポリビニルアルコール3
01m+で混合してペースト状とする。このペーストを
ニッケルめっきした穿孔鋼板に塗着し、次いで乾燥およ
び加圧を行い、長さ52n+11.巾が141111、
厚みが0.8nn 、多孔度65%、酸化カドミウムの
体積含有率が71%の負極板を製作した。
[Example 5] 70 parts by weight of cadmium oxide powder and 3 parts of metal cadmium powder
0 parts by weight and length 1 nn short polypropylene fibers 0
.. 1 part by weight and 1.0% by weight of polyvinyl alcohol 3
Mix with 01m+ to form a paste. This paste was applied to a nickel-plated perforated steel plate, then dried and pressed to a length of 52n+11. The width is 141111,
A negative electrode plate was manufactured with a thickness of 0.8 nn, a porosity of 65%, and a volume content of cadmium oxide of 71%.

負極板1枚当りの酸化カドミウムと金属カドミウムの理
論容量は、カドミウムの充放電が2電子反応であるとす
ると、各々450nAhおよび220IIAhである。
The theoretical capacities of cadmium oxide and metal cadmium per negative electrode plate are 450 nAh and 220 IIAh, respectively, assuming that charging and discharging of cadmium is a two-electron reaction.

なお、ニッケルめっきした穿孔鋼板は厚みが0.1nl
lであり、開化率は45%であった。
The thickness of the nickel-plated perforated steel plate is 0.1nl.
1, and the opening rate was 45%.

一方正極板は次の方法で製作した。On the other hand, the positive electrode plate was manufactured by the following method.

多孔度が約80丸の焼結式ニッケル基板に、ニッケルと
コバルトの合計に対する含有率が8%の硝酸コバルトと
硝酸ニッケルとの混合水溶M[Ph=2、比重1.50
(20℃)〕を含浸した後、比重1.200f20℃)
の水酸化ナトリウム水溶液に浸漬し、湯洗。
A sintered nickel substrate with a porosity of about 80 circles was coated with an aqueous solution of cobalt nitrate and nickel nitrate containing 8% of the total nickel and cobalt content [Ph=2, specific gravity 1.50].
(20℃)] Specific gravity 1.200f20℃)
Soak in aqueous sodium hydroxide solution and wash with hot water.

乾燥する。この操作を繰り返して水酸化ニッケルの理論
容量が310+1Ahで寸法が0.86x 14x 5
21nm)の正極板を製作した。なお水酸化ニッケルの
理論容量は、水酸化二・/ゲルの充放電が1電子反応で
あるとして算出しな。
dry. Repeat this operation until the theoretical capacity of nickel hydroxide is 310+1Ah and the dimensions are 0.86x 14x 5
21 nm) positive electrode plate was manufactured. Note that the theoretical capacity of nickel hydroxide is calculated assuming that charging and discharging of hydroxide di/gel is a one-electron reaction.

次に負極板3枚と正極板2枚と厚み0.2m1Nのポリ
プロピレン族のセパレーターとからなる電極積層体を電
槽に挿入し、さらに比重1.280(20°C)の水酸
化カリウム水溶i1.4i1を注入したのち封口して、
公称容量が55(llIAhの角形密閉ニッケルーカド
ミウム電池(A)を製作した。電槽の内寸は、電極の積
層方向が5.211である。
Next, an electrode laminate consisting of three negative electrode plates, two positive electrode plates, and a polypropylene group separator with a thickness of 0.2 m1N was inserted into the battery case, and then a potassium hydroxide aqueous solution I1 with a specific gravity of 1.280 (20°C) was inserted. After injecting .4i1, seal it and
A prismatic sealed nickel-cadmium battery (A) with a nominal capacity of 55 (llIAh) was manufactured.The internal dimensions of the battery case were 5.211 mm in the stacking direction of the electrodes.

この電池の負極板中の酸化カドミウムは電解液を入れる
と式(1)に示す反応によって水和して水酸化カドミウ
ムに変化する。この際、水を消費するため、その消費分
に相当する水を余分に注入したつ [比較例1コ 水酸化カドミウム粉末79.8重量部と金属カドミウム
粉末30重量部と長さ1■のポリプロピレン族の短繊維
0.1重量部とを0.1重量%のポリビニルアルコール
を含むエチレングリコール3011で混合してペースト
状とする。このペーストをニッケルめっきした穿孔鋼板
に塗着し、次いで乾燥および加圧を行い、長さが52n
n、巾が141n、厚み0.81111多孔度42%の
負極板を製作した。
When an electrolytic solution is added to the cadmium oxide in the negative electrode plate of this battery, it is hydrated and changed into cadmium hydroxide by the reaction shown in equation (1). At this time, since water was consumed, an extra amount of water was injected to cover the amount of water consumed. 0.1 part by weight of short fibers of the above group are mixed with ethylene glycol 3011 containing 0.1% by weight of polyvinyl alcohol to form a paste. This paste was applied to a nickel-plated perforated steel plate, then dried and pressurized, and the length was 52n.
A negative electrode plate having a width of 141 nm, a thickness of 0.81111, and a porosity of 42% was manufactured.

負極板1枚当りの水酸化カドミウムと金属カドミウムの
理論容量は、カドミウムの充放電が2電子反応であると
すると、各々45QIIAhおよび220nAhである
。実施例5で用いた負極板との違いは、主たる活物質原
料が酸化カドミウムであるか水酸化カドミウムであるか
の違いである。
The theoretical capacities of cadmium hydroxide and metal cadmium per negative electrode plate are 45QIIAh and 220nAh, respectively, assuming that charging and discharging of cadmium is a two-electron reaction. The difference from the negative electrode plate used in Example 5 is whether the main active material raw material is cadmium oxide or cadmium hydroxide.

次に実施例5で用いたのと同じ正極を用い、実施例5と
同様にして公称容量が5501′lAhの角形密閉ニッ
ケルーカドミウム電池(B)を製作した。
Next, using the same positive electrode as used in Example 5, a prismatic sealed nickel-cadmium battery (B) having a nominal capacity of 5501'lAh was manufactured in the same manner as in Example 5.

以上のようにして製作した電池(A)および(B)を各
々100セル用意し、種々のレートで放電した際の容量
の平均値、最大値および最小値を第4図に示す。
100 cells each of the batteries (A) and (B) manufactured as described above were prepared, and the average, maximum, and minimum values of capacity when discharged at various rates are shown in FIG.

同図から、本発明の製造方法による電池(A)の放電容
量の放電率依存性は、比鮫電池(B)に比べて良好であ
り、特にIOA以上での放電容量が多いことがわかる。
From the same figure, it can be seen that the discharge rate dependence of the discharge capacity of the battery (A) produced by the manufacturing method of the present invention is better than that of the Hisame battery (B), and the discharge capacity is particularly large at IOA or higher.

また放電容量のばらつきも電池(A)は少なく、性能が
安定していることを示している。このような差が生じた
理由は以下のことによる。すなわち、電解液注入後24
時間を経過した電池fA)およびFB)を解体して負極
板の厚みを測定したところ、電池TA)の負極板は厚み
が0.80111から0.881′Inに増加していた
。一方電池+8)の負極板は厚みの増加が認められなか
った。
Furthermore, battery (A) had little variation in discharge capacity, indicating stable performance. The reason for this difference is as follows. That is, 24 hours after electrolyte injection.
When the batteries fA) and FB) were disassembled after the lapse of time and the thickness of the negative electrode plate was measured, the thickness of the negative electrode plate of battery TA) had increased from 0.80111 to 0.881'In. On the other hand, no increase in thickness was observed in the negative electrode plate of battery +8).

つまり、電池(^)およびFB)とら電極積層体を電槽
に挿入する際の挿入係数は0.95であったが、電解液
注入後は、電池(A)の挿入係数が0.99に向上して
、電極積層体の圧迫か良好になると共に、極間距離が均
一になったことによる。
In other words, the insertion coefficient when inserting the battery (^) and FB) tiger electrode stack into the battery case was 0.95, but after the electrolyte was injected, the insertion coefficient of battery (A) was 0.99. This is because the pressure of the electrode stack has improved and the distance between the electrodes has become uniform.

以上の実施例ではペースト式カドミウム負極板を用いた
角形密閉ニラゲル−カドミウム電池を例にとって説明し
たが、本発明の゛製造方法による効果は、i極板の集電
体として金属繊維のマツ1へや金属発泡体を用いた場合
にも同様に得られ、また電池の形状としてはコイン状の
電池など平板状の電極を用いた偏平形の密閉電池におい
てら同様である。さらに主たる正極活物質としては、水
酸化ニッケルの他に二酸化マンガンあるいは酸化銀を用
いた場合にも同様の効果が得られるのは勿論である。
In the above embodiments, a prismatic sealed Nylagel-Cadmium battery using a paste-type cadmium negative electrode plate was explained as an example. The same effect can be obtained when a metal foam or metal foam is used, and the shape of the battery is similar to that of a flat sealed battery using a flat electrode, such as a coin-shaped battery. Furthermore, it goes without saying that similar effects can be obtained when manganese dioxide or silver oxide is used in place of nickel hydroxide as the main positive electrode active material.

発明の効果 以上のように本発明の製造方法によって放電性能が優れ
たアルカリ二次電池を得ることができる。
Effects of the Invention As described above, an alkaline secondary battery with excellent discharge performance can be obtained by the manufacturing method of the present invention.

また電池組立時の不良率を低くすることも可能である。It is also possible to lower the defective rate during battery assembly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図および第3図は、酸化カドミウムを含む
カドミウム負極板をアルカリ電解液に浸漬した際の負極
板厚さの膨張率について示した図。 第4図は、本発明の製造方法による角形二ンケルカドミ
ウム電池と比敦のための電池の放電性能を示した図。 漬1目 10ダ 、QOJ ダ0 I7  凡 虐  /7− 遁z(71゜ 当)スしtl−ミ 7 ムスバ千様4fli/ゾ・ Q 6゜ 1o。 1楚ス013 k ミ ブ ム −伴宇54肩 キ /
ブ・
FIG. 1, FIG. 2, and FIG. 3 are diagrams showing the expansion rate of the negative electrode plate thickness when a cadmium negative electrode plate containing cadmium oxide is immersed in an alkaline electrolyte. FIG. 4 is a diagram showing the discharge performance of a prismatic double-cadmium battery and a battery for comparison according to the manufacturing method of the present invention. Tsuke 1 10 da, QOJ da 0 I7 ordinary torture /7- ton z (71 ° to) Sushi tl-mi 7 Musuba Sensama 4fli / Zo・Q 6 ° 1 o. 1 sosu 013 k mi bum - banyu54 shoulder ki /
Bu・

Claims (1)

【特許請求の範囲】[Claims] 酸化カドミウムの体積含有率が40%以上であるカドミ
ウム負極板を用いた電極積層体をを電槽に挿入した後に
アルカリ電解液を注入するかあるいは電槽にアルカリ電
解液を注入した後に前記電極積層体を挿入することを特
徴とするアルカリ二次電池の製造方法。
Either inserting an electrode stack using a cadmium negative electrode plate having a volume content of cadmium oxide of 40% or more into a battery case and then injecting an alkaline electrolyte, or injecting an alkaline electrolyte into the battery case and then stacking the electrode. A method for producing an alkaline secondary battery, which comprises inserting a battery into the battery.
JP63188687A 1988-07-28 1988-07-28 Manufacturing method of alkaline secondary battery Expired - Lifetime JP2926233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63188687A JP2926233B2 (en) 1988-07-28 1988-07-28 Manufacturing method of alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63188687A JP2926233B2 (en) 1988-07-28 1988-07-28 Manufacturing method of alkaline secondary battery

Publications (2)

Publication Number Publication Date
JPH0237672A true JPH0237672A (en) 1990-02-07
JP2926233B2 JP2926233B2 (en) 1999-07-28

Family

ID=16228078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63188687A Expired - Lifetime JP2926233B2 (en) 1988-07-28 1988-07-28 Manufacturing method of alkaline secondary battery

Country Status (1)

Country Link
JP (1) JP2926233B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5054847A (en) * 1973-09-14 1975-05-14
JPS56160769A (en) * 1980-05-14 1981-12-10 Matsushita Electric Ind Co Ltd Sealed nickel-cadmium storage battery
JPS59872A (en) * 1982-06-28 1984-01-06 Matsushita Electric Ind Co Ltd Manufacture of enclosed nickel-cadmium storage battery
JPS60211877A (en) * 1984-03-15 1985-10-24 アイテイーテイー・インダストリーズ・インコーポレーテツド Method of producing semiconductor device
JPS61193378A (en) * 1985-02-20 1986-08-27 Shin Kobe Electric Mach Co Ltd Nickel-cadmium alkaline cell
JPS642261A (en) * 1987-06-24 1989-01-06 Furukawa Battery Co Ltd:The Manufacture of sealed alkali battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5054847A (en) * 1973-09-14 1975-05-14
JPS56160769A (en) * 1980-05-14 1981-12-10 Matsushita Electric Ind Co Ltd Sealed nickel-cadmium storage battery
JPS59872A (en) * 1982-06-28 1984-01-06 Matsushita Electric Ind Co Ltd Manufacture of enclosed nickel-cadmium storage battery
JPS60211877A (en) * 1984-03-15 1985-10-24 アイテイーテイー・インダストリーズ・インコーポレーテツド Method of producing semiconductor device
JPS61193378A (en) * 1985-02-20 1986-08-27 Shin Kobe Electric Mach Co Ltd Nickel-cadmium alkaline cell
JPS642261A (en) * 1987-06-24 1989-01-06 Furukawa Battery Co Ltd:The Manufacture of sealed alkali battery

Also Published As

Publication number Publication date
JP2926233B2 (en) 1999-07-28

Similar Documents

Publication Publication Date Title
EP0337029B1 (en) Nickel electrode for alkaline battery and battery using said nickel electrode
US5698342A (en) Electrode containing coated particles
CN100405658C (en) Nickel electrode and alkali storage battery using the same
US7288126B2 (en) Battery cells having improved power characteristics and methods of manufacturing same
CN112470308A (en) Negative electrode active material for lithium secondary battery and secondary battery comprising same
US5940946A (en) Alkali storage cell employing a spongelike metal substrate
US6221529B1 (en) Positive electrode for lithium battery and lithium battery
US5788720A (en) Method for manufacturing positive electrode plates for an alkaline storage battery
JPH0237672A (en) Manufacture of alkaline secondary battery
WO2011077640A1 (en) Valve-regulated lead acid battery
US6573006B2 (en) Non-sintered type positive electrode for alkaline storage battery and alkaline storage battery
EP0403052B1 (en) Nickel electrode and alkaline battery using the same
JP2884570B2 (en) Sealed alkaline secondary battery
US20030108791A1 (en) Positive electrode for alkaline storage battery and alkaline storage battery using the same
JP2003257425A (en) Nickel hydrogen storage battery and manufacturing method thereof
JP3498727B2 (en) Method for producing nickel hydroxide positive plate for alkaline battery, nickel hydroxide positive plate for alkaline battery, and alkaline battery
JP2564172B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2591985B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPH10154526A (en) Rectangular alkaline storage battery
JP2591982B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2595664B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2591987B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2771584B2 (en) Manufacturing method of non-sintering type sealed alkaline storage battery
JPH0778613A (en) Nickel hydrogen battery
JP2591986B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate