JPH0237326A - Transparent substrate for color liquid crystal display - Google Patents

Transparent substrate for color liquid crystal display

Info

Publication number
JPH0237326A
JPH0237326A JP63187399A JP18739988A JPH0237326A JP H0237326 A JPH0237326 A JP H0237326A JP 63187399 A JP63187399 A JP 63187399A JP 18739988 A JP18739988 A JP 18739988A JP H0237326 A JPH0237326 A JP H0237326A
Authority
JP
Japan
Prior art keywords
layer
transparent conductive
liquid crystal
crystal display
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63187399A
Other languages
Japanese (ja)
Other versions
JPH063506B2 (en
Inventor
Shozaburo Nishikawa
西河 正三郎
Isao Hara
原 庸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP63187399A priority Critical patent/JPH063506B2/en
Publication of JPH0237326A publication Critical patent/JPH0237326A/en
Publication of JPH063506B2 publication Critical patent/JPH063506B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To obtain a transparent conductive layer which is thin and has low area resistance and to allow fine patterning without generating side etching and without generating thinning and meandering by using the transparent conductive layer to be provided on a color filter layer to serve as colored picture elements after said layer is sandwiched by metal oxide layers. CONSTITUTION:This substrate consists of the transparent substrate 1, the color filter layer 3 which is formed on the surface of the substrate 1 and to serve as the colored picture elements, and the transparent conductive layer provided on the layer 3. The transparent conductive layer is formed to have the 3-layered structure consisting, successively form the filter layer 3 side, of the 1st layer 5 which is the metal oxide layer, the 2nd layer 6 which is the acid soluble metal or its alloy layer and the 3rd layer 7 which is the acid soluble metal oxide layer. The transparent conductive layer having the low area resistance is obtd. and the etching is executable in a relatively short period of time by adopting the acid soluble metal oxide 7 for the outermost layer. The glass substrate for color liquid crystal display having the transparent conductive layer which allows easy fine patterning of the conductive film and has the low resistance is obtd. in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はカラー表示の可能な液晶表示素子に用いるのに
適したカラー液晶表示用透明基板に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a transparent substrate for color liquid crystal display suitable for use in a liquid crystal display element capable of color display.

[従来の技術] 液晶表示は現在、各種の計測機器や情報処理機器など多
くの表示機器に使用されている。消費電力が少ないこと
軽量、小型化できることからフラットパネルデイスプレ
ーにおいては、現在量も多く使用されている。しかし表
示品質はかならずしも優れた評価が得られていない。近
年液晶表示の技術進歩が著しく、従来のモノクロ表示か
らカラー表示のタイプに品質改良がなされてきている。
[Prior Art] Liquid crystal displays are currently used in many display devices such as various measuring instruments and information processing devices. It is currently used in large quantities in flat panel displays because it consumes less power, is lightweight, and can be made smaller. However, the display quality has not always received excellent evaluations. In recent years, the technology of liquid crystal displays has made remarkable progress, and the quality has been improved from conventional monochrome displays to color displays.

カラー液晶表示にはフルカラー、マルチカラーの画表示
に対して現在マイクロカラーフィルターを用いる方法が
最も有力な方法と考えられる。マイクロカラーフィルタ
ーとしてはゼラチンやカゼインを染料で染色したフィル
ターを用いるもの、あらかじめ着色した有機樹脂をフォ
トリソグラフ法によって着色画素をつくるもの、顔料を
練り込んだインキを印刷により透明ガラス基板上に形成
する方法でつくるものなどいくつかの種類のカラー液晶
表示用カラーフィルターが提案され、実用化されている
Currently, the most effective method for color liquid crystal display is the use of micro color filters for full color and multicolor image display. Micro color filters include those that use gelatin or casein dyed with dyes, those that use pre-colored organic resin to create colored pixels using photolithography, and those that use ink mixed with pigments that are printed on transparent glass substrates. Several types of color filters for color liquid crystal displays have been proposed and put into practical use, including those made using this method.

さらに、カラーフィルターが形成されたガラス基板には
透明電極が設けられ、この電極には表示画面の大きさ、
精細度に応じて微細なパターニングが必要である。カラ
ー液晶表示を行うためのガラス基板としては、ガラス基
板上にパターン化した透明電極を形成し、その電極上に
着色画素からなるカラーフィルターを形成したものと、
ガラス基板の上に所望の着色画素からなるカラーフィル
ターを形成し、その上に透明導電層を形成したものとが
ある。
Furthermore, a transparent electrode is provided on the glass substrate on which the color filter is formed, and this electrode has the size of the display screen,
Fine patterning is required depending on the definition. As a glass substrate for performing a color liquid crystal display, a patterned transparent electrode is formed on the glass substrate, and a color filter consisting of colored pixels is formed on the electrode.
There is one in which a color filter consisting of desired colored pixels is formed on a glass substrate, and a transparent conductive layer is formed thereon.

後者の方が、駆動電圧の正味が液晶に印加され、カラー
フィルター層による損失がないため表示品位が優れてい
る。したがって、カラー液晶表示にはガラス基板上にま
ず着色画素となるカラーフィルタを設け、その上に有機
像31層を平坦化のために設け、さらにその上に単層の
透明導電層を設けている。カラー液晶表示用のガラス基
板は、高表示品質のカラーデイスプレィとして用いられ
ている。
The latter has better display quality because the net drive voltage is applied to the liquid crystal and there is no loss due to the color filter layer. Therefore, in a color liquid crystal display, a color filter that becomes a colored pixel is first provided on a glass substrate, a 31-layer organic image is provided on top of that for flattening, and a single transparent conductive layer is further provided on top of that. . Glass substrates for color liquid crystal displays are used as color displays with high display quality.

近年カラー液晶表示の画面が太き(なり、表示品質の高
級化の要求が増大するにつれて着色画素サイズはますま
す小さくなってきている。したがって着色画素の上に設
けられる線状のITO(錫をドープした酸化インジウム
)透明電極の線巾は狭くならざるを得ない。液晶の駆動
には、透明1撞の線抵抗による電圧降下は好ましくない
ので、透明電極は電圧降下が事実上障害にならない程度
の低い抵抗値が必要である。したがって、低抵抗の透明
導電層が大型の高精細の表示の実現には不可欠になって
きている。これに対して従来、最も抵抗率が低い材料で
広(用いられている[TOの単一膜が透明導電層として
用いられていることはよく知られている。ITO膜はス
パッタリング法、蒸着法ディッピング法などいずれの方
法によっても製造されるが、低い抵抗率膜を得るにはガ
ラス基板の温度が300℃以上の高温に基板を加熱して
デポジョンをおこなうか、基板に室温で膜を形成後30
0℃以上の高温で熱処理するなどいわゆる高温プロセス
を経ることが必要である。
In recent years, color LCD screens have become thicker, and as the demand for higher quality display has increased, the size of colored pixels has become smaller and smaller. (doped indium oxide) The line width of the transparent electrode must be narrow.For driving a liquid crystal, a voltage drop due to the line resistance of one conductor is undesirable, so the voltage drop of the transparent electrode is such that the voltage drop does not actually become an obstacle. Therefore, low-resistivity transparent conductive layers have become essential for realizing large-scale, high-definition displays.In contrast, conventional materials with the lowest resistivity have been used to [It is well known that a single film of TO is used as a transparent conductive layer.ITO films can be manufactured by any method such as sputtering, vapor deposition, or dipping, but they have low resistance. To obtain a thin film, the glass substrate is heated to a high temperature of 300°C or higher to perform deposition, or the film is formed on the substrate at room temperature and then deposited for 30 minutes.
It is necessary to undergo a so-called high-temperature process such as heat treatment at a high temperature of 0° C. or higher.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

カラー液晶表示に用いられる多色の着色画素は前述した
ように、いずれも有機物質を母材とするため、また着色
材料自身が染料または有機顔料であるため高温では熱劣
化を生じてしまうので、ITO膜の形成に際しては高温
プロセスを採用することが出来ない。このため、ITO
膜の形成は着色画素の耐熱強度に関する制約から、大略
200℃が上限温度となりこの温度以下の低温プロセス
で成膜する必要がある。しかるにITO膜の抵抗率はプ
ロセス温度(膜形成時の基板加熱温度や成膜後の熱処理
温度)が低下すると増大してしまう特性を有する。低温
プロセスによるITO単独膜ではその抵抗値が大きいこ
とから、面積抵抗が小さい透明導電層を必要とする場合
はその膜厚が非常に大きくなってしまう。膜厚が大きい
と高精細表示に必要な微細電極のパタニングは極めて不
利になる。
As mentioned above, the multicolored colored pixels used in color LCD displays all have organic substances as a base material, and the coloring materials themselves are dyes or organic pigments, so they suffer thermal deterioration at high temperatures. A high-temperature process cannot be used to form an ITO film. For this reason, ITO
Due to restrictions regarding the heat resistance strength of colored pixels, the upper limit temperature for film formation is approximately 200° C., and it is necessary to form the film by a low-temperature process below this temperature. However, the resistivity of the ITO film increases as the process temperature (substrate heating temperature during film formation and heat treatment temperature after film formation) decreases. Since a single ITO film produced by a low-temperature process has a large resistance value, if a transparent conductive layer with a small sheet resistance is required, the film thickness will become very large. If the film thickness is large, patterning of fine electrodes required for high-definition display becomes extremely disadvantageous.

すなわちパターンの寸法精度の確保はサイドエ・7チー
現象の発生により難しくなり、また完全に均一なエツチ
ングが難しくなるので、エツチングムラによる電極間の
電極絶縁不良によるショートなどの欠点が生じ易くなり
、電極パタニングを歩留り良く行うことが難しくなる。
In other words, it becomes difficult to ensure the dimensional accuracy of the pattern due to the occurrence of side etching and 7chi phenomena, and it is also difficult to perform completely uniform etching, which makes short circuits and other defects due to poor electrode insulation between electrodes due to etching unevenness more likely to occur. It becomes difficult to perform patterning with a high yield.

またITO膜の膜厚が大きくなると膜の内部応力が増大
し、下地の保護膜や着色体にしわを発生させ表示品質に
致命的な欠陥を生じてしまう欠点を有していた。さらに
膜の内部応力は下地基材との部分的な密着性を損う危険
性を有し、液晶表示デバイスの信鯨性に悪影響を及ぼす
という欠点を有していた。
Furthermore, as the thickness of the ITO film increases, the internal stress of the film increases, causing wrinkles in the underlying protective film and colored body, resulting in a fatal defect in display quality. Furthermore, the internal stress of the film has the risk of partially damaging its adhesion to the underlying substrate, which has the disadvantage of adversely affecting the reliability of the liquid crystal display device.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は従来から用いられているカラーフィルター付ガ
ラス基板が有する問題点を解決するものであって、その
目的とするところは導電膜の微細パタニングが容易でか
つ低抵抗の透明導電層を存するカラー液晶表示用ガラス
基板を提供することにある。
The present invention is intended to solve the problems of conventionally used glass substrates with color filters, and its purpose is to provide a color filter having a transparent conductive layer with low resistance and easy to finely pattern a conductive film. An object of the present invention is to provide a glass substrate for liquid crystal display.

すなわち、本発明は、透明基板と、該透明基板の表面に
形成した着色画素となるカラーフィルタ層と、該カラー
フィルタ層の上に設けられた透明導電層とからなるカラ
ー液晶表示用基板において、該透明導電層がカラーフィ
ルタ層側から金属酸化物層の第1層と、酸可溶性の金属
またはその金属の合金層の第2層と、酸可溶性の金属酸
化物層の第3層とからなる3層構造からなることを特徴
とするカラー液晶表示用ガラス基板である。
That is, the present invention provides a color liquid crystal display substrate comprising a transparent substrate, a color filter layer forming colored pixels formed on the surface of the transparent substrate, and a transparent conductive layer provided on the color filter layer. The transparent conductive layer is composed of, from the color filter layer side, a first layer of a metal oxide layer, a second layer of an acid-soluble metal or an alloy layer of the metal, and a third layer of an acid-soluble metal oxide layer. This is a glass substrate for color liquid crystal display characterized by having a three-layer structure.

本発明において、着色画素となるカラーフィルタ層はゼ
ラチンやセガインを所定のサイズにパターンしこれを染
料で着色したものや、あらかじめ着色した感光性または
非感光性のアクリルまたはポリイミドの樹脂をフォトリ
ソグラフ法でパタニングしたものや、有機樹脂に有機顔
料を主成分とする着色剤を混練し、オフセント印刷法で
所定の寸法に印刷したものなど種々の材料、製法により
製造される。
In the present invention, the color filter layer that becomes the colored pixels is made by patterning gelatin or segaine into a predetermined size and coloring it with dye, or by photolithography using pre-colored photosensitive or non-photosensitive acrylic or polyimide resin. They are manufactured using various materials and manufacturing methods, such as those patterned with organic resin, and those that are printed in a predetermined size using an offset printing method by kneading a coloring agent whose main component is an organic pigment into an organic resin.

そして、本発明は前記カラーフィルタ層と前記透明導電
層との間に該カラーフィルタ層の表面を平坦化するため
のポリイミド、ポリアミド、アクリル及びエポキシ樹脂
等の透明の有機保護層を設けることが通常である。また
、本発明において、前記透明導電層の第2層として銀も
しくは銅またはこれらの合金が用いられる。銀合金、銅
合金を形成する金属としてはチタン、クロム、スズが用
いられ、これらの成分は通常、10%以内であることが
透過率を低下させずかつ耐腐蝕性を向上させる上で好ま
しい。
In the present invention, a transparent organic protective layer such as polyimide, polyamide, acrylic, or epoxy resin is usually provided between the color filter layer and the transparent conductive layer to flatten the surface of the color filter layer. It is. Further, in the present invention, silver, copper, or an alloy thereof is used as the second layer of the transparent conductive layer. Titanium, chromium, and tin are used as the metals forming the silver alloy and copper alloy, and it is preferable that the content of these components is usually within 10% in order to prevent a decrease in transmittance and to improve corrosion resistance.

また、本発明においては、前記透明導電層の第1層の金
属酸化物層は電気絶縁性の金属酸化物が、第3層と同じ
、第2Nの金属若しくは合金と同時にエツチング除去で
きる電気導電層金属酸化物であってもよい。電気絶縁性
酸化物としては透明で、下地との密着性が良く、屈折率
が種々な値を有するものを用いることができる。例えば
TiQz、ZrO,、Hf0Z、Ta205 、Alz
03 、BjzOz 、及びSin、等が用いられる。
Further, in the present invention, the first metal oxide layer of the transparent conductive layer is an electrically conductive layer in which the electrically insulating metal oxide can be removed by etching at the same time as the second N metal or alloy as in the third layer. It may also be a metal oxide. As the electrically insulating oxide, those that are transparent, have good adhesion to the base, and have various refractive index values can be used. For example, TiQz, ZrO,, Hf0Z, Ta205, Alz
03, BjzOz, and Sin, etc. are used.

また、電気導電性の金属酸化物としてはInzolやS
nをドープしたIn2O3を用いることができる。
Inzol and S are also used as electrically conductive metal oxides.
In2O3 doped with n can be used.

更にまた前記透明扉tHの第3層の金属酸化物層は通常
1 n z O:I ’P S nをドープしたIn、
O,が用いられる。
Furthermore, the third metal oxide layer of the transparent door tH is usually In doped with 1 nz O:I'P S n;
O, is used.

従って、本発明における前記透明導電層として第1暦/
第2層/第3層トシテ、5r(h/ Ag/ ITO1
A l zoz / Ag/ ITO−TrOz/ A
g/ ITO、、ZrO2/Ag/ rTo 、5jO
z/ Ag/ IntOx 、S:Oz/ Cu/ I
TO%A l t(h / Cu/ ITO、Ti12
/ Cu/ ITO、flfOz/ Cu/InzO−
、、JTO/Ag/ITO、ITO/Cu/)TOを用
いるのが好ましい。
Therefore, as the transparent conductive layer in the present invention,
2nd layer/3rd layer thickness, 5r(h/Ag/ITO1
Alzoz/Ag/ITO-TrOz/A
g/ITO, , ZrO2/Ag/ rTo, 5jO
z/Ag/IntOx, S:Oz/Cu/I
TO%Alt(h/Cu/ITO, Ti12
/ Cu/ ITO, flfOz/ Cu/InzO-
, , JTO/Ag/ITO, ITO/Cu/)TO are preferably used.

そして、前記透明導電Hりの第1層及び第3層の夫々膜
厚は通常約100〜400人の範囲で用いられ、また前
記透明導電1模の第2Nは通常100〜200人の範囲
で用いられて、該透明導電nりの全膜厚は300〜10
00人の範囲で用いられるのが通常である。
The thickness of each of the first layer and the third layer of the transparent conductive layer is usually in the range of about 100 to 400 layers, and the thickness of the second layer of the transparent conductive layer is usually in the range of 100 to 200 layers. used, the total film thickness of the transparent conductive layer is 300~10
It is usually used in the range of 00 people.

〔作 用〕[For production]

本発明は着色画素となるカラーフィルタ層の上に設けら
れる透明導電層を金属または金属合金を金属酸化物層で
サンドインチしたものを用いることにより、厚みの薄い
透明導電層で、面積抵抗が10Ω/Sq程度の低いもの
が得ら殻るのと同時に、該透明導電層の最外層の金属酸
化物層を酸可溶性にすることにより、透明導電層の金属
または金属合金を比較的短時間で所定のパターンに酸に
よりエツチングできる。
The present invention uses a transparent conductive layer provided on the color filter layer that becomes the colored pixel, which is made by sandwiching a metal or metal alloy with a metal oxide layer. At the same time, by making the outermost metal oxide layer of the transparent conductive layer acid-soluble, the metal or metal alloy of the transparent conductive layer can be made into a desired state in a relatively short time. The pattern can be etched with acid.

また、本発明は透明導電層を構成する3層の夫々の厚み
及び種類(M折率)を選ぶことで、光干渉効果により、
カラー液晶表示用透明基板の透過率を高めることができ
る。
In addition, the present invention allows for optical interference effects by selecting the thickness and type (M refractive index) of each of the three layers constituting the transparent conductive layer.
Transmittance of a transparent substrate for color liquid crystal display can be increased.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を引用して詳述する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

レーキレッドC(大日製化株式会社製赤色離料)2重量
部を平均重合度500ケン化度90モル%のポリビニル
アルコール10重量部に混合し、得られた混合物の上澄
部分の着色剤3重量部と平均重合度500ケン化度の9
0モル%ポリビニルアルコールにP−ホルミルスチリル
ピリジンが6モル%添加された感光性樹脂組成物(A)
を調整した。次にこのン容ン夜を100m璽X100m
1×1.0日のガラス基板(1)上に約1μmの膜厚に
なるようスピンナーで塗布し、30分間乾燥し、その後
マスクを介してパターン露光した後、非露光部分をイソ
プロピルアルコールで選択的に除去した後、160℃3
0分間加熱して、赤色(R)で示すドツト状フィルタ層
(3)を形成した。同様に、リオノールグリーン2Y−
301(東洋インキ製造株式会社製緑色顔料)を着色成
分とする緑色感光性樹脂組成物(B)と、ファストゲン
ブルーGNPS (大日本インキ化学株式会社製青色顔
料)を着色成分とする青色感光性樹脂組成物(C)を調
整し、赤色(R)フィルタ層(3)と同様にドツト状の
緑色(G)フィルタ層(3)及び青色(B)フィルタ層
(3)を作り第2図に示すカラーフィルタ層(3)を形
成した。
2 parts by weight of Lake Red C (red lubricant manufactured by Dainichi Seikagaku Co., Ltd.) are mixed with 10 parts by weight of polyvinyl alcohol having an average degree of polymerization of 500 and a degree of saponification of 90 mol%, and the colorant in the supernatant portion of the resulting mixture is 3 parts by weight and an average degree of polymerization of 500 and a saponification degree of 9.
Photosensitive resin composition (A) in which 6 mol% of P-formylstyrylpyridine is added to 0 mol% polyvinyl alcohol
adjusted. Next, this night is 100m x 100m
Coat with a spinner to a film thickness of approximately 1 μm on a 1 x 1.0 day glass substrate (1), dry for 30 minutes, then pattern exposure through a mask, then select the non-exposed areas with isopropyl alcohol. After removing the
The mixture was heated for 0 minutes to form a dot-shaped filter layer (3) shown in red (R). Similarly, Lionor Green 2Y-
A green photosensitive resin composition (B) containing 301 (a green pigment manufactured by Toyo Ink Manufacturing Co., Ltd.) as a coloring component and a blue photosensitive resin composition containing Fastgen Blue GNPS (a blue pigment manufactured by Dainippon Ink Chemical Co., Ltd.) as a coloring component. The resin composition (C) was adjusted to form a dot-shaped green (G) filter layer (3) and a blue (B) filter layer (3) in the same manner as the red (R) filter layer (3) as shown in Figure 2. A color filter layer (3) as shown was formed.

次にフィルタ層(3)の表面を平坦化するため、カラー
フィルタ層(3)部分を被覆するように厚み1.5μm
のアルリル系の樹脂(日本合成ゴム11商品名オプトマ
ーSS)をスピンコードして保護層(4)を形成した。
Next, in order to flatten the surface of the filter layer (3), a thickness of 1.5 μm was applied to cover the color filter layer (3).
A protective layer (4) was formed by spin-coding an arylic resin (trade name: Optomer SS of Nippon Synthetic Rubber 11).

この樹脂保護層(4)の上に透明導電膜(2)を形成し
た。透明導電層(2)は第1Nの金属酸化物層(5)、
金属層(6)、及び金属酸化物層(7)とからなる。
A transparent conductive film (2) was formed on this resin protective layer (4). The transparent conductive layer (2) includes a 1N metal oxide layer (5),
It consists of a metal layer (6) and a metal oxide layer (7).

金属酸化物層(5)は3種類のSiO□、A1..03
 、及びTiO2を選び夫々の試料を作った。つまり、
SiO□層(5)はアルゴン雰囲気中で高周波マグネト
ロンスパッタリングで、所定の厚さに付着し、A 12
03層(5)およびTioz層(5)は夫々の金属ター
ゲットを用い、アルゴンと酸素の混合ガス雰囲気で直流
反応性スパッタリング法で所定の厚さに付着した。
The metal oxide layer (5) is made of three types of SiO□, A1. .. 03
, and TiO2 were selected to prepare respective samples. In other words,
The SiO□ layer (5) is deposited to a predetermined thickness by high-frequency magnetron sputtering in an argon atmosphere, and A 12
The 03 layer (5) and the Tioz layer (5) were deposited to a predetermined thickness by direct current reactive sputtering in a mixed gas atmosphere of argon and oxygen using respective metal targets.

次に金属層(6)はAg又はCuを選び、夫々金属ター
ゲットをアルゴンガス雰囲気中で直流スパッタリング法
で、所定の厚さに金属酸化物層(5)上に付着した。更
に金属酸化物層(7)はSnO□を10重量%含むIT
O焼結体をターゲットとしてアルゴンと少量の酸素との
混合ガス雰囲気で直流スパッタリングで、所定厚さのI
TO層(7)を金属層(5)上に付着した。
Next, Ag or Cu was selected for the metal layer (6), and each metal target was deposited on the metal oxide layer (5) to a predetermined thickness by direct current sputtering in an argon gas atmosphere. Furthermore, the metal oxide layer (7) is IT containing 10% by weight of SnO□.
By direct current sputtering in a mixed gas atmosphere of argon and a small amount of oxygen using an O sintered body as a target, a predetermined thickness of I
A TO layer (7) was deposited on the metal layer (5).

金属酸化物@ (5) (71および金属層(6)の形
成時はガラス板(11を特に加熱しなかったが、金属層
(6)を形成するとき、粒子成長が発達し凝集して粒子
状にならない範囲でガラス板(1)を加熱してもよい。
Metal oxide @ (5) (71 and the glass plate (11) was not particularly heated when forming the metal layer (6), but when forming the metal layer (6), particle growth developed and agglomerated to form particles. The glass plate (1) may be heated to the extent that it does not become shaped.

一方、比較例として、前述のカラーフィルタ層(3)と
樹脂保護層(4)と、150人のSjO,層とを順次形
成したガラスFi(11を180℃に加熱しながら、ア
ルゴンガスと少量の酸素との混合ガス雰囲気でのスパッ
タリング法により、3900人の膜厚の[TO膜をSi
02層上に形成した。
On the other hand, as a comparative example, glass Fi (11) in which the color filter layer (3), the resin protective layer (4), and 150 SjO layers were sequentially formed was heated to 180°C, and a small amount of argon gas was added. Using a sputtering method in a mixed gas atmosphere with oxygen,
It was formed on the 02 layer.

上記のようにして得られたカラー液晶表示用透明基板の
透明導電層(2)について電極パタニング性、寒暖サイ
クルテストによる耐久性評価、面積抵抗および光透過率
を調べた。その結果を第1表に示す。サンプル1〜5ま
では40℃の1規定塩酸で所定のマスクパターンとマス
キングレジストを用いて4〜5分間エツチングをし、サ
ンプル6 (比較例)ではこの濃度ではエツチングが不
可能であったので、5規定塩酸45℃で8〜10分でそ
れぞれ不要部分をエツチングした。
The transparent conductive layer (2) of the transparent substrate for color liquid crystal display obtained as described above was examined for electrode patterning properties, durability evaluation by cold/warm cycle test, sheet resistance, and light transmittance. The results are shown in Table 1. Samples 1 to 5 were etched with 1N hydrochloric acid at 40°C for 4 to 5 minutes using a predetermined mask pattern and masking resist, and sample 6 (comparative example) could not be etched at this concentration. Unwanted portions were etched with 5N hydrochloric acid at 45° C. for 8 to 10 minutes.

サンプル1〜5は面積抵抗がいずれも中間層の半透明A
g膜またはCu膜の効果により10Ω/Sq以下と低(
同時に550μmの波長に於ける透過率が70%以上と
高く、稀塩酸で短時間にエッヂの形状がスソキリしたパ
タニングをすることが可能であった。一般的に使用され
るフォトレジストとマスクを使うフォトリソグラフ法に
より、電極線巾50μm、電極間スペースIOμmの平
行なストライブ状透明電極パターンがサンプル1乃至5
で可能であった。(但しサンプル1〜4の第1層はエツ
チングされない。)しかしながら、サンプル6 (比較
例)では面積抵抗は10Ω/Sq以下ではあるが、膜の
比抵抗の値から膜厚を厚((本発明の4倍以上)しなけ
ればならず、従って、塩酸によるパターンエツチングで
サイドエツチングが生じ、やせ細りゃ、蛇行が生じ電極
パタニング性が悪く、微細加工が困難であった。
Samples 1 to 5 all have sheet resistance of intermediate layer translucent A.
Low (10Ω/Sq or less) due to the effect of g film or Cu film
At the same time, the transmittance at a wavelength of 550 μm was as high as 70% or more, and it was possible to perform patterning with a smooth edge shape in a short time using dilute hydrochloric acid. By photolithography using a commonly used photoresist and mask, parallel striped transparent electrode patterns with an electrode line width of 50 μm and an inter-electrode space of IO μm were fabricated on samples 1 to 5.
It was possible. (However, the first layer of samples 1 to 4 is not etched.) However, in sample 6 (comparative example), although the sheet resistance is less than 10Ω/Sq, the film thickness is Therefore, pattern etching with hydrochloric acid causes side etching, and if thin, meandering occurs, resulting in poor electrode patterning properties and difficulty in microfabrication.

第3表に示すように、前述の紙面に垂直方向に伸びるス
トライプ状透明電極(2)を有するカラー液晶表示用ガ
ラス基体(1)と、ITOのストライプ状透明電極(9
)を有する他方のガラス基板(8)と、それらの周辺に
設けられたシール材00)とにより形成される空間部に
充填された液晶aυとから構成されるカラー液晶表示素
子が作られる。
As shown in Table 3, a color liquid crystal display glass substrate (1) having striped transparent electrodes (2) extending perpendicularly to the plane of the paper, and a striped transparent electrode (9) made of ITO are shown in Table 3.
A color liquid crystal display element is produced, which is composed of the other glass substrate (8) having a glass substrate (8) and a liquid crystal aυ filled in a space formed by a sealing material (00) provided around the glass substrate (8).

〔発明の効果〕〔Effect of the invention〕

以上のように本発明は着色画素となるカラーフィルタ層
の上に設けられる透明導電層を金属または金属合金を金
属酸化物層でサンドインチにしたものを用いることによ
り、厚みの薄い透明導電層で面積抵抗が低いものが得ら
れるので、サイドエツチングが生じず、やせ細りゃ蛇行
が生じず微細パターン加工ができる。
As described above, the present invention uses a thin transparent conductive layer provided on the color filter layer that becomes the colored pixel by using a metal or metal alloy sandwiched with a metal oxide layer. Since a product with a low sheet resistance can be obtained, side etching does not occur, and if thin and thin, no meandering occurs, allowing fine pattern processing.

しかも、本発明は透明導電層を構成する3層の夫々の厚
みや屈折率を選ぶことで、光干渉効果により、カラー液
晶表示用透明基板の透過率を高めることができる。
Moreover, in the present invention, by selecting the thickness and refractive index of each of the three layers constituting the transparent conductive layer, the transmittance of the transparent substrate for color liquid crystal display can be increased due to the optical interference effect.

従って、本発明のカラー液晶表示素子は大画面で、高精
細で明るさの明るいカラー液晶表示素子に用いるのに適
している。
Therefore, the color liquid crystal display element of the present invention is suitable for use as a large-screen, high-definition, bright color liquid crystal display element.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示すものであって、第1図は
カラー液晶表示用ガラス基板の断面図、第2図は第1図
の平面図、第3図はカラー液晶表示用ガラス基板を用い
たRGB液晶表示素子の断面図である。 ■、8ニガラス板、2:透明導電層、3:カラーフィル
タ層、4:樹脂保護層、5:第1層の金属酸化物層、6
:金属又は合金層、7:第3層の金属酸化物層、9:透
明電極、10:シール材、11:液晶。 第 図 / 第 図 第 図
The drawings show one embodiment of the present invention, in which Fig. 1 is a cross-sectional view of a glass substrate for color liquid crystal display, Fig. 2 is a plan view of Fig. 1, and Fig. 3 is a glass substrate for color liquid crystal display. 2 is a cross-sectional view of an RGB liquid crystal display element using ■, 8 glass plate, 2: transparent conductive layer, 3: color filter layer, 4: resin protective layer, 5: first layer metal oxide layer, 6
: metal or alloy layer, 7: third metal oxide layer, 9: transparent electrode, 10: sealing material, 11: liquid crystal. Figure / Figure Figure

Claims (6)

【特許請求の範囲】[Claims] (1)透明基板と、該透明基板の表面に形成した着色画
素となるカラーフィルタ層と、該カラーフィルタ層の上
に設けられた透明導電層とからなるカラー液晶表示用基
板において、該透明導電層がカラーフィルタ層側から金
属酸化物層の第1層と、酸可溶性の金属またはその金属
の合金層の第2層と、酸可溶性の金属酸化物層の第3層
からなる3層構造からなることを特徴とするカラー液晶
表示用透明基板。
(1) In a color liquid crystal display substrate comprising a transparent substrate, a color filter layer forming colored pixels formed on the surface of the transparent substrate, and a transparent conductive layer provided on the color filter layer, the transparent conductive The layer has a three-layer structure consisting of, from the color filter layer side, a first layer of a metal oxide layer, a second layer of an acid-soluble metal or an alloy layer of the metal, and a third layer of an acid-soluble metal oxide layer. A transparent substrate for color liquid crystal display characterized by:
(2)前記カラーフィルタ層と前記透明導電層との間に
該カラーフィルタ層の表面を平坦化するための透明の有
機保護層を設けた特許請求の範囲第1項に記載のカラー
液晶表示用透明基板。
(2) A color liquid crystal display according to claim 1, wherein a transparent organic protective layer is provided between the color filter layer and the transparent conductive layer for flattening the surface of the color filter layer. Transparent substrate.
(3)前記透明導電層の第2層が銀若しくは銅、または
これらの合金層である特許請求の範囲第1項又は第2項
に記載のカラー液晶表示用透明基板。
(3) The transparent substrate for a color liquid crystal display according to claim 1 or 2, wherein the second layer of the transparent conductive layer is a layer of silver, copper, or an alloy thereof.
(4)前記透明導電層の第1層が導電性で、且つ酸可溶
性膜である特許請求の範囲第1項乃至第3項に記載のい
ずれか1つのカラー液晶表示用透明基板。
(4) The transparent substrate for a color liquid crystal display according to any one of claims 1 to 3, wherein the first layer of the transparent conductive layer is a conductive and acid-soluble film.
(5)前記透明導電層の第1層が電気絶縁性である特許
請求の範囲第1項乃至第3項に記載のいずれか1つのカ
ラー液晶表示用透明基板。
(5) The transparent substrate for a color liquid crystal display according to any one of claims 1 to 3, wherein the first layer of the transparent conductive layer is electrically insulating.
(6)前記透明導電層の第1層または第3層が酸化イン
ジウムまたは酸化インジウムを主成分とする金属酸化物
からなる特許請求の範囲第1項乃至第3項に記載のいず
れか1つのカラー液晶表示用透明基板。
(6) The color according to any one of claims 1 to 3, wherein the first layer or the third layer of the transparent conductive layer is made of indium oxide or a metal oxide containing indium oxide as a main component. Transparent substrate for liquid crystal display.
JP63187399A 1988-07-27 1988-07-27 Transparent substrate for color liquid crystal display Expired - Fee Related JPH063506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63187399A JPH063506B2 (en) 1988-07-27 1988-07-27 Transparent substrate for color liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63187399A JPH063506B2 (en) 1988-07-27 1988-07-27 Transparent substrate for color liquid crystal display

Publications (2)

Publication Number Publication Date
JPH0237326A true JPH0237326A (en) 1990-02-07
JPH063506B2 JPH063506B2 (en) 1994-01-12

Family

ID=16205346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63187399A Expired - Fee Related JPH063506B2 (en) 1988-07-27 1988-07-27 Transparent substrate for color liquid crystal display

Country Status (1)

Country Link
JP (1) JPH063506B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09251161A (en) * 1996-03-15 1997-09-22 Nippon Sheet Glass Co Ltd Substrate for display element
JPH1091084A (en) * 1996-09-12 1998-04-10 Asahi Glass Co Ltd Patterning method of transparent conductive film and substrate with transparent electrode
WO1999036261A1 (en) * 1998-01-20 1999-07-22 Polaroid Corporation Process for forming electrodes
US6762124B2 (en) 2001-02-14 2004-07-13 Avery Dennison Corporation Method for patterning a multilayered conductor/substrate structure
US6825904B2 (en) 2000-07-14 2004-11-30 Seiko Epson Corporation Liquid crystal device, color filter substrate with vapor deposited metal oxide insulating layer under transparent conductor, method for manufacturing liquid crystal device, and method for manufacturing color filter substrate
US7142275B2 (en) 2002-10-25 2006-11-28 Seiko Epson Corporation Electro-optic device having multi-layer conductive layer, method of manufacturing the same, and electronic apparatus
JP2012243280A (en) * 2011-05-24 2012-12-10 Innovation & Infinity Global Corp Transparent conductive structure applicable to touch panel, and manufacturing method for the structure
JP2012243282A (en) * 2011-05-24 2012-12-10 Innovation & Infinity Global Corp Transparent conductive structure applicable to touch panel, and manufacturing method for the structure
JP2017508997A (en) * 2014-03-07 2017-03-30 エルジー・ケム・リミテッド Light modulation device {LIGHT MODULATION DEVICE}
US11088343B2 (en) 2018-11-28 2021-08-10 Samsung Electronics Co., Ltd. Electronic device including display panel including electrodes having different shapes for respective areas

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61233720A (en) * 1985-04-10 1986-10-18 Toppan Printing Co Ltd Electrode plate for liquid crystal display

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61233720A (en) * 1985-04-10 1986-10-18 Toppan Printing Co Ltd Electrode plate for liquid crystal display

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09251161A (en) * 1996-03-15 1997-09-22 Nippon Sheet Glass Co Ltd Substrate for display element
JPH1091084A (en) * 1996-09-12 1998-04-10 Asahi Glass Co Ltd Patterning method of transparent conductive film and substrate with transparent electrode
WO1999036261A1 (en) * 1998-01-20 1999-07-22 Polaroid Corporation Process for forming electrodes
US6379509B2 (en) * 1998-01-20 2002-04-30 3M Innovative Properties Company Process for forming electrodes
US7303809B2 (en) 1998-01-20 2007-12-04 3M Innovative Properties Company Process for forming electrodes
US6825904B2 (en) 2000-07-14 2004-11-30 Seiko Epson Corporation Liquid crystal device, color filter substrate with vapor deposited metal oxide insulating layer under transparent conductor, method for manufacturing liquid crystal device, and method for manufacturing color filter substrate
USRE44071E1 (en) 2001-02-14 2013-03-12 Streaming Sales Llc Method for patterning a multilayered conductor/substrate structure
US6762124B2 (en) 2001-02-14 2004-07-13 Avery Dennison Corporation Method for patterning a multilayered conductor/substrate structure
US7142275B2 (en) 2002-10-25 2006-11-28 Seiko Epson Corporation Electro-optic device having multi-layer conductive layer, method of manufacturing the same, and electronic apparatus
JP2012243282A (en) * 2011-05-24 2012-12-10 Innovation & Infinity Global Corp Transparent conductive structure applicable to touch panel, and manufacturing method for the structure
JP2012243280A (en) * 2011-05-24 2012-12-10 Innovation & Infinity Global Corp Transparent conductive structure applicable to touch panel, and manufacturing method for the structure
JP2017508997A (en) * 2014-03-07 2017-03-30 エルジー・ケム・リミテッド Light modulation device {LIGHT MODULATION DEVICE}
US9904129B2 (en) 2014-03-07 2018-02-27 Lg Chem, Ltd. Light modulation device
US11088343B2 (en) 2018-11-28 2021-08-10 Samsung Electronics Co., Ltd. Electronic device including display panel including electrodes having different shapes for respective areas

Also Published As

Publication number Publication date
JPH063506B2 (en) 1994-01-12

Similar Documents

Publication Publication Date Title
CN107102470A (en) Reflective liquid-crystal display and its manufacture method
JPH0237326A (en) Transparent substrate for color liquid crystal display
JPH0728055A (en) Liquid crystal display and production thereof
JPH02294622A (en) Liquid crystal display device
JPH10293207A (en) Color filter and its production
JP2004295090A (en) Color liquid crystal display device and manufacturing method therefor, and manufacturing method for color filter substrate
JP2002365420A (en) Color filter and liquid crystal display device
TW583453B (en) Method of manufacturing black matrix
JP3908019B2 (en) Liquid crystal display device and electrode substrate manufacturing method
JPH01257823A (en) Color filter substrate for liquid crystal display device
KR930005560B1 (en) Filter making method and filter of lcd color
JPH03120516A (en) Manufacture of color filter
JP2872450B2 (en) Color filter substrate
JPH02153320A (en) Color filter for liquid crystal display device
JPH06308319A (en) Production of color filter
JPS63197903A (en) Substrate with transparent conductive color filter
JPH07325300A (en) Color liquid crystal display panel
JPS62299941A (en) Production of color filter
JP2634977B2 (en) Method for producing thin film and color filter
JP2002318310A (en) Liquid crystal display device, method for manufacturing the same, color filter, method for manufacturing the same and substrate with attached color filter
JPH10123312A (en) Color filter, color liquid crystal display device, and production of those
JPH06281925A (en) Manufacture of liquid crystal display panel
JP2924008B2 (en) Liquid crystal element
JPH08334753A (en) Substrate for display and its production
JP3428094B2 (en) Liquid crystal display device, its manufacturing method, color filter, its manufacturing method, and substrate with color filter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees