JPH0237388B2 - Johatsugatakoatsuekisosuisokatokoatsukisosuisokatonochokuretsukoteinyorisojushitsuyukarakeishitsuyuoseizosuruhoho - Google Patents

Johatsugatakoatsuekisosuisokatokoatsukisosuisokatonochokuretsukoteinyorisojushitsuyukarakeishitsuyuoseizosuruhoho

Info

Publication number
JPH0237388B2
JPH0237388B2 JP12942481A JP12942481A JPH0237388B2 JP H0237388 B2 JPH0237388 B2 JP H0237388B2 JP 12942481 A JP12942481 A JP 12942481A JP 12942481 A JP12942481 A JP 12942481A JP H0237388 B2 JPH0237388 B2 JP H0237388B2
Authority
JP
Japan
Prior art keywords
cylinder
catalyst
hydrogenation
phase hydrogenation
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12942481A
Other languages
English (en)
Other versions
JPS5832693A (ja
Inventor
Kyoshi Morikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP12942481A priority Critical patent/JPH0237388B2/ja
Publication of JPS5832693A publication Critical patent/JPS5832693A/ja
Publication of JPH0237388B2 publication Critical patent/JPH0237388B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】 目 的 本発明は粗重質油から灯油・ジエツト燃料・ガ
ソリン等の軽質油を製造する方法のうち、粗重質
油をまず液相で高温高圧接触水素化して粗軽・中
質留分を生成させ、ついでこれを気相で高温高圧
接触水素化してさらに精製・軽質化するという2
段水素化法の改良に関するものである。
ここで粗重質油というのは石油系の蒸留残油の
ほか、頁岩粗油・サンドオイル・低温タール・石
炭液化重油等をも含めて総称するものであり、常
圧下の初留点が概ね330℃以上の高沸点留分を主
体とする粗油を言う。
近年原油の価格の高騰とその資源的限界が認識
されるに伴い、一方では炭化水素製造原料の多様
化がはかられ、頁岩粗油・サンドオイル・低温タ
ール等が注目されるようになつた。しかしこれら
はいずれも重質であり、また新たに開発される油
田も重質のものが多く、全体的に原料油は重質化
の傾向にある。他方従来重質油の主な用途であつ
た鉄鋼・火力発電等の熱源用には石炭等の代替エ
ネルギーへの切替・使用が進行中である。そのた
め液体燃料の需要は全体として軽質化の傾向にあ
つて、供給と需要との間に質的不均衡を生じつつ
ある。このため最近は粗重質油の軽質化技術がい
ちだんと重要視されるようになつてきた。
しかしながら前述の粗重質油は、種類および産
地によつて程度の差はあるが、不純物として酸
素・硫黄・窒素などのヘテロ原子を含むアスフア
ルテンやビチユーメンなどの極性高分子化合物を
含み、さらにまたニツケル・ヴアナジウムのよう
な金属原子を含有する高分子有機錯化合物などを
含む場合もある。これらを接触水素化精製してヘ
テロ原子と金属原子を除去する反応(必然的に
軽・中質化を伴う)と、高分子炭化水素鎖また
は/および環の炭素―炭素結合を接触水素化分解
して軽質化するという反応とを連続的に行うこと
ができれば、粗重質油の水素化プラントおよび生
成した粗軽・中質油の水素化プラントという独立
した2つのプラントを要せず、一つのプラントで
済むことになるので、経済的にきわめて大きな効
果を挙げることができる。
先行技術 粗重質油から前記高分子不純物を変成・除去す
る技術は、当初公害対策として、高硫黄の粗重油
を水素化精製して低硫黄重油を製造するために発
達した技術であつて、粗重油を液相で接触水素化
処理するに際し、水素化触媒を固定床・浮動床
(例えば特公昭42―26105号:H―oil法)・静止床
(例えば特公昭47―4627号および特公昭47―6219
号:工技院法)などで使用する方法が提案されて
いる。しかしこれらは反応性の高い含硫黄高分子
化合物だけを水素化脱硫し、水素化生成油はその
まま製品とすることを目的とするものである。し
たがつて担体上に水素化活性成分を担持させた成
型または粗粒の触媒を比較的穏和な反応条件下で
使用する方法である。それでも実際には触媒の寿
命および再生に関していろいろの問題がある。
一般に成型または粗粒触媒を用いて液相水素化
を高度に進行させようとすれば、粗重質油中のア
スフアルテンまたはビチユーメンなどがまず成型
または粗粒触媒の外表面に優先吸着され、ついで
熱分解・重縮合を起して高分子の多環芳香族構造
体いわゆる遊離炭素を生成し、これらが触媒表面
を被覆して触媒能の発揮を妨害する。すなわち水
素化を受け易い軟質アスフアルテンを僅かしか含
まないパラフイン基系以外の粗重質油を液相水素
化しようとする場合、露出外表面積の小さい成型
または粗粒触媒を使用すると、その反応操作形式
の如何にかかわらず、触媒寿命を工業的に可使用
なほど永く保持することはきわめて困難である。
また接触水素化精製反応により遊離したニツケ
ル・ヴアナジウムなどの金属の硫化物などが触媒
表面に付着・被覆するが、これらもまた触媒の活
性を低下させる原因となる。
一般に遊離炭素の付着により劣化した触媒は、
水蒸気存在下の緩慢燃焼などの再生処理により、
その活性をある程度回復できる。しかし固定床反
応器の場合には、再生処理の間水素化操業を中断
せざるを得ず、これを避けようとすれば、複数の
反応器を設置し、操業複雑な切替方式となる。ま
た操業中触媒の抜き出しの可能な浮動床や静止床
の反応器の場合でも、抜き出した多量の廃触媒を
工業的規模で再生することは技術的にも大きな負
担となる。さらにニツケル・ヴアナジウムなどの
金属の硫化物が付着して劣化した成型触媒の再生
は容易でなく、別個の廃触媒回収工場に送らねば
ならない。
上記固定床・浮動床・静止床による粗重質油の
液相水素化に際して生ずる問題点を解決する手段
として、微粉水素化触媒を分散・懸濁させた液相
懸濁触媒層(以下懸濁層と略称)の使用が考えら
れる。
従来懸濁層を反応相として工業的に利用した先
例は少なく、僅かに石炭直接液化の高温高圧液相
水素化法があるのみである。この石炭の直接液化
法によつて常圧下の沸点約200℃以下の軽質液体
燃料を製造しようとすれば、まず高温高圧の液相
水素化プラントにおいて石炭粉末・微粉水素化触
媒および重質油の混合物いわゆるペーストを水素
化して、主として重質油(ペースト製造用に循環
使用)と粗軽油とを製造する。ついでこの粗軽油
を別個の高温高圧気相水素化精製プラントにかけ
て精製軽油とし、最後にこの精製軽油をまた別個
の高温高圧気相水素化分解プラントにかけてガソ
リン等の軽質燃料油にするのが常法であつた。す
なわち独立した3個の高温高圧水素化プラントを
連用することが必要であり、このことが石炭液化
工場の建設費を巨額にし、液化軽質燃料油の製造
原価を著しく高くする大きな原因であつた。昭和
十年代末に、本発明者の属する当時の南満洲鉄道
株式会社中央試験所において、液相水素化筒と気
相水素化筒とを高温分離筒を介して直列に結合す
る直列型石炭液化法が考案され、小規模工業化連
続試験が実施されて、大きな注目をあびた。しか
し期待に反し、気相水素化筒内の成型触媒が次第
に減衰・失活するという結果になり、研究は中断
されてしまつた。
その後長年月にわたりこの構想は埋れて来た
が、本発明者はその原因を追究した結果、その理
由を明らかにすることができた。
まず液化用原料炭中にはこれを精選しても7〜
10%の無機物を含む。これが触媒と共に液化残渣
中に集積残留するため、触媒の回収・再使用はも
ちろん、含有油分の回収をめざした液化残渣の処
分は技術的にも経済的にも非常に困難であつた。
そのため使い棄てのできる安価なしかし活性の
低い触媒(いずれも硫化鉄あるいは硫化鉄を生ず
る原料物質)が専ら各国で使用された。上記直列
型石炭液化工業化試験もこの例外ではなかつた。
このため第1段の液相水素化筒における水素化
進度は浅く、そのため多量の重質留分の油蒸気が
過剰の水素により第2段の気相水素化筒へ運びこ
まれ、筒内の成型水素化触媒を次第に減衰させる
結果になつたものと判定された。
既述の如く、近年粗重質油の接触水素化による
軽質油の製造技術の確立が重要視されるようにな
つた。しかしこれまでに提案された技術の多く
は、公害対策上低硫黄重油を得る目的で発達した
液相接触水素化法と、つとに確立している中質油
の気相接触水素化によるジエツト燃料・ガソリン
等の軽質油の製造法という、独立した二つの水素
化法の単純な組み合せである。その際はじめの液
相接触水素化法には固定床・浮動床・静止床など
の触媒層が賞用され、懸濁液はほとんど全く顧み
られることがなかつた。このような結果を招来し
たのは第1に懸濁層の唯一の工業化例である石炭
直接液化法自体の操業が非常に難しかつたという
こと、第2に懸濁層と気相成型水素化触媒充填層
(以下充填層と略称)とを直列に結合した前述の
工業化試験が所期の成果を挙げることができなか
つたこと、第3に微粉水素化触媒が懸濁状態で水
素化生成物中に同伴されて来るプロセスでは、生
成物からこの触媒を分離するのが面倒であること
などの定見が一般化していたためではないかと思
われる。
特開昭53―78203号および特開昭54―40806号に
は、粉末触媒ことに水素化脱硫廃触媒の粉砕物を
用い、これと炭化水素と水素との混合物を400〜
480℃の温度および30〜100Kg/cm2Gの圧力下で反
応させて、前記炭化水素の水素化分解を行う方法
が提案されている。しかしこれらは比較的低い水
素圧で水素化精製して低硫黄重油を得ることに主
目的とする方法である。その際水素化生成物は粉
末触媒を混合したまま液状で取り出されるので、
全量の生成物から粉末触媒を機械的に分離すると
いう操作が必要となる。そしてさらに軽質化しよ
うとすれば、液状の生成物を蒸留して軽・中質油
留分の蒸気を取り出し凝縮して、これを気相水素
化処理を行う別個のプラントにかける必要があつ
た。
また特開昭55―165993号には、重質油中に微細
固体粒子状水素化触媒を懸濁させて、これを水素
化処理する方法が述べられているが、これはそれ
に続く接触分解工程の前処理として用いられてい
るのにすぎない。その主反応が水素を伴わない接
触熱分解である結果、遊離炭素が大量に生成する
のをおさえることができない。したがつて酸化焙
焼処理による廃触媒の再生を必要とするが、この
点で従来法の欠点を免れてはいない。
発明の構成 本発明者は原料粗重質油(以下原料油と略称)
の無機物の含量が僅少であることに着目し、かつ
て石炭の直接液化法の工業化試験に従事した際に
得た諸知見を巧みに原料油の高温高圧接触水素化
による軽質油の製造法に応用して、従来法の欠点
を解消した本発明を完成するに至つたものであ
る。すなわち懸濁層を有する液相水素化筒と充填
層を有する気相水素化筒とを直列に結合した工程
を採用することを基本とし、液相水素化触媒のみ
ならず後続する気相成型水素化触媒の寿命をも延
長させるという技術的ならびに経済的効果を発揮
させたものである。
ここで「直列に結合した工程」と称するのは、
液相水素化筒で原料油を接触水素化することによ
り生成した粗軽・中質留分(常圧下の沸点が概ね
330℃以下で極性高分子化合物を含む留分)の蒸
気をいつたん凝縮して液状の粗軽・中質油を収得
する工程を経ることなく、粗軽・中質留分の蒸気
および未反応水素を主体とする生成気流(以下生
成気流と略称)をそのまま、または生成気流中に
同伴されている粗重質油分(常圧下の沸点が概ね
330℃以上で極性高分子化合物を含む留分)の蒸
気のみを凝縮・分離するだけで、粗軽・中質留分
は蒸気のまま水素と共につぎに連結した気相水素
化筒へ送入するという工程を意味する。
(1) 基本構成とその特徴 本発明の基本構成および総合工程全体の流れ
を明らかにするため、以下添付の図面に従つて
説明するが、本発明の実施態様はこれらのみに
限定されるものではない。
第1図において破線の左側A部は常圧機器を
配置した部分であり、破線の右側B部は高圧反
応帯域である。高圧反応帯域は、(a)原料油の液
相水素化工程、(b)生成粗軽・中質留分の気相水
素化工程、(c)生成油の分離・回収と水素の循環
工程、という3工程に大別される。そしてこの
懸濁層を用いた液相水素化工程(a)を中心とし
て、上記各工程を結合した総合工程が本発明の
特徴であり、後述のようなすぐれた効果をもた
らす。以下順次これらの詳細について説明す
る。
(a) 原料油の液相水素化工程 ここでいう液相水素化工程とは、液相水素
化筒内に懸濁層を作り、これに原料油と水素
を通じて原料油を軽・中質化する工程であ
る。本工程の特徴は、懸濁層が液相水素化筒
内で所定水準を保つように操業し、生成気流
のみを筒上部より抜き出すことにより、原理
油中の水素化分解速度のおそい成分を最終的
に軽・中質化するまで充分に長い時間懸濁層
中に滞留させる点にある。
原料油はまず水分を分離し、ついでこれを
遠心分離装置・加熱沈降分離装置等(図示せ
ず)にかけて、その中に含まれる無機・有機
の固形分微粉を充分に分離する。この後ライ
ン11を経て原料供給槽12に送り、原料ポ
ンプ13で加圧し、ライン14からの常温常
圧換算で約2×103〜3×104容積倍の(循
環)高圧水素と混合し、ついで熱交換器1
5・予熱器16を経て液相水素化反応開始温
度以上に加熱した後、微粉水素化触媒と原料
油とよりなり、かつ所定水準に保たれた懸濁
層27を有する液相水化筒の底部に連続的に
送入する。最初から触媒と水素を混合するの
は、予熱段階で原料油が熱分解・重縮合を起
して遊離炭素を生成するのを防止するためで
ある。
反応系に初めて触媒を供給する時は予め微
粉水素化触媒と熱的に安定な重質油とをよく
混合して、触媒を濃厚に懸濁した運転開始用
の含触媒重質油を製造して置き、これをライ
ン34から原料供給槽12に送入し、この中
でよく混合して原料油中に均一に分散・懸濁
させる。このためには通常原料供給槽内に撹
拌機を設置して置く。運転開始時の新水素お
よび定常運転時の補件水素は高圧水素ライン
25から供給する。
微粉水素化触媒としては従来公知の重質油
水素化活性のある触媒の微粉ならいずれも使
用できるが、とくに活性が高ければ高価な触
媒でも、たとえば二硫化モリブデンまたは二
硫化タングステンを主成分とする多成分触媒
でも、あるいはこれらの担持触媒でも、これ
を使用できるという利点がある。既述の如く
懸濁層はかつて石炭の直接液化法において採
用されていたが、液化用原料炭中には通常選
炭後でも7〜10%の無機物を含んでおり、こ
れが触媒と共に液化残渣中に集積残留するた
めに、触媒の回収・再使用は困難となり、結
局使い棄てのできる安価なしかし活性の低い
触媒を使用せざるを得なかつた。これに対し
粗重質油の場合は無機物の含有量が非常に少
ないため、本発明のごとく触媒の連続使用が
可能となる。したがつて活性が高ければ高価
な触媒でも、これを数十%という高濃度で使
用することが可能になり、そのため原料油の
高圧水素化の生産性と経済性を著しく高める
ことができる。
懸濁する微粉水素化触媒の粒径は微細なほ
ど活性表面積は広く、また懸濁油の安定度も
良いので、たとえばミクロン単位の数値であ
ることが望ましい。
このような微粉触媒の製法としては沈澱と
油との混〓法や塩水溶液と油との乳化液を熱
分解する方法など、既知の方法をいずれも利
用できる。このような微粉であることによつ
て、触媒の重量当りの活性表面積は著しく増
加して、接触水素化効率が高くなると共に、
スラリーのポンプ輸送などの取扱もまた容易
になる。一般に原料油の反応性に応じ最適な
触媒濃度を設定するが、通常懸濁層における
触媒濃度は5〜25容量%くらいが適当であ
る。
液相水素化筒の運転諸条件すなわち送油
量・水素対原料油の比・反応圧力・反応温度
などは、原料油の反応性および触媒の活性・
粒径とその懸濁濃度さらに懸濁層の層高など
によつて変る。一般に原料油の液空間速度は
1〜5hr-1、水素対原料油の容積比は常温常
圧換算で約2×103〜3×104、圧力は通常
130〜300気圧、反応温度は約390〜460℃であ
る。液相水素化筒内では反応熱による温度上
昇があるので、原料油および水素は液相水素
化筒における反応開始温度である約350〜390
℃よりやや高い程度に熱交換器15・予熱器
16で加熱して送入すれば良い。
アスフアルテンやビチユーメンの含有量が
僅少で、直鎖状の化学構造を持つ成分に富ん
だ原料油、たとえばパラフイン基系石油の残
油や頁岩粗油の場合には、所望の反応速度を
与える反応温度と反応圧力(水素分圧)はい
ずれも比較的低くて済む。たとえば390〜420
℃,200気圧以下でも充分目的を達成し得る
場合がある。しかし硬質のアスフアルテンに
富んでナフテン基系石油の残油や多環芳香族
成分に富んだ頁岩粗油および低温タール・石
炭液化重油などを原料油とする場合には、反
応温度と反応圧力をやや高めに、たとえば
420〜460℃・200気圧以上にすることが望ま
しい。またかかる高沸点留分に富んだ原料油
の場合は、これに本発明の方法による生成中
質油留分の一部を混合・稀釈して使用すれ
ば、懸濁層への水素の溶解度を増加して、水
素分圧の増大と同様の効果を招来する。さら
に加えて、懸濁層内のアスフアルテン乃至ビ
チユーメンの濃度を減少させるので、触媒能
力の発揮に有利となる。このように生成中質
油の混入使用は一見原料油の液相水素化筒内
の滞留時間を短くするため不利のように思わ
れようが、実際にはかえつて技術的にも経済
的にも有利となる場合が多い。
懸濁層内では原料油中極性高分子化合物の
へテロ原子や高分子有機錯化合物中の金属原
子は大部分水素化されて、酸素は水に、硫黄
は硫化水素に、窒素はアンモニアに、また金
属はさらに硫化水素と反応し硫化物となつ
て、いずれも炭化水素環または鎖から分離さ
れる。その際これらヘテロ原子・金属原子の
除去により分子量は低下するが、重質炭化水
素成分もまた一部水素化分解されて軽・中質
化され、これと同時にメタン・エタン・プロ
パン等の炭化水素ガスを少量副生する。
原料油中の極性高分子化合物や重質炭化水
素成分には反応速度が早いものも遅いものも
あるので、懸濁層におけるそれらの滞留時間
はそれぞれ異なるが、最終的には全部あるい
はほとんど全部が水素化分解され、軽・中質
留分となつて気化する。その結果放置すれば
懸濁層の液面が変動するので、所定水準を保
つように原料油または/および水素の送入量
などの液相水素化筒の運転諸条件を調整す
る。
液相水素化筒の温度は原料油の予熱温度お
よび循環水素量で調節するのが基本である。
しかしいつたん限度を越えて温度が上昇し始
めると、水素化反応が加速されて反応熱をま
すます発生し、温度は急上昇して暴走する危
険がある。そこであらかじめ液相水素化筒内
の懸濁層を構成している含触媒粗重質油スラ
リー(以下スラリーと略称)の一部を抜き出
して、冷却器付き貯槽28内に冷却・貯蔵し
ておき、必要に応じてポンプ29で液相水素
化筒へ送入することによつて温度調整に役立
たせる。さらに緊急を要する場合には本発明
による生成油を分留して貯えられている軽・
中質油を適当量液相水素化筒に送入すれば、
その蒸発熱によつて容易に反応温度を制御す
ることができる。
本発明の方法によれば固定床・浮動床・静
止床などを用いる従来法よりもはるかに高い
触媒濃度を用いることができる。その結果高
い反応速度を維持しつつ、しかも従来法より
も低い温度たとえば20〜40℃低い反応温度で
操業できる。そのため液相水素化筒上部から
流出する生成気流中に含まれる粗重質留分蒸
気の含有率を従来法よりも低くおさえること
ができる。
その結果あとで説明する生成気流の温度降
下による粗重質留分蒸気の分離効果とあいま
つて、次の気相水素化筒に送入される生成気
流中に同伴されている粗重質分蒸気の含有率
は著しく少なくなり、その結果気相水素化触
媒の寿命は非常に延長されることとなる。
(b) 粗軽・中質留分の気相水素化工程 粗軽・中質留分の水素化は充填層を有する
気相水素化筒で行う。装置および触媒は公知
のものでよいが、この工程の特徴とする点は
液相水素化筒の生成気流を、気相のまま気相
水素化筒に送入して直ちに接触水素化する点
にある。既述の如く懸濁層では粗重質油の高
い反応速度を比較的低い温度で達成できる。
そのため生成気流中に同伴される粗重質留分
の蒸気は減少するので、気相水素化筒の成型
触媒の劣化は減少し、その寿命は延びる。
第1図において、液相水素化筒17の懸濁
層27で生成した気流は、粗軽・中質留分の
蒸気および未反応水素を主体とし、これに若
干量の分解生成ガス(硫化水素・アンモニ
ア・水蒸気・メタン・エタン・プロパン等)
および液相水素化筒上部温度における気液平
衡に由来する粗重質留分の蒸気を含んでい
る。このような生成気流を、液相水素化筒上
部に設けたミスト捕集器(図示せず)でミス
トを分離した後、連続的につぎの気相水素化
筒19へ送入し、高温高圧で接触水素化し
て、粗軽・中質留分をさらに精製・軽質化す
る。
気相水素化筒で用いる成型水素化触媒とし
ては、常用される水素化精製触媒および水素
化分解触媒を併用するのが効果的である。た
とえば硫化モリブデンと硫化ニツケルをアル
ミナおよびシリカアルミナにそれぞれ担持さ
せた3元触媒を併用することが好ましい。気
相水素化筒に送入する粗軽・中質留分の蒸気
の液空間速度は通常0.5〜3hr-1、圧力は液相
水素化筒に準じ、反応温度は390〜460℃であ
る。
気相水素化筒でも反応熱に基く反応温度の
急激な上昇が起きるが、既知の方法たとえば
充填層を数段に区切り、各段の中間に冷却用
水素を送入する方法を用いれば、反応温度を
自由に調節できる。ライン37は冷却用高圧
水素供給管である。冷却水水素は循環水素・
補給用新水素のいずれを用いても良い。
(c) 生成油の分離・回収と水素の循環工程 気相水素化筒19で水素化精製・水素化分
解されて生成した軽質留分に富んだ生成油の
蒸気と未反応水素を主体とする気流は、これ
を熱交換器15により冷却した後、アンモニ
ウムカーバメートの結晶析出を防止するため
必要に応じ適当量の蒸留水を枝管68より注
入し、水冷却器20によりさらに冷却し生成
油の蒸気を凝縮・液化してから、低温分離筒
21に送入し、液状生成油および凝縮水と未
反応水素を主成分とする循環ガスとに分離す
る。前者はライン22により高圧反応系外に
取り出し、分留・精製工場に送つて軽質油お
よび中質油製品とする。後者は高圧水素循環
ポンプ23・ライン14を経て反応系に循環
し、繰り返し使用する。この循環ガス中には
水素のほか、水素化反応副生物であるメタ
ン・エタン・プロパンなどの炭化水素ガスお
よび少量の硫化水素・アンモニア・水蒸気・
炭酸ガスなどが混入・蓄積して来るので、そ
の一部をライン24を経て高圧反応系外に排
出し、ガス精製設備を経て水素回収工場へ送
る。ライン25は運転開始時における新水素
(高圧)の供給ラインであるが、操業中消費
された水素の補給ラインとしても使用され
る。気相水素化筒の冷却用としてライン37
により新水素を補給する場合には、ライン2
5からの水素の補給量は減少する。
(d) 懸濁層の水準保持 以上の3工程を結合し、液相水素化筒の懸
濁層の液面が所定水準を保つように、原料油
または/および水素の送入量などの液相水素
化筒の運転諸条件を調整する。
以上のような3工程を結合して総合工程とす
ることにより、粗重質油の液相水素化プラント
と粗軽・中質油の高圧気相水素化プラントとい
う2個の独立プラントの連用効果を1個の直列
型プラントで実現・獲得するという大きな成果
をあげ得ることとなる。
本発明では上記総合工程の実施態様につい
て、さらに以下の各項(特許請求の範囲の番号
順に記載)に述べるような新規の工夫を凝ら
し、本直列型高圧水素化プロセスの技術的改良
と経済性向上をはかつている。
(2) 生成気流より粗重留分蒸気の分離 気相水素化筒に充填した成形水素化触媒の寿
命をできるだけ永くするためには、生成気流中
に同伴されている粗重質留分の蒸気の含有量が
できるだけ少なくなるように調整することが肝
要である。なぜかというと、この粗重質留分の
気相水素化においても熱分解・重縮合を起して
遊離炭素を生成し易く、この遊離炭素はニツケ
ル・ヴアナジウムのような金属の硫化物と共に
成型水素化触媒の活性表面に付着して、その活
性を次第に減衰させるからである。
原料油がたとえばパラフイン基系の石油残油
や頁岩粗油のようなアスフアルテンやビチユー
メンの含量が僅少で直鎖状の化学構造を持つ成
分に富んだものならば、所望の反応速度を得る
ための液相水素化温度をかなり低目に維持する
ことができる。その結果液相水素化筒上部温度
における気液平衡分圧に相当する粗重質留分蒸
気の生成気流中の含有量は減少する。成分的に
はもちろん気相水素化筒で分解する際遊離炭素
を生成し難い直鎖構造のものが主体である。し
たがつて液相水素化筒における生成気流をその
まま気相水素化筒へ送入できる場合がかなりあ
る。
しかし原料油がナフテン基系の石油残油や低
温タールのようなアスフアルテンやビチユーメ
ンの含有量が多くまた多環状の化学構造を持つ
成分に富んだものである場合には、所望の反応
速度を得るための液相水素化の反応圧力と反応
温度は高めになり、その結果液相水素化筒上部
温度における粗重質留分の平衡分圧が高くな
り、そのため生成気流中のその含有量が増加し
て、気相水素化触媒の活性低下を早めるような
結果になる。
これを抑制するためには生成気流を冷却して
温度をある程度降下させて、生成気流中に同伴
されている粗重質留分の蒸気を凝縮・分離すれ
ば目的が達成せられる。
上述のように液相水素化筒の反応温度は390
〜460℃であるが、そこからの生成気流の温度
を気相水素化反応開始温度である350〜390℃ま
で降下させるだけでも、かなりの量の粗重質留
分の蒸気が凝縮・分離する。しかしさらに気相
水素化反応開始温度以下の温度まで冷却してや
れば、分離効率はさらに高まり、成型水素化触
媒の寿命をいちだんと永くすることができる。
この場合は粗重質留分の蒸気を分離したあとの
生成気流を気相水素化反応開始温度以上の温度
まで再加熱してやる必要がある。この再加熱は
冷却前の生成気流と熱交換することにより容易
に行われる。あるいは気相水素化筒内に熱交換
器を設け、気相水素化反応熱により再加熱を行
うこともできる。
第2図において、生成気流を冷却して粗重質
留分を凝縮・分離するための具体的手段とし
て、冷却機構を内蔵した高温分離筒18を設置
した場合を例示してある。即ち液相水素化筒1
7の上部より連続的に抜き出した生成気流を高
温分離筒18を経由して気相水素化筒19
(a,b)へ送入するように配列してある。液
相水素化筒からの生成気流をまず高温分離筒に
導き、ここで生成気流を冷却し温度を降下させ
て、生成気流中に同伴されている粗重質留分の
蒸気を縮縮・分離した後、残りの生成気流を、
必要に応じ再加熱して、気相水素化反応開始温
度以上の温度を保たせながら、引き続き気相水
素化筒へ送入する。
高温分離筒の下部には凝縮した粗重質留分が
貯留するので、これをライン26から抜き出
す。抜き出された粗重質留分はかなり脱硫され
ているので、そのまま低硫黄重油として利用し
ても良いし、あるいは原料系に戻して再度液相
接触水素化に供してもよい。
このような高温分離筒は、第2図に示したよ
うに、液相水素化筒とは別の独立筒としてもよ
いが、長い液相水素化筒の上部に一体化して設
けることもできる。第2図におけるその他の記
号は第1図と同様である。
(3) 分縮による粗重質留分蒸気の分離 第3図は液相水素化筒からの生成気流を間接
冷却することにより、同伴されている粗重質留
分の蒸気を凝縮・分離する分縮器を設けた高温
分離筒18の内部構造の一例を示すものであ
る。筒内上部空間に設置した分縮器42の内部
に冷却コイル43、下端に開放した気流入口4
4、上部に気流出口45を設け、コイル状熱交
換器46を高温分離筒と分縮器との間の環状空
間に設置し、さらにその空間の上部に生成気流
吹込ノズル47を設けてある。
液相水素化筒上部から抜き出した生成気流を
ライン51で導き、ノズル47から高温分離筒
18内に送入する。送入された生成気流はまず
熱交換器46のコイル外表面に触れることによ
りかなり冷却される。ついで生成気流は反転し
て下端気流入口44から分縮器42の内部に入
り、冷却コイル43の外表面(冷却面)に接触
してさらに冷却される。この冷却過程で生成気
流中に同伴されている粗重質留分の蒸気は冷却
コイル外表面上で凝縮して、粗重質留分貯留部
48に落下するので、これを筒下部に貯留す
る。こうして粗重質留分の蒸気の大部分が凝
縮・分離された残りの生成気流は、分縮器の上
部に設けたラシツヒ環などを充填したミスト捕
集器49、気流出口45を経て、熱交換器46
のコイルの内部を通つて加熱され、気相水素化
反応開始温度以上の温度を回復した後、ライン
52により気相水素化筒に導かれる。
ここで分縮器の冷却用コイル43へ送入され
る冷媒たとえば水素のような気体または高沸点
油のような液体は、生成気流を冷却すると共に
自らは加熱されるので、これをそのまま高温分
離筒外へ排出し、系外の冷却器で冷却した後循
環使用するのが普通の考え方であり、またその
ようにしても差し支えない。
しかし本直列型高圧水素化法においては、常
温高圧の水素を冷媒として使用した後、これを
粗重質留分の蒸気を分離した生成気流にそのま
ま混入して、つぎの気相水素化反応にあずから
せることができる。このようにすれば、系外の
冷媒と冷却器が不要であるばかりでなく、水素
対粗軽・中質留分蒸気のモル比を増大し、気相
水素化反応にはかえつて有利となる。
すなわち第3図に示すように、冷却コイル4
3の末端をミスト捕集器49の入口で開放して
おき、常温高圧の水素をライン50から送入す
れば、この水素は冷却コイル43の内部を通
り、生成気流を冷却すると共に自らは加熱され
た後、ミスト捕集器49の入口で冷却コイルか
ら出て、粗重質留分の蒸気の大部分が除去され
た残りの生成気流に合体する。なお冷却用の水
素は補給用の新水素でも循環水素でもよい。
(4) 分留による粗重質留分蒸気の分離 第4図は液相水素化筒からの生成気流を常温
付近の液状軽・中質油(以下整流油と略称)と
直接接触させて冷却することにより、同伴され
ている粗重質留分の蒸気を凝縮・分離する分留
器を設けた高温分離筒18の内部構造の一例を
示すものである。筒内上部空間に設置した分留
器53の内部に複数段の棚段54、下端に開放
した気流入口55、上端に気流出口56を設
け、コイル状熱交換器46を高温分離筒と分留
器との間の環状空間に設置し、さらにその空間
の上部に生成気流吹込ノズル47を設けてあ
る。
液相水素化筒上部から抜き出した生成気流を
ライン51で導き、バズル47から高温分離筒
18内に送入すると、送入された生成気流はま
ず熱交換器46のコイル外表面に触れるとによ
りかなり冷却される。ついで生成気流は反転し
て下端気流入口55から分留器53の内部に入
り、棚段54を上昇する。その途中、ライン5
8を経て送入され棚段上部から下降してくる整
流油と接触して冷却され、その温度は降下す
る。この間、生成気流中の粗重質留分蒸気は冷
却・凝縮されると同時に分留効果も受け、下降
して粗重質留分貯留部48に落下し貯留され
る。整流油は棚段を下降しながら上昇してくる
生成気流と熱交換して気化し、生成気流に合体
する。こうして粗重質留分の蒸気の大部分を凝
縮・分離したかつ整流油と蒸気と一体になつた
生成気流は、分留器の上部に設けたラシツヒ環
などを充填したミスト捕集器57、気流出口5
6を経て熱交換器46のコイルの内部を通り加
熱され、気相水素化反応開始温度以上の温度を
回復した後、ライン52により気相水素化筒へ
導かれる。
ここで使用する整流油は、つぎに連結された
気相水素化筒からの生成油を分留して得られる
常圧下沸点200℃以上の留分または系外からの
中質油等を使用することができる。この方法は
前項で説明した間接冷却の分縮法より効果は大
きい。しかし粗軽・中質留分に対する水素のモ
ル比を低下させる負の効果を伴うので、あらか
じめ循環水素の使用量を多くするとか、反応圧
を高める必要のある場合がある。
(5) 減衰した液相水素化触媒の再生 本発明の方法においても原料油の種類によつ
て、高分子の金属有機錯化合物の水素化により
生成する金属の硫化物やアスフアルテン・ビチ
ユーメンの熱分解・重縮合に基く遊離炭素が懸
濁触媒表面に付着するのを完全に防止するのは
難しい場合がかなり多い。しかし微粉状である
ため触媒の外表面積は通常の成型触媒に比べ2
桁以上も大きく、そのため上記付着に基く触媒
活性の減衰速度は非常に遅くなる。しかもこの
場合にはつぎに述べるように簡単な手段・操作
で容易に再生できる利点がある。即ちこれを第
1図によつて説明すれば、温スラリーの1部を
貯槽28からライン30を経て常圧スラリー貯
槽31に送り、ここからポンプ32でチユーブ
ミル・ボールミルのような摩砕機35に供給
し、約60〜90℃の温度で長時間たとえば数時間
乃至数十時間充分に摩砕すれば、触媒粒子表面
に付着すたニツケル・ヴアナジウムなどの金属
の硫化物や遊離炭素などの固形異物は機械的に
剥離され、触媒は再びその活性表面を露出し
て、活性のほとんどを回復するに至る。スラリ
ーの粘度が高く、そのため摩砕効果が弱いよう
であれば、適当量の中質油を加えて粘度を低下
させてやればよい。
摩砕後のスラリーは再び常圧スラリー貯槽3
1に戻しポンプ32によりライン33を経て原
料供給槽12へ供給し、ポンプ13により熱交
換器15・予熱器16を経て液相水素化筒17
の底部へ循環送入する。この摩砕機による触媒
再生処理は、触媒の失活状態に応じて間欠的に
行うこともできる。しかし定常的に連続して行
う方が触媒の活性を定常値に保ち得るし、また
摩砕機の容量も小さくて済むので好ましい。こ
のような摩砕機による触媒再生法は、慣用の成
型または粗粒触媒に対しては適用不可能であつ
て、微粉触媒においてのみ始めて実施が可能と
なる方法である。
(6) 予熱過程における遊離炭素の生成防止 定常運転の場合も、原料油の予熱器などにお
ける熱分解・重縮合による遊離炭素の生成を予
防するため、予熱前の原料油に少量の微粉水素
化触媒を懸濁させることが望ましい。そのため
には温スラリーの一部を貯槽28から抜き出
し、ライン30を経て常圧スラリー貯槽31に
送り、ここからポンプ32・ライン33を経て
原料供給槽12へ連続的に供給する。このよう
にすれば、必ずしも原料油に新触媒を常時追加
する必要がない。原料油中に懸濁する触媒量は
原料油の反応性および触媒の活性・粒度等によ
つて異なるが、だいたい0.5〜3容量%程度で
よい。このように予熱段階から触媒を存在させ
ることができるのは液相水素化に微粉水素化触
媒の懸濁層を用いることの利点の一つであつ
て、固定触媒層では実現できないことである。
(7) 懸濁層中固形異物濃度の制御 第(5)項で説明した触媒再生法によつて触媒表
面から剥離したニツケル・ヴアナジウムなどの
金属の硫化物や遊離炭素などの固形異物は、触
媒と同じく懸濁状態で液相水素化筒内の懸濁層
に蓄積される。これら固形異物の存在は水素化
反応そのものに対しては有害でないが、長時間
の操業で蓄積量が増加すると懸濁層および抜き
出したスラリーの流動性の低下などの好ましく
ない影響を生ずるようになる。したがつてこれ
らの蓄積量には自ら一定の限界がある。
そのために液相水素化筒からのスラリーの一
部を冷却・減圧後連続的または間欠的に抜き出
して反応系外に排出すると共に、新触媒を連続
的または間欠的に反応系内に補給する。こうし
て液相水素化筒における懸濁触媒の濃度を所定
範囲内に保持すると同時に、懸濁層内に蓄積さ
れる遊離炭素・金属硫化物などの固形異物の濃
度を所定限度以下に制御する必要がある。固形
異物の濃度の所定限度は触媒濃度との関連にお
いて定められる値であつて、触媒濃度を高く維
持する必要がある時は固形異物濃度の上限は低
く定めなければならないが、触媒濃度が低くて
よい時は固形異物濃度の上限を高く定めても良
い。スラリー中の微粉固形物濃度の上限が約40
容量%なので、微粉水素化触媒と固形異物の合
計濃度が約40容量%を越えないように、固形異
物の濃度の所定限度を定める。
第1図では新触媒は、これを濃厚に懸濁した
含触媒重質油の形でライン34から原料油供給
槽12に送入する。他方常圧スラリー貯槽31
出口にスラリー排出ライン36を設けてある。
ライン36より排出されたスラリー中には、
触媒はもちろん、ニツケル・ヴアナジウムの硫
化物などを多量に含有している場合があるが、
いずれにせよこれを別に貯蔵して適宜資源回収
工場へ送る。
懸濁層内の微物水素化触媒は活性の高い硫化
物の形態であるが、補給用新触媒は硫化物のみ
に限定されるものではなく、微粉の金属酸化
物・金属水酸化物・金属のオキシ酸・ヘテロポ
リ酸・有機酸の金属塩などの形態であつても、
液相水素化筒の反応で硫化されて硫化物となる
ものはこれを支障なく使用することができる。
(8) 複数個の気相水素化筒の連結・使用 液相水素化筒から直接または高温分離筒を経
て気相水素化筒へ送入される生成気流中には、
原料油の種類と反応性によつて多少の差はある
が、液相水素化筒で水素化精製されてもまだヘ
テロ原子を含む極性高分子化合物の蒸気が、既
に述べた方法で粗重質留分の蒸気を凝縮・分離
したあとでも、なお相当量混入してくる。
これをうまく水素化処理するためには、複数
個の気相水素化筒を連結して設置し、先行する
筒たとえば2筒連結した場合には第1筒に極性
高分子化合物を炭化水素へ還元する能力即ち接
触水素化精製能に優れた成型触媒、たとえばア
ルミナに担持した硫化モリブデン触媒を充填す
る。後続する第2筒には硫化水素・アンモニ
ア・水蒸気に毒され難く、しかも炭化水素の接
触水素化分解能に優れた成型触媒、たとえばシ
リカアルミナを担体とする硫化モリブデン・硫
化ニツケルの3元触媒を充填する。このように
2個またはそれ以上の気相水素化筒に異種性能
の触媒を充填・使用すれば、水素化精製と水素
化分解という二つの目的を一挙に達成し、しか
も生産性を高めることができる。
第2図には第1気相水素化筒19a、第2気
相水素化筒19bを直列に連結して使用する場
合を例示した。ライン37a,37bはそれぞ
れ第1・第2気相水素化筒に送入する冷却用水
素の供給管を示し、その他の記号は第1図と同
様である。
(9) 運転開始時の操作法 最後に本発明のプラントを操作する際とくに
注意すべき諸点について述べる。既述のごとく
粗重質油ことにアスフアルテンやビチユーメン
を多く含むものは、水素分圧が過小の場合や過
熱される場合には、熱分解と同時に重縮合を起
して遊離炭素を生成し易い。遊離炭素は触媒表
面に付着してその活性を減衰させるばかりでな
く、予熱炉などの加熱面や管路の屈曲部に付
着・蓄積すると伝熱抵抗や流路抵抗の増大を招
き易い。このような不都合を、できるだけ避け
るためには、原料供給・反応・循環各系の各部
分における温度・流路などの運転諸条件があら
かじめ最適条件として設定された所定値の範囲
内にくるように、これらを調整することが肝要
である。
とくに運転開始の当初は、諸条件が所定値に
到達するまでの間にいろいろな障害を生じ易い
ので、まずアスフアルテンやビチユーメンの含
有量の少ない熱的に安定な重質油を使用して運
転を開始し、予熱器の温度や液相水素化筒の温
度・圧力・水素循環量・触媒の懸濁濃度などの
運転諸条件が所定値近くに到達した後、送入す
る重質油を漸次原料油に切り替えて正常運転へ
移行する。
運転停止時はこれと逆に原料油を上記の熱的
に安定な重質油に切り替えて、特に予熱器の加
熱面に原料油が付着・残留しないように、洗浄
を充分に行つてから停止する。必要とあらばさ
らに軽・中質油流体による洗浄を行う。
ここで用いる熱的に安定な重質油とは熱分
解・重縮合により遊離炭素を生成しにくいもの
を謂い、アスフアルテン・ビチユーメンおよび
不飽和化合物の含有量の僅少な重質油が適当で
ある。
効 果 以上の説明によつて本発明の効果は明らかに示
されているが、以下にこれらをまとめて列挙す
る。
(1) 液相水素化で用いる触媒は微粉状なので、こ
れを懸濁状態にし、しかも高濃度にして使用で
きる。このため触媒の活性表面積が著しく大き
くなり、その結果触媒効果は著しく増大し、併
せて副生する金属硫化物および遊離炭素の被覆
による減衰は著しくおそくなり、これらの結果
触媒の活性を長時間保持できる。
(2) 触媒を長時間連続使用できるため、再生操作
が著しく軽減され、また再生損失も殆どないの
で、高価であつても水素化活性の高い触媒を使
用できる。
(3) 活性が高い触媒をその有効表面積が著しく大
きい状態で使用できる結果として、液相水素化
筒では原料油の高い水素化反応速度を比較的低
い反応温度で達成できる。温度が低いため生成
気流に同伴される粗重質留分の蒸気は減少する
ので、気相水素化筒の成型触媒の劣化は減少
し、その寿命は延びる。これに加えて、液相水
素化筒よりの生成気流を冷却して温度をいつた
ん降下させ、同伴されてくる粗重質留分の蒸気
を凝縮・除去する操作を併せて行えば、気相水
素化筒の成型触媒の劣化はさらに減少し、その
寿命は著しく延びる。
(4) 活性が高い触媒をその活性表面積が著しく大
きい状態で使用できる結果として、従来の方法
では処理困難であつたアスフアルテンやビチユ
ーメンを多く含有する原料油も、これを充分に
軽質化することができる。
(5) 液相水素化筒で分解・生成した粗軽・中質留
分の蒸気を凝縮・液化することなく、そのまま
直列に結合した気相水素化筒に送入し反応させ
るので、熱・エネルギーの損失が少なく設備費
も軽減され、しかも原料油重質油より軽質油を
一挙に製造することができる。すなわち液相水
素化プラントと気相水素化プラントという2個
の独立プラントの挙げ得る生産効果を1個の液
相・気相直列型水素化プラントで挙げ得ること
になるので、その技術的・経済的効果は極めて
大きい。
(6) 微粉水素化触媒の再生は、スラリーの形態の
まま、簡単な機械的摩砕方法により達成できる
ので、再生設備費も予備触媒の在庫費も少なく
て済む。また水素化操業を停止せずに触媒の再
生・補給を行うことができる。
(7) 熱分解・重縮合により遊離炭素を生成し易い
不安定な原料油であつても、微粉水素化触媒を
原料油中に分散・懸濁し、水素と共に高圧の反
応帯域に送入することができるので、熱交換・
予熱過程における遊離炭素の生成を充分におさ
えることができる。
(8) 液相水素化筒からは生成気流のみが抜き出さ
れ、微粉水素化触媒を含有する懸濁層はその大
部分が常時液相水素化筒内に留まるので、取り
扱いがやつかいな高温高圧スラリーの大量移送
操作を必要としない。
【図面の簡単な説明】
第1図および第2図は本発明の方法を実施する
ための工程図、第3図は本発明の実施に際して使
用する高温分離筒の内部構造の一例、第4図は高
温分離筒の内部構造の他の例を示す概念図であ
る。 A…常圧部、B…高圧部、11…ライン、12
…原料供給槽、13…原料ポンプ、14…ライ
ン、15…熱交換器、16…予熱器、17…液相
水素化筒、18…高温分離筒、19…気相水素化
筒、19a…第1気相水素化筒、19b…第2気
相水素化筒、20…水冷却器、21…低温分離
筒、22…ライン、23…高圧水素循環ポンプ、
24…ライン、25…高圧水素ライン、26…ラ
イン、27…懸濁層、28…冷却器付き貯槽、2
9…ポンプ、30…ライン、31…常圧スラリー
貯槽、32…ポンプ、33…ライン、34…ライ
ン、35…摩砕機、36…スラリー排出ライン、
37…水素供給ライン、37a…水素供給ライ
ン、37b…水素供給ライン、42…分縮器、4
3…冷却コイル、44…気流入口、45…気流出
口、46…コイル状熱交換器、47…生成気流吹
込ノズル、48…粗重質留分貯留部、49…ミス
ト捕集器、50…ライン、51…ライン、52…
ライン、53…分留器、54…棚段、55…気流
入口、56…気流出口、57…ミスト捕集器、5
8…ライン、68…枝管。

Claims (1)

  1. 【特許請求の範囲】 1 粗重質油をまず液相で高温高圧接触水素化し
    て粗軽・中質留分を生成させ、ついでこれを気相
    で高温高圧接触水素化して精製・軽質化すること
    よりなる軽質油の連続製造法において、 (a) 気相部分と、微粉水素化触媒および粗重質油
    とよりなる液相(懸濁触媒層)部分とを有する
    液相水素化筒の底部に、予熱した原料粗重質油
    および過剰の水素を連続的に送入し、粗重質油
    を接触水素化して、粗軽・中質留分の蒸気を連
    続的に生成させる工程、 (b) その際得られる粗軽・中質留分の蒸気および
    未反応水素を主体とする生成気流を液相水素化
    筒上部より連続的に抜き出し、引き続き気相の
    まま成型水素化触媒充填層を有する気相水素化
    筒に送入し接触水素化して、粗軽・中質留分の
    蒸気をさらに精製・軽質化する工程、 (c) 気相水素化筒で生成した軽質留分を富んだ生
    成油の蒸気および未反応水素を主体とする気流
    を冷却し、軽質留分に富んだ生成油の蒸気を液
    化して未反応水素と分離し、水素は液相水素化
    筒へ循環・使用する工程、 以上の3工程を結合し、液相水素化筒の懸濁触
    媒層の液面が一定となるように、原料粗重質油の
    送入量および/または水素の送入量を制御するこ
    とを特徴とする軽質留の連続製造法。 2 液相水素化筒上部より連続的に抜き出した生
    成気流を冷却し温度を降下させて、生成気流中に
    同伴されている粗重質留分の蒸気を凝縮・分離し
    た後、残りの粗軽・中質留分の蒸気および水素を
    主体とする生成気流を、加熱し、または加熱せず
    して、気相水素化反応開始温度以上の温度を保た
    せながら、引き続き気相水素化筒へ送入すること
    を特徴とする特許請求の範囲第1項記載の方法。 3 液相水素化筒上部より連続的に抜き出した生
    成気流を高温分離筒を経由して気相水素化筒へ送
    入するように配列し、この高温分離筒内の気相部
    に設置した分縮器の冷却面に生成気流を接触させ
    て冷却し、生成気流の温度を降下させることを特
    徴とする特許請求の範囲第2項記載の方法。 4 液相水素化筒上部より連続的に抜き出した生
    成気流を高温分離筒を経由して気相水素化筒へ送
    入するように配列し、この高温分離筒内の気相部
    に設置した分留器中で、筒外から供給される液状
    の軽・中質油に生成気流を直接接触させて冷却
    し、生成気流の温度を降下させることを特徴とす
    る特許請求の範囲第2項記載の方法。 5 液相懸濁触媒層を構成している含触媒粗重質
    油スラリーの一部を連続的または間欠的に液相水
    素化筒から抜き出し、冷却・減圧してから摩砕機
    にかけて充分摩砕することにより、含触媒粗重質
    油スラリー中の微粉水素化触媒表面に付着した遊
    離炭素・金属硫化物などの固形異物を機械的に剥
    離した後、含触媒粗重質油スラリーを液相水素化
    筒へ循環送入することを特徴とする特許請求の範
    囲第1項もしくは第2項のいづれか1項記載の方
    法。 6 液相懸濁触媒層を構成している含触媒粗重質
    油スラリーの一部を液相水素化筒から抜き出し、
    予熱前の原料粗重質油に連続的に混合し、原料粗
    重質油中に微粉水素化触媒が懸濁している状態で
    水素と共に予熱してから、液相水素化筒に送入す
    ることを特徴とする特許請求の範囲第1項もしく
    は第2項のいづれか1項記載の方法。 7 液相懸濁触媒層を構成している含触媒粗重質
    油スラリーの一部を冷却・減圧した後連続的また
    は間欠的に反応系外に排出すると共に、新触媒を
    連続的または間欠的に反応系内に補給して、液相
    水素化筒における懸濁触媒濃度を所定範囲内に保
    持すると同時に、液相水素化筒の懸濁触媒層内に
    蓄積される遊離炭素・金属硫化物などの固形異物
    の濃度を所定限度内に制御することを特徴とする
    特許請求の範囲第1項もしくは第2項のいづれか
    1項記載の方法。 8 複数個の気相水素化筒を連結して設置し、先
    行する筒には接触水素化精製能に優れた成型触媒
    を充填し、後続する筒には接触水素化分離能に優
    れた成型触媒を充填することを特徴とする特許請
    求の範囲第1項もしくは第2項のいづれか1項記
    載の方法。
JP12942481A 1981-08-20 1981-08-20 Johatsugatakoatsuekisosuisokatokoatsukisosuisokatonochokuretsukoteinyorisojushitsuyukarakeishitsuyuoseizosuruhoho Expired - Lifetime JPH0237388B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12942481A JPH0237388B2 (ja) 1981-08-20 1981-08-20 Johatsugatakoatsuekisosuisokatokoatsukisosuisokatonochokuretsukoteinyorisojushitsuyukarakeishitsuyuoseizosuruhoho

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12942481A JPH0237388B2 (ja) 1981-08-20 1981-08-20 Johatsugatakoatsuekisosuisokatokoatsukisosuisokatonochokuretsukoteinyorisojushitsuyukarakeishitsuyuoseizosuruhoho

Publications (2)

Publication Number Publication Date
JPS5832693A JPS5832693A (ja) 1983-02-25
JPH0237388B2 true JPH0237388B2 (ja) 1990-08-23

Family

ID=15009153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12942481A Expired - Lifetime JPH0237388B2 (ja) 1981-08-20 1981-08-20 Johatsugatakoatsuekisosuisokatokoatsukisosuisokatonochokuretsukoteinyorisojushitsuyukarakeishitsuyuoseizosuruhoho

Country Status (1)

Country Link
JP (1) JPH0237388B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016150952A (ja) * 2015-02-16 2016-08-22 三菱化学株式会社 重質油の冷却方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016150952A (ja) * 2015-02-16 2016-08-22 三菱化学株式会社 重質油の冷却方法

Also Published As

Publication number Publication date
JPS5832693A (ja) 1983-02-25

Similar Documents

Publication Publication Date Title
US3622498A (en) Slurry processing for black oil conversion
CN107406778B (zh) 用于加氢处理和裂化烃的方法和装置
US7964156B2 (en) Method and apparatus for regenerating an iron-based fischer-tropsch catalyst
US4336160A (en) Method and apparatus for cracking residual oils
US7618530B2 (en) Heavy oil hydroconversion process
RU2495911C2 (ru) Многостадийный гидрокрекинг остатков перегонки
US4225415A (en) Recovering hydrocarbons from hydrocarbon-containing vapors
JP2020517797A (ja) 原油の変換のためのシステムおよび方法
US4222844A (en) Use of once-through treat gas to remove the heat of reaction in solvent hydrogenation processes
RU2622393C2 (ru) Конверсия асфальтенового пека в течение процесса гидрокрекинга остатка с кипящим слоем
WO2005074440A2 (en) Supercritical hydrocarbon conversion process
US4045328A (en) Production of hydrogenated coal liquids
WO2010110944A2 (en) Direct feed/effluent heat exchange in fluid catalytic cracking
KR20030029842A (ko) 탈아스팔트 오일로부터 수지를 제거하는 것을 특징으로하는 용매 탈아스팔트화 공정 및 가스화 공정의 통합 방법
EP0434799A1 (en) HYDROTREATMENT OF RESIDUAL OIL USING SOLVENT-EXTRACTED AND DESASPHALTED RESINS.
US4179352A (en) Coal liquefaction process
KR20010034022A (ko) 다단의 반응구역을 갖는 수소화처리 반응기 및 공정
WO2016144582A1 (en) Process for cracking hydrocarbons with recycled catalyst
US4048054A (en) Liquefaction of coal
CN105980532B (zh) 在沸腾床反应器系统中处理减压渣油和减压瓦斯油
EP0026508B1 (en) Process and apparatus for the demetallization of a hydrocarbon oil
CN111575049A (zh) 溶剂脱沥青油在重油上流式加氢裂化过程的用法
CN110819383A (zh) 用有内部并联反应区的反应器的劣质烃上流加氢反应过程
JPH0237388B2 (ja) Johatsugatakoatsuekisosuisokatokoatsukisosuisokatonochokuretsukoteinyorisojushitsuyukarakeishitsuyuoseizosuruhoho
JPS6241997B2 (ja)