JPH0236934A - Correction of tire grooving and its apparatus - Google Patents

Correction of tire grooving and its apparatus

Info

Publication number
JPH0236934A
JPH0236934A JP63319255A JP31925588A JPH0236934A JP H0236934 A JPH0236934 A JP H0236934A JP 63319255 A JP63319255 A JP 63319255A JP 31925588 A JP31925588 A JP 31925588A JP H0236934 A JPH0236934 A JP H0236934A
Authority
JP
Japan
Prior art keywords
tire
correction
orthogonal
cutter
grooving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63319255A
Other languages
Japanese (ja)
Other versions
JPH0541430B2 (en
Inventor
Hiroshi Kinuhata
衣畑 啓
Masao Takami
昌夫 高見
Eiji Shibata
柴田 英司
Tadahiko Tamura
田村 宰彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YASUKAWA SETSUBI GIKEN KK
Sumitomo Rubber Industries Ltd
Original Assignee
YASUKAWA SETSUBI GIKEN KK
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YASUKAWA SETSUBI GIKEN KK, Sumitomo Rubber Industries Ltd filed Critical YASUKAWA SETSUBI GIKEN KK
Priority to JP63319255A priority Critical patent/JPH0236934A/en
Publication of JPH0236934A publication Critical patent/JPH0236934A/en
Publication of JPH0541430B2 publication Critical patent/JPH0541430B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Tyre Moulding (AREA)
  • Testing Of Balance (AREA)
  • Automatic Control Of Machine Tools (AREA)

Abstract

PURPOSE:To enable a cutter to be controlled at an optimum position by a method wherein side run out and vertical deflection of a tire are detected, and a correction transfer amount corresponding to a detected value is made to follow a reference transfer amount. CONSTITUTION:A correction program for correction of a transfer amount of a cutter based on vertical deflection and side run out of a tire is stored in a memory of a correcting motion operation part. When vertical deflection is caused by a strain of a tread surface of the tire 3, the deflection is detected with a vertical deflection detector 14, and a transfer amount correcting mechanism part of an elevator 7 is driven according to a correction value from the correction program based on this detected value. The elevator 7 is raised in a Z axial direction, a cutter 10 is raised to correct a cutter position, and a depth is kept constant. A reference transfer amount is controlled by a value always established by a reference program, and a correction transfer amount by a deflection detection value is preferably corrected by following another correction program. Therefore, structure of the program is simple and the title apparatus can be miniaturized.

Description

【発明の詳細な説明】 「産業上の利用分野] 本発明は、タイヤのグルーピング装置においてタイヤの
縦振れおよび横振れに応じて、同時にあラド中心(タイ
ヤ赤道)の左右で相互に一定であるべき合溝の深さや溝
幅および溝位置などがそれぞれ異なって、製品が不安定
になり、強度か低下するなどの品質」二の問題があった
[Detailed Description of the Invention] "Industrial Application Field" The present invention provides a tire grouping device in which a tire grouping device is configured to maintain uniformity on the left and right sides of the tire radial center (tire equator) according to the vertical and lateral vibrations of the tire. The depth, groove width, and groove position of the matching grooves were different, leading to problems with the quality of the product, such as instability and reduced strength.

このため、たとえば特開昭62−74635号公報に示
されているように、トレッド面の形状を検出する非接触
式の検出手段を設け、この検出結果にもとついてカッタ
の位置を制御し、タイヤから切除するゴム量を一定にす
るものが提案されている。
For this reason, as shown in Japanese Patent Application Laid-Open No. 62-74635, for example, a non-contact detection means for detecting the shape of the tread surface is provided, and the position of the cutter is controlled based on the detection result. A method has been proposed in which the amount of rubber removed from the tire is constant.

1本発明が解決しようとする課題] しかしながら、このようなタイヤのグルービング装置で
は、検出手段を設けるために大掛かりなフレームをそな
える必要があり、切り込み時のカッタの深さ方向位置だ
けを一定にしているため、周方向に一周する溝の全周に
わたって溝深さを定に保持できないことと、切除するゴ
ム量を一定にするために、画像検出器を用いて検出器の
視野内に占めるタイヤの面積からカッタの切除時におす
る位置を訓算によって求めており、切除するゴるいは各
別にカッタ位置を制御する補正方法とその装置に関する
1. Problems to be Solved by the Present Invention] However, in such a tire grooving device, it is necessary to provide a large-scale frame in order to provide a detection means, and it is necessary to keep only the depth direction position of the cutter constant during cutting. Because of this, it is not possible to maintain a constant groove depth over the entire circumference of the groove, and in order to keep the amount of rubber removed constant, an image detector is used to measure the amount of tire that occupies the field of view of the detector. The present invention relates to a correction method and apparatus for calculating the position of the cutter when cutting from the area and controlling the position of the cutter for each groove to be cut.

[従来の技術] 新品タイヤや更生タイヤのトレッド面にグルービングを
行う装置では、タイヤを垂直に支持するタイヤ支持軸と
、このタイヤ支拮軸に対して少なくとも平行な横行、お
よび直角な方向の直行移動が可能なカッタ装置をそなえ
ているが、一般にタイヤ自体が真円でなく、またトレッ
ド タイヤ支持の偏りなどにより、タイヤ支持軸中心からの
トレッド面に径方向の縦振れを生じ、あるいは、タイヤ
自体の歪みやタイヤ支持の偏りなとによりタイヤ側面に
幅方向の横振れを生じると、このタイヤを回転させなが
ら設定されたプログラムにより所定のトレッドパターン
形状に沿って移動量を制御するようにしたカッタでグル
ービングを行っても、同一サイズ、同一仕様のタイヤに
おいて溝の深さや溝幅あるいはトレッド中心に対する溝
の位置がタイヤごとに異なり、また−本のタイヤに複数
の溝をグルービングした場合に、トレム量を一定にする
ようにしても、すでに別の溝が形成されている部分に交
差する場合や、タイヤ赤道面の左右で半径の変化が異な
っている場合には、その面積から計算で求めることは非
常に困難であるだけでなく、タイヤの横方向の振れに対
してカッタを移動することができず、タイヤの縦振れ、
横振れに追従できず、タイヤ溝の深さ、溝幅やWlt位
置を所望の一定値に保持することができないなどの問題
点がある。
[Prior Art] A device for grooving the tread surface of a new or retreaded tire has a tire support shaft that vertically supports the tire, a traverse direction that is at least parallel to the tire support axis, and a perpendicular direction that is perpendicular to the tire support axis. Although it is equipped with a movable cutter device, the tire itself is generally not a perfect circle, and due to uneven tread tire support, the tread surface from the center of the tire support shaft may run out in the radial direction, or the tire may When lateral vibration occurs on the side of the tire due to distortion of the tire itself or uneven tire support, the amount of movement is controlled according to a predetermined tread pattern shape using a set program while rotating the tire. Even when grooving is performed with a cutter, the depth and width of the grooves, or the position of the grooves relative to the center of the tread, differs from tire to tire for tires of the same size and specifications, and when grooving multiple grooves on one tire, Even if you try to keep the trem amount constant, if it intersects with a part where another groove has already been formed, or if the radius changes on the left and right sides of the tire's equatorial plane, calculate it from the area. Not only is it extremely difficult to do so, but the cutter cannot be moved in response to the tire's lateral runout, and the tire's vertical runout and
There are problems such as inability to follow lateral vibration and inability to maintain tire tread depth, groove width, and Wlt position at desired constant values.

[課題を解決するだめの手段] 本発明は、カッタをタイヤの径方向またはこれと平行に
移動ざ且る直行台の直行駆動軸およびタイヤの幅方向に
移動させる横行台の横行駆動軸を含む複数の動作軸を用
いてカッタの移動を制御し、タイヤ表面に所望のパター
ン溝を加工するタイヤのグルービングにおいて、クルー
ピンクを行う前、またはグルービングしながら、タイヤ
の径方向の縦振れおよび幅方向の横振れを必要によって
両方またはいずれか一方を検出し、その検出値にもとづ
いて直行台および横行台の両方または一方を移動させる
補正プログラムをつくり、各駆動軸を基準プログラムに
よりグルービングさせるとともに、前記基準プログラム
に応じた直行駆動軸による直行台の移動量および横行駆
動軸による横行台の移動量に、前記補正プログラムによ
るそれぞれの移動量を重畳させるようにしており、また
、このために補正の必要に応じてタイヤの径方向の縦振
れおよび幅方向の横振れを検出する検出器を両方または
一方だけ設けて、基準プログラムによって回転し直行台
をタイヤの径方向またはこれと平行に移動させる直行駆
動軸および横行台をタイヤの幅方向に移動させる横行駆
動軸と平行に、前記検出器の検出値にもとづく補正プロ
グラムによって回転し直行台および横行台を移動させる
直行補正軸および横行補正軸を両方あるいは一方だけ設
けるようにしている。
[Means for Solving the Problems] The present invention includes a transverse drive shaft of a transverse table that moves the cutter in the radial direction of the tire or parallel thereto, and a transverse drive shaft of a transverse table that moves the cutter in the width direction of the tire. During tire grooving, which uses multiple operating axes to control the movement of the cutter and process the desired pattern of grooves on the tire surface, the radial vertical runout and width direction of the tire are measured before crew pinking or while grooving. A correction program is created to detect both or one of the lateral runouts as necessary, move both or one of the orthogonal table and the transverse table based on the detected values, groove each drive shaft according to the reference program, and The amount of movement of the orthogonal table by the orthogonal drive axis and the amount of movement of the traverse table by the transverse drive axis according to the standard program are superimposed on the respective amounts of movement by the correction program, and for this purpose Orthogonal drive that rotates according to a standard program and moves the orthogonal platform in the radial direction of the tire or parallel to it, by installing both or only one of the detectors to detect the longitudinal runout in the radial direction and the lateral runout in the width direction of the tire. Parallel to the traversing drive shaft that moves the shaft and the traversing table in the tire width direction, both or both or both of the orthogonal correction axis and the traversing correction axis that rotate and move the orthogonal table and the traversing table according to a correction program based on the detected value of the detector. I try to provide only one side.

[作用コ したがって、タイヤの基準トレッド面に対してカッタ位
置を設定する基準プログラムによってタイヤの径方向ま
たはこれ平行に動作させる直行部5は前記基台4上をレ
ール43に沿ってタイヤ支持軸と平行なY軸方向に移動
する横行台、6は横行台5の横行駆動装置で、とくに第
3図で明らかなように、基台4上に駆動モータ61で回
転され送りねじを構成する横行駆動軸62と、補正モー
タ63て回転されるスプライン軸からなる横行補正軸6
4を、タイヤ支持軸21と平行なY軸方向に平行に設け
、横行台5の下面に設けたフレー2.51にポールねじ
で構成しためねじ体65と支持ボス66を回転自由に取
り付け、このめねじ体65を前記横行駆動軸62のねじ
部に螺合させ、支持ボス66は横行補正軸64に軸とと
もに回転し軸方向に自由に移動できるように挿入させて
いる。67は支持ボス66に一体に固着された駆動ギヤ
、68は横行駆動軸62に遊嵌し、めねじ体65に固着
した従動ギヤで、前記駆動ギヤ67に噛み合わせである
。69は基台4上の支持軸受である。
[Operations] Accordingly, the orthogonal section 5, which is operated in the radial direction of the tire or parallel to the tire radial direction according to the standard program that sets the cutter position with respect to the standard tread surface of the tire, runs on the base 4 along the rail 43 and with the tire support shaft. A traverse table 6 that moves in the parallel Y-axis direction is a traverse drive device for the traverse table 5. As is particularly clear in FIG. A transverse correction shaft 6 consisting of a shaft 62 and a spline shaft rotated by a correction motor 63
4 is provided in parallel with the Y-axis direction parallel to the tire support shaft 21, and an internally threaded body 65 and a support boss 66 made of pole screws are rotatably attached to the frame 2.51 provided on the lower surface of the traversing table 5. This female threaded body 65 is screwed into the threaded portion of the traverse drive shaft 62, and the support boss 66 is inserted into the traverse correction shaft 64 so that it can rotate together with the shaft and move freely in the axial direction. Reference numeral 67 is a drive gear that is integrally fixed to the support boss 66, and 68 is a driven gear that is loosely fitted to the transverse drive shaft 62 and fixed to the female threaded body 65, and is meshed with the drive gear 67. 69 is a support bearing on the base 4.

7は横行台5上てガイド軸52に沿ってタイヤ支持軸2
1に直角なZ軸方向に移動する直行台、動軸およびタイ
ヤの幅方向に移動させる横行駆動軸の基準移動量に、そ
れぞれグルービングに先立ち、またはグルービングしな
がらタイヤの縦振れ、横振れを検出する検出器の検出値
に応じた補正プログラムにより動作する直行補正軸およ
び横行Hli正軸の補正移動量が、それぞれ機械的に重
畳され、タイヤの縦振れおよび横振れに対してカッタ位
置を同時にあるいは各別に補正させる。
7 is the tire support shaft 2 along the guide shaft 52 on the traversing table 5.
Vertical and lateral vibrations of the tire are detected prior to grooving or during grooving, respectively, on the standard movement distances of the rectilinear table and moving shaft that move in the Z-axis direction perpendicular to 1, and the transverse drive shaft that moves in the width direction of the tire. The correction movement amounts of the orthogonal correction axis and the transverse Hli positive axis, which are operated by a correction program according to the detected value of the detector, are mechanically superimposed, respectively, and the cutter position is adjusted simultaneously or simultaneously against vertical and lateral vibrations of the tire. Correct each separately.

[実施例] これを図に示す実施例について詳細に説明する。[Example] This will be explained in detail with reference to the embodiment shown in the figure.

第1図および第2図に示すグルービング装置において、
lはベツド、2はベツドl上に設けたタイヤ支持台で、
タイヤ支持軸21にタイヤ3を装着してモータ22で回
転させる。4は基台で、ベツドl上のレール41をガイ
ドバー42に沿って図示しないモータによりタイヤ支持
台2の軸心と直角なX軸方向に移動できるようにしであ
る。なお、この実施例では、基台4はタイヤ支持台との
間隔を所定値にしておけばX軸方向に移動さ0゛なくて
もよい。
In the grooving device shown in FIGS. 1 and 2,
l is the bed, 2 is the tire support stand installed on the bed l,
A tire 3 is mounted on a tire support shaft 21 and rotated by a motor 22. Reference numeral 4 denotes a base, which allows a rail 41 on the bed 1 to be moved along a guide bar 42 in the X-axis direction perpendicular to the axis of the tire support base 2 by a motor (not shown). In this embodiment, the base 4 does not need to be moved 0° in the X-axis direction as long as the distance between it and the tire support is set to a predetermined value.

8は直行台7の直行駆動装置で、第4図に詳細に示され
ているように、前記横行駆動装置6と同様の構成を有し
、横行台5に垂直方向に支持され駆動モータ81により
回転する送りねじで構成された直行駆動軸82と補正モ
ータ83により回転されスプライン軸を構成する直行補
正軸84を平行にそなえ、直行台7に回転自由にめねじ
体85と支持ボス86を設け、前記めねじ体85を直行
駆動軸82に螺合させ、支持ボス86を直行補正軸84
に軸とともに回転し軸方向に移動可能に挿入している。
Reference numeral 8 designates a orthogonal drive device for the orthogonal table 7, which has the same configuration as the transverse drive device 6, as shown in detail in FIG. An orthogonal drive shaft 82 consisting of a rotating feed screw and an orthogonal correction shaft 84 rotated by a correction motor 83 and constituting a spline shaft are provided in parallel, and a female threaded body 85 and a support boss 86 are provided on the orthogonal table 7 to freely rotate. , the female threaded body 85 is screwed onto the orthogonal drive shaft 82, and the support boss 86 is screwed onto the orthogonal correction shaft 84.
It rotates with the shaft and is inserted so that it can move in the axial direction.

87は直行補正軸84とともに回転し支持ボス86に固
着した駆動ギヤ、88は直行駆動軸82に遊嵌しめねじ
体85と一体に取り付けた従動ギヤで、前記駆動ギヤ8
7と噛み合わせている。
87 is a drive gear that rotates together with the orthogonal correction shaft 84 and is fixed to the support boss 86; 88 is a driven gear that is integrally attached to the orthogonal drive shaft 82 with a loosely fitted female screw body 85;
It meshes with 7.

71は回動アームで、直行台7からX軸方向に突出させ
たアーム支持軸72に取り付けられ、直行台7内の図示
しないモータによりアーム支持軸72の軸心線73を中
心に第2図の矢印A方向に回動される。
Reference numeral 71 denotes a rotating arm, which is attached to an arm support shaft 72 that protrudes from the orthogonal table 7 in the X-axis direction, and is rotated around the axial center line 73 of the arm support shaft 72 by a motor (not shown) in the orthogonal table 7 as shown in FIG. is rotated in the direction of arrow A.

9は回動アーム71から前記軸心線73に向かって直角
方向に取り何けたカッタ支持装置で、回動アーム71に
支持した支柱91にカッタ支持枠92を設け、絶縁体9
3を介して取り付5またカッタボルダ94にカッタ10
を切削位置Pが前記軸心線73上に一致するように着脱
可能に取り付けており、図示しない給電装置によってカ
ッタlOを加熱するようにしである。11はカッタ支持
装置9を回動さl°カッタの向きを変えるモータ、12
はカッタ10の位置を軸心線73に合わせるためカッタ
支払装置を上下動させるアクチエータである。
Reference numeral 9 denotes a cutter support device installed in a direction perpendicular to the pivot arm 71 toward the axis 73. A cutter support frame 92 is provided on a column 91 supported by the pivot arm 71.
Attach the cutter 10 to the cutter boulder 94 through the attachment 5 through the cutter bolt 94.
is removably attached so that the cutting position P coincides with the axis 73, and the cutter IO is heated by a power supply device (not shown). 11 is a motor that rotates the cutter support device 9 and changes the direction of the cutter by l°; 12
is an actuator that moves the cutter dispensing device up and down in order to align the position of the cutter 10 with the axis 73.

なお、アクチエータ12に代えて、支柱91にカッタ支
持装置9を取り付ける位置を調整し、カッタ切削位置P
を軸心線73上に一致させるようにしてもよい。
Note that instead of the actuator 12, the position at which the cutter support device 9 is attached to the support column 91 is adjusted, and the cutter cutting position P is adjusted.
may be made to coincide with the axis 73.

13はタイヤ側面のバトレスに適当な間隔mで対向させ
タイヤの横振れを検出する横振れ検出器で、たとえばタ
イヤ支持台2に取り付けた支持装置131ににリタイヤ
径に応じて位置を調整するに向かうように調整する。
Reference numeral 13 denotes a lateral vibration detector which is placed opposite the buttress on the side surface of the tire at an appropriate interval m to detect the lateral vibration of the tire. Adjust to the direction.

第6図および第7図は、横行台5を駆動する横行駆動装
置6の別の実施例を示すもので、基台4上に設置プた駆
動モータ61で回転され送りねじを構成する横行駆動軸
62とガイドロッド601で支持された中間支持台60
2をそなえており、めねじ部603を介して横行駆動軸
62の回転により中間支持台602が移動する。この中
間支持台602−ヒに補正モータ63と、送りねじを構
成する横行補正軸64か設けられ、レール43に支持さ
れた横行台5のめねじ部604を前記横行駆動軸64に
螺合させている。なお、605は軸受であり、横行駆動
軸62と横行補正軸64を入れ替えて配置させてもよい
6 and 7 show another embodiment of the traverse drive device 6 for driving the traverse table 5. The traverse drive device 6 is rotated by a drive motor 61 installed on the base 4 and constitutes a feed screw. Intermediate support stand 60 supported by shaft 62 and guide rod 601
2, and the intermediate support base 602 is moved by the rotation of the transverse drive shaft 62 via the female threaded portion 603. A correction motor 63 and a traverse correction shaft 64 constituting a feed screw are provided on this intermediate support 602-H, and the female threaded portion 604 of the traverse table 5 supported by the rail 43 is screwed into the traverse drive shaft 64. ing. Note that 605 is a bearing, and the traverse drive shaft 62 and the traverse correction shaft 64 may be arranged interchangeably.

第8図は、直行駆動装置8の別の実施例を示すもので、
駆動モータ81で回転され送りねじを構成する直行駆動
軸82にガイド軸52で支持されているめねじ体85を
螺合させ、このめねじ体に直行駆動軸82と平行な送り
ねじを構成する直行補正NI+ 84と補正モータ83
を取り付け、直行補ようにした光学式反射型変位センサ
ーなとてあり、その検出値を図示しない制御装置に入力
させて積行駆動装置6の補正モータ63を駆動させる。
FIG. 8 shows another embodiment of the orthogonal drive device 8.
A female screw body 85 supported by the guide shaft 52 is screwed onto a straight drive shaft 82 that is rotated by a drive motor 81 and constitutes a feed screw, and a feed screw parallel to the straight drive shaft 82 is formed on this female screw body. Orthogonal correction NI+ 84 and correction motor 83
An optical reflective displacement sensor is attached to the displacement sensor, and the detected value is inputted to a control device (not shown) to drive the correction motor 63 of the stacking drive device 6.

14はタイヤ3のトレッド面の径方向偏位を検出する縦
振れ検出器で、たとえば回動アーム7あるいはカッタ支
持枠92に取り付けた光学弐反nτ]型変位センサーで
、タイヤトレッド面に向けてタイヤ中心の方向に投光す
るようにしである。検出器の検出値は図示しない制御装
置に与えられ、直行駆動装置8の補正モータ83を駆動
させる。第5図は縦振れ検出器の取り付(′3装置の例
を示しており、回動アーム71に取り付けられたブラケ
ット141に、タイヤトレッド面と平行に支持さ且たガ
イドロッド142をそなえ、このガイドロッド142に
取り付は位置を摺動可能にした支持板+43の先端部分
に光学式反射型変位センサーなどの検出器14を取り(
−11Jており、タイヤ支持軸に応じ直行台7を介して
カッタ支搗装置を昇降させたときに、支持板をガイドロ
ツl’ l 42に沿って移動させ、検出器14の投光
方向がタイヤ中心玉軸84に直行台7を螺合させている
Reference numeral 14 denotes a vertical vibration detector for detecting the radial deviation of the tread surface of the tire 3, for example, an optical displacement sensor attached to the rotary arm 7 or the cutter support frame 92, which detects the displacement of the tread surface of the tire 3 toward the tire tread surface. It is designed to project light in the direction of the center of the tire. The detection value of the detector is given to a control device (not shown) to drive the correction motor 83 of the direct drive device 8. FIG. 5 shows an example of a device for installing a vertical runout detector ('3), in which a bracket 141 attached to a rotating arm 71 is provided with a guide rod 142 supported parallel to the tire tread surface. A detector 14 such as an optical reflection type displacement sensor is attached to the tip of a support plate +43 whose position can be slid on the guide rod 142 (
-11J, and when the cutter support device is raised and lowered via the orthogonal table 7 according to the tire support shaft, the support plate is moved along the guide rod 42, and the light emitting direction of the detector 14 is set to the tire. The orthogonal stand 7 is screwed onto the center ball shaft 84.

上述の実施例では、カッタをタイヤの真上位置に設iつ
タイヤ中心に向かって径方向に昇降移動させるグルービ
ング装置について説明しであるが、カッタの向きがタイ
ヤ中心から外れて径方向と平行な方向に上下動する場合
でもJ:い。また、カッタをタイヤ支持軸に対して直角
な横方向に移動させる装置にも適用できることは当然で
あり、この場合、直行台7がX軸方向に移動するように
構成される。
In the above embodiment, a grooving device is described in which the cutter is installed directly above the tire and moves up and down in the radial direction toward the center of the tire. J: Yes, even when moving up and down in the same direction. It goes without saying that the present invention can also be applied to a device that moves the cutter in a lateral direction perpendicular to the tire support shaft, and in this case, the orthogonal table 7 is configured to move in the X-axis direction.

なお、モータは電気式ザーボモータでも流体式のザーボ
モータでもよく、補正モータは微小位置の補正をすれば
足りるため、低速運転でよく、小容量のモータでよい。
Note that the motor may be an electric servo motor or a fluid servo motor, and since the correction motor only needs to correct minute positions, it may be operated at low speed and may have a small capacity.

また、縦振れ検出器および横振れ検出器は、光学式反射
型変位センサーに限られず、接触式の差動トランスやデ
ィジタル式ダイヤルゲーンなどを用いることもでき、横
振れ検出器I3はタイヤ両側に設けて、両側の検出値に
よってカッタ位置の補正をするようにしてもよい。
In addition, the vertical runout detector and the lateral runout detector are not limited to optical reflection type displacement sensors, but contact type differential transformers, digital dial gain, etc. can also be used, and the lateral runout detector I3 is located on both sides of the tire. The cutter position may be corrected based on the detected values on both sides.

なお、タイヤの縦振れに対してのみ補正をすればよい場
合は、あらかじめ横振れ検出器および横行補正軸を除い
て構成してもよく、タイヤの横振れに対してのみ補正を
行う場合は、縦振れ検出器と直行補正軸を省くことがで
きる。
In addition, if it is necessary to correct only the vertical runout of the tire, the configuration may be configured without the lateral runout detector and the traverse correction axis in advance, and if the correction is to be performed only for the lateral runout of the tire, The vertical shake detector and orthogonal correction axis can be omitted.

(動作) 本発明を用いてグルービングを行いながら、タイヤの縦
振れおよび横振れを検出し、これらの振れデータを取り
込み、演算してカッタの縦振れと横振れ補正を行う場合
の動作を第11図のフローヂャートによって説明する。
(Operation) The operation when performing grooving using the present invention, detecting the vertical runout and lateral runout of the tire, importing and calculating these runout data, and correcting the vertical runout and lateral runout of the cutter is described in the 11th section. This will be explained using the flowchart shown in the figure.

操作電源が投入されると、グルービングのパターンに応
じて図示しないコンピュータからの指令で各作動軸の原
点位置を設定する。
When the operating power is turned on, the origin position of each operating axis is set according to a command from a computer (not shown) according to the grooving pattern.

タイヤ支持軸21にパターン溝を加工するタイヤ3を取
り付(:l、横振れ検出器13および縦振れ検出器14
をそれぞれタイヤバトレス側面およびタイヤトレッドの
グルービング予定位置に向けて設置させる。
Attach the tire 3 with patterned grooves to the tire support shaft 21 (:l, lateral runout detector 13 and vertical runout detector 14
are installed facing the side of the tire buttress and the planned grooving position of the tire tread.

コンビコータの基準プログラムにはタイヤの振行駆動装
置8の補正モータ83が駆動され、第4図の実施例では
直行補正軸84を介して駆動ギヤ87が回転して、従動
ギヤ88とともにめねじ体85を回転させる。この回転
によりめねじ体85が直行駆動軸82に沿って上方に移
動するようにしており、直行台7をZ方向に上昇させ、
カッタlOを上昇させてカッタ位置を補正し、深さdを
一定に保持させる。
In the standard program of the combination coater, the correction motor 83 of the tire swing drive device 8 is driven, and in the embodiment shown in FIG. Rotate the body 85. This rotation causes the female threaded body 85 to move upward along the orthogonal drive shaft 82, and raises the orthogonal table 7 in the Z direction.
The cutter IO is raised to correct the cutter position and keep the depth d constant.

なお、第8図に示された実施例の直行駆動装置では、補
正モータ83の回転により直行補正軸84が回転して直
行台7を上昇させる。
In the orthogonal drive device of the embodiment shown in FIG. 8, the orthogonal correction shaft 84 is rotated by the rotation of the correction motor 83, and the orthogonal table 7 is raised.

また、第10図に示すように、タイヤ3に横振れE2を
生じてトレッド中心線がaからbに偏った場合は、横振
れ検出器13による検出値に応じて補正プログラムから
横行駆動装置6の補正モータ63が制御され、第3図の
横行駆動装置では、横行補正軸64により駆動ギヤ67
および従動ギヤ68を介してめねじ体65を回転させ、
横行台5をY軸方向に移動させてカッタ位置を第10図
の点線で示すように補正し、タイヤ中心からの溝れかな
い場合の制御値が入力されており、このプログラムにし
たがって、モータ11により切り込み方向に合わせてカ
ッタlOの方向を設定し、タイヤ3をモータ22で第1
図矢印Tの方向に回転させるとともに、直行台7の直行
駆動装置8の駆動モータ81が運転され、直行駆動軸8
2の回転によりめねじ体85を介して直行台7をZ軸方
向に下降させ、図示しない給電装置により加熱したカッ
タlOをタイヤ3に切り込ませる。
Further, as shown in FIG. 10, when the tire 3 has a lateral runout E2 and the tread center line is biased from a to b, the traverse drive device 6 A correction motor 63 is controlled, and in the traverse drive device shown in FIG.
and rotating the female threaded body 65 via the driven gear 68,
The cutting table 5 is moved in the Y-axis direction to correct the cutter position as shown by the dotted line in FIG. The direction of the cutter lO is set according to the cutting direction, and the tire 3 is moved to the first position by the motor 22.
While rotating in the direction of arrow T in the figure, the drive motor 81 of the orthogonal drive device 8 of the orthogonal table 7 is operated, and the orthogonal drive shaft 8
2, the orthogonal table 7 is lowered in the Z-axis direction via the female threaded body 85, and the cutter IO heated by a power supply device (not shown) is made to cut into the tire 3.

前記基準プログラムにより、第9図に実線で示した基準
トレッド面Fから所定深さdまで切り込まれると、所定
の溝形状に応じて横行駆動装置6の駆動モータ61が基
準プログラムによって駆動され、横行駆動軸62の回転
で横行台5をY軸方向の移動させてカッタ10の横方向
移動を制御し、所要のグルービングが行われる。
When the groove is cut to a predetermined depth d from the reference tread surface F shown by a solid line in FIG. 9 according to the reference program, the drive motor 61 of the traverse drive device 6 is driven according to the reference program according to the predetermined groove shape, Rotation of the traversing drive shaft 62 moves the traversing table 5 in the Y-axis direction to control the lateral movement of the cutter 10, thereby performing required grooving.

この間にタイヤ3のトレッド面に歪みにより第9図の点
線で示すように縦振れElかあると、縦振れ検出器14
が振れを検出し、検出値により補正プログラムからの補
正値に応じて直行台7の直位置の距離Mを保持させる。
During this time, if the tread surface of the tire 3 has a vertical runout El as shown by the dotted line in FIG. 9 due to distortion, the vertical runout detector 14
detects shake, and uses the detected value to maintain the distance M of the upright position of the orthogonal table 7 in accordance with the correction value from the correction program.

第6図および第7図に示された横行駆動装置では、補正
モータ63の回転により横行補正軸64が回転し、めね
じ部604を介して横行台5を移動させる。
In the traverse drive device shown in FIGS. 6 and 7, the traverse correction shaft 64 is rotated by the rotation of the correction motor 63, and the traverse table 5 is moved via the female threaded portion 604.

このようにして、グルービングの間、トレッド表面とカ
ッタの切削位置Pが常に一致し、タイヤの横振れE2に
対応してカッタ位置を調整し、タイヤ全周にわたってタ
イヤ中心からの溝位置が定になる。
In this way, during grooving, the tread surface and the cutting position P of the cutter always match, the cutter position is adjusted in response to the tire lateral runout E2, and the groove position from the tire center is constant over the entire circumference of the tire. Become.

つぎに、本発明装置を用いて、あらかじめタイヤを回転
させて各回転角位置におi′Jるタイヤの縦振れおよび
横振れを検出して記憶させ、グルーピング時に振れデー
タを取り出して演算し、カッタ位置の補正を行う場合の
動作を、第12図に示すフローヂャートにより説明する
Next, using the device of the present invention, the tire is rotated in advance to detect and store the vertical runout and lateral runout of the tire at each rotation angle position, and the runout data is retrieved and calculated at the time of grouping. The operation for correcting the cutter position will be explained with reference to the flowchart shown in FIG.

まず、電源を投入して図示しないコンピュータからの指
令で各作動軸の原点を設定しておき、タイヤ支持台2に
パターン溝を加工するタイヤ3を取り付(J、原点マー
クとして特定のウエヤインンケータに一致するトレッド
表面上にマーキングを1−7い、縦振れ検出器14をタ
イヤトレッドのグルービング予定位置に、横振れ検出器
【3をタイヤトレッド タイヤ3を低速回転させ、前記マーキング位置を縦振れ
検出器14の位置に合わせてNC制御における原点とし
、この位置からタイヤ3を1回転さU、この間の縦振れ
検出器14と横振れ検出器13の検出値を、それぞれ回
転角位置とともに各メモリに記憶させる。縦振れ検出器
14のデータはグルービングする溝の中央位置のデータ
に相当翻る。
First, turn on the power, set the origin of each operating axis by commands from a computer (not shown), and attach the tire 3 on which pattern grooves are to be machined to the tire support stand 2 (J, with a specific tire as the origin mark). Marks 1 to 7 are placed on the tread surface corresponding to the indicators, the vertical runout detector 14 is placed at the scheduled grooving position of the tire tread, and the lateral runout detector [3 is placed on the tire tread. is set as the origin for NC control in accordance with the position of the vertical runout detector 14, and the tire 3 is rotated once from this position U, and the detected values of the vertical runout detector 14 and the lateral runout detector 13 during this period are determined as the rotational angular position, respectively. The data of the vertical shake detector 14 varies considerably from the data of the center position of the groove to be grooved.

メモリにそれぞれ振れデータの格納が終わった後に自動
運転ボタンを押すと、カッタの移動を制御してタイヤの
グルービングを行わせるNG装置の基準プログラムによ
り、タイヤ支持軸21が回転するとともに、カッタ10
は横行軸、直行軸、回転軸なと複数の作動軸により制御
されてタイヤの所定位置に下降して接触し、この間にカ
ッタを加熱して一定の11リシ跡で前記原点からの回転
角位置■で取り出し、補正の必要がない方の振れデータ
は取り出しをオフし、いずれか一方の補正軸を動作させ
ないようにすることができる。
When the automatic operation button is pressed after each runout data has been stored in the memory, the tire support shaft 21 rotates and the cutter 10
The cutter is controlled by multiple operating axes such as a transverse axis, a perpendicular axis, and a rotary axis, and descends into contact with the tire at a predetermined position. During this time, the cutter is heated and the rotational angle position from the origin is set at a constant 11-rips mark. It is possible to take out the shake data that does not need to be corrected in step (3) and turn off the taking out of the shake data that does not require correction, so that one of the correction axes is not operated.

つぎに、り゛ルーヒングを行いながらタイヤの縦振れの
みを検出して縦振れデータを取り込み、演算してカッタ
の補正を行う場合の動作を第13図のフローヂャートに
よって説明する。
Next, the operation of detecting only the vertical run-out of the tire while performing roofing, taking in data on the run-out, and performing calculations to correct the cutter will be described with reference to the flowchart of FIG.

操作電源が投入されると、グルーピングのパターンに応
じて図示しないコンビコータからの指令て各動作軸の原
点位置を設定する。
When the operating power is turned on, the origin position of each operating axis is set by a command from a combination coater (not shown) according to the grouping pattern.

タイヤ支持軸2Iにパターン溝を加工するタイヤ3を取
り付け、縦振れ検出器14をタイヤトレッドのグルービ
ング予定位置に向けて設置させる。
The tire 3 on which patterned grooves are to be formed is attached to the tire support shaft 2I, and the vertical runout detector 14 is installed facing the planned grooving position of the tire tread.

コンピュータの基準プログラムにはタイヤの振れがない
場合の制御値が人力されており、このプログラムにした
がって、モータIIにより切り込み方向に合わせてカッ
タlOの方向を設定し、タイヤ3をモータ22で第1図
矢印Tの方向に回転させるとともに、直行台7の直行駆
動装置8の駆動モータ81が運転され、直行駆動軸82
の回転に応じた所定のグルービングを行わせる。
Control values when there is no tire runout are entered manually in the standard program of the computer, and according to this program, the direction of the cutter IO is set according to the cutting direction by the motor II, and the tire 3 is moved to the first position by the motor 22. While rotating in the direction of arrow T in the figure, the drive motor 81 of the orthogonal drive device 8 of the orthogonal table 7 is operated, and the orthogonal drive shaft 82
A predetermined grooving is performed according to the rotation of the

タイヤの回転角位置に応じてメモリから振れデータが取
り出され、基準プログラムからの補正プログラム制御指
令で補正プログラムによる補正量が演算され、縦振れ補
正量により直行駆動装置8の補正モータ83で直行補正
軸84を回転させ、その回転による移動量を基準プログ
ラムによる移動量に重畳して(補正値が正の場合は加え
、負の場合は減じて)カッタ10を上下動させるととも
に基準プログラムに、補正プログラムにより演算された
横振れ補正量で横行駆動装置6の補正モータ63を駆動
して横行補正軸64を回転させ、その回転による移動量
を基準プログラムによる移動量に重畳して(補正値が正
の場合は加え、負の場合は減じて)カッタlOを横行さ
せる。
Runout data is retrieved from the memory according to the rotation angle position of the tire, the correction amount by the correction program is calculated by the correction program control command from the reference program, and the correction motor 83 of the orthogonal drive device 8 performs orthogonal correction based on the longitudinal vibration correction amount. The shaft 84 is rotated, and the amount of movement caused by the rotation is superimposed on the amount of movement specified by the standard program (additional if the correction value is positive, subtracted if the correction value is negative) to move the cutter 10 up and down, and at the same time apply correction to the standard program. The correction motor 63 of the traverse drive device 6 is driven by the lateral shake correction amount calculated by the program to rotate the traverse correction shaft 64, and the amount of movement due to the rotation is superimposed on the amount of movement according to the standard program (the correction value is correct). If it is negative, add it, if it is negative, subtract it)) move the cutter lO laterally.

なお、縦振れあるいは横振れに対する一方の補正のみを
行えばよい場合は、補正プログラムによる直行補正およ
び横行補正の動作を基準プログラムによってオン・オフ
させ、各別に制御できるようにして、)うき、必要な補
正の振れデータをオフさによりめねじ体85を介して直
行台7をZ軸方向に下降させ、給電により加熱したカッ
タ10をタイヤ3に切り込まUる。
In addition, if it is necessary to perform only one type of correction for vertical or horizontal shake, the correction program can turn on and off the orthogonal correction and transverse correction operations using the standard program so that they can be controlled separately. By turning off the corrected run-out data, the orthogonal table 7 is lowered in the Z-axis direction via the female screw body 85, and the cutter 10 heated by power supply is cut into the tire 3.

前記基準プログラムにより、第9図に実線で示した基準
トレッド面Fから所定深さdまで切り込まれる。溝形状
が直線でない場合は、所定のljI¥−形状に応じて横
行駆動装置6の駆動モータ61か7i(準プログラムに
よって駆動され、横行駆動++l+ 62の回転で横行
台5をY軸方向の移動さU−てカッタ10の横方向移動
を制御し、所要のグルービングが行われる。
According to the reference program, the cut is made to a predetermined depth d from the reference tread surface F shown by the solid line in FIG. If the groove shape is not a straight line, the drive motor 61 or 7i of the traverse drive device 6 (driven by a quasi-program) moves the traverse table 5 in the Y-axis direction by the rotation of the traverse drive ++l+ 62, depending on the predetermined shape. Then, the lateral movement of the cutter 10 is controlled, and the desired grooving is performed.

この間にタイヤ3のトレッド面に歪みにより第9図の点
線で示すように縦振れElがあると、縦振れ検出器14
が振れを検出し、検出値により補正プログラムからの補
正値に応じて直行台7の直行駆動装置8の補正モータ8
3が駆動され、第4図の実施例で(J直行補正軸84を
介して駆動ギヤ87が回転して、従動ギヤ88とともに
めねじ休85を回転させる。この回転によりめねじ体8
5が直行駆動軸82に沿って上方に移動するようにして
おり、直行台7をZ方向に上昇させ、カッタ10を上昇
させてカッタ位置を補正し、深さdを一定に保持さゼる
During this time, if the tread surface of the tire 3 has a vertical runout El as shown by the dotted line in FIG. 9 due to distortion, the vertical runout detector 14
detects shake, and the correction motor 8 of the orthogonal drive device 8 of the orthogonal table 7 is activated according to the correction value from the correction program based on the detected value.
3 is driven, and in the embodiment shown in FIG.
5 is moved upward along the orthogonal drive shaft 82, the orthogonal table 7 is raised in the Z direction, the cutter 10 is raised, the cutter position is corrected, and the depth d is held constant. .

なお、第8図に示された実施例の直行駆動装置では、直
行駆動軸82で基準プログラムによりめねじ体85を移
動させ、検出値により補正モータ83が回転して直行補
正軸84を回転させは直行台7を上昇させる。
In the orthogonal drive device of the embodiment shown in FIG. 8, the female threaded body 85 is moved by the orthogonal drive shaft 82 according to the standard program, and the correction motor 83 is rotated based on the detected value to rotate the orthogonal correction shaft 84. raises the carriage 7.

このようにして、グルービングの間、タイヤの縦振れを
検出し、基準プログラムによる直行駆動軸の制御ととも
に検出値による補正プログラムで直行台の位置を調整さ
せ、トレッド表面とカッタの切削位置Pが常に一致し、
タイヤ全周にわたってタイヤの溝深さが一定になる。
In this way, during grooving, the longitudinal runout of the tire is detected, and the position of the orthogonal table is adjusted by a correction program based on the detected value while controlling the orthogonal drive shaft using the standard program, so that the tread surface and the cutting position P of the cutter are always aligned. match,
The tire tread depth is constant over the entire circumference of the tire.

つぎに、本発明装置を用いて、あらかじめタイヤを回転
させて各回転角位置におけるタイヤの縦振れを検出して
記憶させ、グルービング時に振れデータを取り出して演
算し、カッタ位置の補正を行う場合の動作を、第14図
に示すフローチャートにより説明する。
Next, using the device of the present invention, the tire is rotated in advance to detect and store the vertical runout of the tire at each rotation angle position, and the runout data is retrieved and calculated during grooving to correct the cutter position. The operation will be explained using the flowchart shown in FIG.

に下降して接触し、この間にカッタを加熱して一定の軌
跡で前記原点からの回転角位置に応じた所定のグルービ
ングを行う。
During this time, the cutter is heated to perform predetermined grooving in accordance with the rotational angular position from the origin in a constant trajectory.

タイヤの回転角位置に応じてメモリから縦振れデータが
取り出され、基準プログラムからの補正プログラム制御
指令で補正プログラムによる補正量が演算され、縦振れ
補正量により直行駆動装置8の補正モータ83で直行補
正軸84を回転させ、その回転による移動量を基準プロ
グラムによる移動量を重畳して(補正値が正の場合は加
え、負の場合は減じて)カッタ10を上下動させる。
Vertical runout data is retrieved from the memory according to the rotational angle position of the tire, and the correction amount by the correction program is calculated in accordance with the correction program control command from the reference program. The correction shaft 84 is rotated, and the cutter 10 is moved up and down by superimposing the amount of movement caused by the rotation with the amount of movement according to the reference program (additionally when the correction value is positive, and subtracted when it is negative).

さらに、本発明を用いてグルービングを行いながら、タ
イヤの横振れを検出し、この振れデータを取り込み、演
算してカッタの横振れ補正を行う場合の動作を第15図
のフローチャートによって説明する。
Further, the operation of detecting tire lateral runout while performing grooving using the present invention, taking in this runout data, and performing calculations to correct cutter lateral runout will be described with reference to the flowchart of FIG.

操作電源が投入されると、グルービングのパターンに応
じて図示しないコンピュータからの指令で各作動軸の原
点位置を設定する。
When the operating power is turned on, the origin position of each operating axis is set according to a command from a computer (not shown) according to the grooving pattern.

タイヤ支持軸21にパターン溝を加工するタイまず、電
源を投入して図示しないコンピュータからの指令で各作
動軸の原点を設定しておき、タイヤ支持台2にパターン
溝を加エリ−るタイヤ3を取り付け、原点マークとして
特定のウェヤインジケータに一致するトレッド表面−ヒ
にマーキングを行い、縦振れ検出器14をタイヤトレッ
ドのグルービング予定位置に向けて配置させる。
First, turn on the power, set the origin of each operating axis by commands from a computer (not shown), and then machine pattern grooves on the tire support base 2. Tire 3 is attached, a marking is made on the tread surface corresponding to a specific wear indicator as an origin mark, and the vertical runout detector 14 is placed toward the planned grooving position of the tire tread.

タイヤ3を低速回転させ、前記マーギング位置を縦振れ
検出器14の位置に合わl−でNC制御における原点と
し、この位置からタイヤ3を1回転させ、この間の縦振
れ検出器I4の検出値を、回転角位置とともにメモリに
記憶させる。縦振れ検出器14のデータはグルービング
する溝の中央位置のデータである。
Rotate the tire 3 at a low speed, align the marging position with the position of the vertical runout detector 14, use l- as the origin for NC control, rotate the tire 3 once from this position, and calculate the detected value of the vertical runout detector I4 during this period. , and the rotation angle position is stored in the memory. The data of the vertical shake detector 14 is the data of the center position of the groove to be grooved.

メモリに振れデータの格納が終わった後に自動運転ボタ
ンを押すと、カッタの移動を制御してタイヤのグルービ
ングを行わけるNC装置の基準プログラムにより、タイ
ヤ支持軸21が回転するとともにカッタlOは横行軸、
直行軸、回転軸など複数の作動軸により制御されてタイ
ヤの所定位置ヤ3を取り付け、横振れ検出器【3をタイ
ヤバトレス側面に向けて設置させる。
When the automatic operation button is pressed after the runout data has been stored in the memory, the standard program of the NC device that controls the movement of the cutter to perform tire grooving causes the tire support shaft 21 to rotate and the cutter lO to move to the transverse axis. ,
The tire is mounted at a predetermined position under the control of a plurality of operating axes such as the orthogonal axis and the rotary axis, and the lateral runout detector [3 is installed facing the side surface of the tire buttress.

コンピュータの基準プログラムにはタイヤの振れがない
場合の制御値が入力されており、このプログラムにした
がって、モータIIにより切り込み方向に合わせてカッ
タ10の方向を設定し、タイヤ3をモータ22で第1図
矢印Tの方向に回転させるとともに、直行台7の直行駆
動装置8の駆動モータ81が運転され、直行駆動軸82
の回転ににりめねじ体85を介して直行台7をZ軸方向
に下降させ、給電により加熱しにカッタ10をタイヤ3
にトレッド面から所定の深さまで切り込ませ、所定の溝
形状に応じて横行駆動装置6の駆動モータ61が基準プ
ログラムによって駆動され、横行駆動軸620回転で横
行台5をY軸方向に移動させてカッタ10の横方向移動
を制御し、所要のグルービングが行われる。
Control values when the tire does not run out are inputted into the standard program of the computer, and according to this program, the direction of the cutter 10 is set according to the cutting direction by the motor II, and the tire 3 is moved by the motor 22 to the first position. While rotating in the direction of arrow T in the figure, the drive motor 81 of the orthogonal drive device 8 of the orthogonal table 7 is operated, and the orthogonal drive shaft 82
The orthogonal table 7 is lowered in the Z-axis direction via the female screw body 85 due to the rotation of
The groove is cut to a predetermined depth from the tread surface, and the drive motor 61 of the traverse drive device 6 is driven according to the standard program according to the predetermined groove shape, and the traverse table 5 is moved in the Y-axis direction by 620 rotations of the traverse drive shaft. The lateral movement of the cutter 10 is controlled to perform the required grooving.

また、第1O図に示すように、タイヤ3に横振れE、を
生じてトレッド中心線がaからbに偏った場合は、横振
れ検出器13による検出値に応じて補正プログラムから
横行駆動装置6の補正モータ63が制御され、第3図の
横行駆動装置では、横行補正軸64により駆動ギヤ67
および従動ギヤ68を介してめねじ体65を回転させ、
横行台5をY軸方向に移動させてカッタ位置を点線で示
ずにうに補正し、タイヤ中心からの溝位置の距離Mを保
持させる。
Furthermore, as shown in FIG. In the traverse drive device shown in FIG. 3, a drive gear 67 is controlled by a traverse correction shaft 64.
and rotating the female threaded body 65 via the driven gear 68,
By moving the traversing table 5 in the Y-axis direction, the cutter position is corrected as shown by the dotted line, and the distance M of the groove position from the tire center is maintained.

第6図および第7図に示された横行駆動装置ては、補正
モータ63の回転により横行補正軸64が回転し、めね
じ部604を介して横行台5を移動させる。
In the traverse drive device shown in FIGS. 6 and 7, the traverse correction shaft 64 is rotated by the rotation of the correction motor 63, and the traverse table 5 is moved via the female threaded portion 604.

このにうにして、グルービングの間タイヤの横振れを検
出し、基準プログラムで制御される横行駆動軸による横
行台の移動量と、検出値による補正プログラムで制御さ
れる横行台の移動量とが重畳され、タイヤの横振れE2
に対応してカッタ位置が調整され、タイヤ全周にわたっ
てタイヤ中心からの左右の溝位置が一定になる。
In this way, the lateral runout of the tire is detected during grooving, and the amount of movement of the traverse table by the traverse drive shaft controlled by the standard program and the amount of movement of the traverse table controlled by the correction program based on the detected value are determined. Superimposed, tire lateral vibration E2
The cutter position is adjusted accordingly, and the left and right groove positions from the tire center are constant over the entire circumference of the tire.

つぎに、本発明装置を用いて、あらかじめタイヤを回転
さUoて各回転角位置におけるタイヤの横振れを検出し
て記憶させ、グルービング時にこの振れデータを取り出
して演算し、カッタ位置の補正を行う場合の動作を、第
16図に示すフローヂャートにより説明する。
Next, using the device of the present invention, the tire is rotated in advance to detect and store the tire lateral runout at each rotation angle position, and during grooving, this runout data is retrieved and calculated to correct the cutter position. The operation in this case will be explained with reference to the flowchart shown in FIG.

まず、電源を投入して図示しないコンピュータからの指
令で各作動軸の原点を設定しておき、タイヤ支持台2に
パターン溝を加]−するタイヤ3を取りイマ1け、原点
マークとして特定のタイヤインジケータに一致するトレ
ン]・表面−]二にマーキングを行い、横振れ検出器1
3をタイヤバトレスに向(−jて配置させる。
First, turn on the power, set the origin of each operating axis using commands from a computer (not shown), and add pattern grooves to the tire support 2. Mark the train]・surface−]2 that matches the tire indicator, and install the lateral runout detector 1.
3 towards the tire buttress (-j).

タイヤ3を低速回転さ且、前記マーギング位置をNC制
御におI−する原点とし、この位置からタイヤ3を1回
転させ、この間の横振れ検出器I3の検出値を、回転角
位置とともにメモリに記憶させる。
The tire 3 is rotated at a low speed, and the marging position is used as the origin for NC control, and the tire 3 is rotated once from this position, and the detected value of the lateral runout detector I3 during this period is stored in the memory together with the rotation angle position. Make me remember.

メモリに振れデータの格納が終わっ)こ後に自動運転ボ
タンを押すと、カッタの移動を制御してタイヤのグルー
ビングを行わせるNC装置の基準プログラムにより、タ
イヤ支持軸21が回転するとともにカッタ10は横行軸
、直行軸、回転軸など複数の作動軸により制御されてタ
イヤの所定位置に下降して接触し、この間にカッタを加
熱して一定の1匝跡で前記原点からの回転角位置に応じ
た所定のクルーピンクを行う。
When the automatic operation button is pressed after the run-out data has been stored in the memory, the tire support shaft 21 rotates and the cutter 10 moves horizontally according to the standard program of the NC device that controls the movement of the cutter and performs tire grooving. The cutter is controlled by multiple operating axes such as axes, orthogonal axes, and rotary axes, and descends into contact with the tire at a predetermined position.During this time, the cutter is heated to produce a constant 1-inch mark according to the rotation angle position from the origin. Perform the prescribed crew pink.

タイヤの回転角位置に応じてメモリから振れデータが取
り出され、基準プログラムからの補正プログラム制御指
令で補正プログラムによる補正量が演算され、バトレス
周」−の各回転位置に応してメモリから横振れデータが
取り出され、補正プログラノ1、により演算された横振
れ補正量で横行駆動装置6の補正モータ63を駆動し、
横行補正軸64を回転させ、カッタ10を基準プログラ
ムによる移動量に重畳して横行させる。
Runout data is retrieved from the memory according to the rotational angular position of the tire, the correction amount by the correction program is calculated by the correction program control command from the standard program, and the lateral runout data is retrieved from the memory according to each rotational position of the buttress circumference. The data is taken out, and the correction motor 63 of the traverse drive device 6 is driven with the lateral shake correction amount calculated by the correction programno 1.
The traverse correction shaft 64 is rotated to cause the cutter 10 to traverse in a manner superimposed on the amount of movement according to the reference program.

[本発明の効果] このように、本発明はタイヤ支持軸に取り付けたタイヤ
をクルーピンクするカッタを、直行台を介して前記タイ
ヤの径方向またはこれと平行に移動させる直行駆動軸と
、横行台を介してタイヤ支持軸に対して平行に移動させ
る横行駆動軸と、タイヤ支持軸に支持されたタイヤの径
方向の縦振れおよび幅方向の構振れを検出する検出器の
両方よたは一方をそなえ、前記直行駆動軸と横行駆動軸
を基準移動量で制御するとどもに、前記検出器の検出値
に応じた補正移動型を前記基準移動量に重畳させて、直
行台および横行台の移動量を補正するようにしであるの
で、タイヤの縦振A1や横振れを生じても製品タイヤそ
れぞれの溝深さや荷幅およびトレッド中心に対する溝位
置を一定に保持させることかでき、基準移動量は基準プ
ログラムにより常に設定された値て制御し、振れ検出値
に、にる補正移動量を別個の補正プログラムによって基
準移動量に重畳すればよいため、プログラムの構成が簡
単で装置を小形化でき、必要に応じてタイヤの縦振れと
横振れの両方を補正し、あるいは−方のみを補正するよ
うに構成することもてき、タイヤのグルービング補正を
確実に行い、均一なりルーヒングにより製品の品質を良
好にし、生産性と歩留まりを向」ニさせ得る効果かある
[Effects of the present invention] As described above, the present invention has a cross drive shaft that moves a cutter that crew-pins a tire attached to a tire support shaft in the radial direction of the tire or parallel to the tire support shaft, and a transverse A transverse drive shaft that moves parallel to the tire support shaft via a stand, and a detector that detects the vertical and widthwise vibrations of the tire supported by the tire support shaft. The orthogonal drive axis and the transverse drive axis are controlled by the reference movement amount, and a correction movement type according to the detection value of the detector is superimposed on the reference movement amount to move the orthogonal table and the transverse table. Since the amount is corrected, even if longitudinal vibration A1 or lateral vibration of the tire occurs, the groove depth, load width, and groove position relative to the tread center of each product tire can be maintained constant, and the standard movement amount is The system is always controlled using the value set by the reference program, and the compensation movement amount can be superimposed on the standard movement amount using a separate correction program on the shake detection value, so the program configuration is simple and the device can be made smaller. If necessary, it can be configured to correct both the vertical and lateral vibrations of the tire, or only the - side, ensuring tire grooving correction and uniform roofing to improve product quality. It has the potential to improve productivity and yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す側面図、第2図は正面図
、第3図は横行駆動装置を断面で示した平面図、第4図
は直行駆動装置の側断面図、第5図は縦振れ検出器の取
り付は装置の1例を示す部分側面図、第6図は横行駆動
装置の別の例を示す側面図、第7図はB−B線に沿う断
面図、第8図は直行1区動装置の別の例を示す側面図、
第9図はグルービングの状態を示す説明図、第1O図は
タイヤの横振れ補正の状態を示す説明図、第11図およ
び第12図は縦振れと横振れを補正するグルービング操
作の例を示すフローチャート、第13図および第14図
は縦振れのみを補正するグルービング操作のフローチャ
ート、第15図および第16図は横振れのみを補正する
グルービング操作のフローチャートである。 lはベツド、2はタイヤ支持台、3はタイヤ、4は基台
、5は横行台、6は横行駆動装置、6Iは駆動モータ、
62は横行駆動軸、63は補正モータ、64は横行補正
軸、65はめねじ体、66は支持ボス、67は駆動ギヤ
、68は従動ギヤ、7は直行台、71は回動アーム、7
2はアーム支持軸、73は軸心線、8は直行駆動装置、
8I駆動モータ、82は直行駆動軸、83は補正モータ
、84は直行補正軸、85はめねじ体、86は支持ボス
、87は駆動ギヤ、88は従動ギヤ、9はカッタ支持装
置、10はカッタ、13は横振れ検出器、14は縦振れ
検出器である。 特許出願人 住友ゴム工業株式会社 同   安川設備技研株式会社 手続補正書(自発)
Fig. 1 is a side view showing an embodiment of the present invention, Fig. 2 is a front view, Fig. 3 is a plan view showing the transverse drive device in section, Fig. 4 is a side sectional view of the orthogonal drive device, and Fig. 5 The figure is a partial side view showing one example of the device in which the vertical shake detector is installed, FIG. 6 is a side view showing another example of the traverse drive device, FIG. Fig. 8 is a side view showing another example of the straight one-segment movement device;
Figure 9 is an explanatory diagram showing the state of grooving, Figure 1O is an explanatory diagram showing the state of tire lateral vibration correction, and Figures 11 and 12 are examples of grooving operations to correct vertical and lateral vibration. 13 and 14 are flowcharts of a grooving operation that corrects only vertical shake, and FIGS. 15 and 16 are flowcharts of a grooving operation that corrects only lateral shake. 1 is a bed, 2 is a tire support base, 3 is a tire, 4 is a base, 5 is a traversal base, 6 is a traverse drive device, 6I is a drive motor,
62 is a transverse drive shaft, 63 is a correction motor, 64 is a transverse correction shaft, 65 is a female threaded body, 66 is a support boss, 67 is a drive gear, 68 is a driven gear, 7 is a rectilinear table, 71 is a rotating arm, 7
2 is an arm support shaft, 73 is an axis line, 8 is a direct drive device,
8I drive motor, 82 orthogonal drive shaft, 83 correction motor, 84 orthogonal correction shaft, 85 female thread body, 86 support boss, 87 drive gear, 88 driven gear, 9 cutter support device, 10 cutter , 13 is a horizontal shake detector, and 14 is a vertical shake detector. Patent applicant: Sumitomo Rubber Industries, Ltd. Yaskawa Equipment Engineering Co., Ltd. Procedural amendment (voluntary)

Claims (1)

【特許請求の範囲】 1 カッタをタイヤの径方向またはこれと平行に移動さ
せる直行台の直行駆動軸およびタイヤの幅方向に移動さ
せる横行台の横行駆動軸を含む複数の動作軸を用いてカ
ッタの移動を制御し、タイヤ表面に所望のパターン溝を
加工するタイヤのグルーピングにおいて、グルービング
を行う前、またはグルービングしながら、タイヤ支持軸
に支持されたタイヤの径方向の縦振れおよび幅方向の横
振れを検出し、この検出値にもとづいて直行台および横
行台をそれぞれ移動させる補正プログラムをつくり、基
準プログラムによりタイヤをグルービングさせるととも
に、前記直行駆動軸による直行台の移動量および横行駆
動軸による横行台の移動量に、前記補正プログラムによ
るそれぞれの移動量を重畳させることを特徴とするタイ
ヤグルービングの補正方法。 2 カッタをタイヤの径方向またはこれと平行に移動さ
せる直行台の直行駆動軸およびタイヤの幅方向に移動さ
せる横行台の横行駆動軸を含む複数の動作軸を用いてカ
ッタの移動を制御し、タイヤ表面に所望のパターン溝を
加工するタイヤのグルーピングにおいて、タイヤ支持軸
に支持されたタイヤの径方向の縦振れおよび幅方向の横
振れを、グルービングを行う前、またはグルービングし
ながら検出する検出器をそなえ、各動作軸とともに基準
プログラムに応じて回転する前記直行駆動軸および横行
駆動軸にそれぞれ平行に、検出器の検出値にもとづく補
正プログラムによって回転する直行補正軸および横行補
正軸を設け、前記直行駆動軸の回転による直行台の移動
量と直行補正軸の回転による直行台の移動量を重畳させ
る直行駆動装置、および横行駆動軸の回転による横行台
の移動量と横行補正軸の回転による横行台の移動量を重
畳させる横行駆動装置をそなえたことを特徴とするタイ
ヤグルービングの補正装置。 3 前記直行駆動軸および横行駆動軸が、それぞれカッ
タを移動させる直行台および横行台に設けためねじ体に
螺合する送りねじで構成され、それぞれの補正軸によっ
て回転する駆動ギヤと、前記めねじ体と一体に連結し前
記駆動ギヤに噛み合う従動ギヤとを設けていることを特
徴とする特許請求の範囲第2項記載のタイヤグルービン
グの補正装置。 4 前記直行駆動軸および横行駆動軸と直行補正軸およ
び横行補正軸が、いずれも送りねじで構成され、カッタ
を移動させる直行台および横行台に設けためねじ体にそ
れぞれの駆動軸と補正軸のいずれか一方軸を螺合させ、
他方軸を前記一方軸を支持した中間支持台のめねじ部に
螺合させて固定部に取り付けたことを特徴とする特許請
求の範囲第2項記載のタイヤグルービングの補正装置。 5 カッタをタイヤの径方向またはこれと平行に移動さ
せる直行台の直行駆動軸を含む複数の動作軸を用いてカ
ッタの移動を制御し、タイヤ表面に所望のパターン溝を
加工するタイヤのグルービングにおいて、タイヤ支持軸
に支持されたタイヤの径方向の縦振れを、グルービング
を行う前、またはグルービングしながら検出し、この検
出値にもとづいて直行台を移動させる補正プログラムを
つくり、基準プログラムによりタイヤをグルービングさ
せるとともに、前記直行駆動軸による直行台の移動量に
補正プログラムによる移動量を重畳させることを特徴と
するタイヤグルービングの補正方法。 6 カッタをタイヤの径方向またはこれと平行に移動さ
せる直行台の直行駆動軸を含む複数の動作軸を用いてカ
ッタの移動を制御し、タイヤ表面に所望のパターン溝を
加工するタイヤのグルービングにおいて、タイヤ支持軸
に支持されたタイヤの径方向の縦振れをグルービングを
行う前、またはグルービングしながら検出する検出器を
そなえ、各動作軸とともに基準プログラムに応じて回転
する直行駆動軸と平行に、前記検出器の検出値にもとづ
く補正プログラムによって回転する直行補正軸を設け、
前記直行駆動軸の回転による直行台の移動量と直行補正
軸の回転による直行台の移動量を重畳させる直行駆動装
置をそなえたことを特徴とするタイヤグルービングの補
正装置。 7 前記直行駆動軸が、カッタを移動させる直行台に回
転可能に設けられためねじ体と螺合する送りねじで構成
され、この直行駆動軸と平行な直行補正軸によって回転
する駆動ギヤと、前記めねじ体と一体に連結し前記駆動
ギヤに噛み合う従動ギヤとを設けていることを特徴とす
る特許請求の範囲第6項記載のタイヤグルービングの補
正装置。 8 前記直行駆動軸と直行補正軸をいずれも送りねじで
構成し、カッタを移動させる直行台に設けためねじ体に
それぞれの駆動軸と補正軸のいずれか一方軸を螺合させ
、他方軸を前記一方軸を支持した中間支持台のめねじ部
に螺合させて固定部に取り付けたことを特徴とする特許
請求の範囲第6項記載のタイヤグルービングの補正装置
。 9 カッタをタイヤの幅方向に移動させる横行台の横行
駆動軸を含む複数の動作軸を用いてカッタの移動を制御
し、タイヤ表面に所望のパターン溝を加工するタイヤの
グルービングにおいて、タイヤ支持軸に支持されたタイ
ヤの幅方向の横振れを、グルービングを行う前、または
グルービングしながら検出し、この検出値にもとづいて
横行台を移動させる補正プログラムをつくり、基準プロ
グラムによりタイヤをグルービングさせるとともに、前
記横行駆動軸による横行台の移動量に補正プログラムに
よる移動量を重畳させることを特徴とするタイヤグルー
ビングの補正方法。 10 カッタをタイヤの幅方向に移動させる横行台の横
行駆動軸を含む複数の動作軸を用いてカッタの移動を制
御し、タイヤ表面に所望のパターン溝を加工するタイヤ
のグルービングにおいで、タイヤ支持軸に支持されたタ
イヤの幅方向の横振れをグルービングを行う前、または
グルービングしながら検出する検出器をそなえ、各動作
軸とともに基準プログラムに応じて回転する横行駆動軸
と平行に、前記検出器の検出値にもとづく補正プログラ
ムによって回転する横行補正軸を設け、前記横行駆動軸
の回転による横行台の移動量と横行補正軸の回転による
横行台の移動量を重畳させる横行駆動装置をそなえたこ
とを特徴とするタイヤグルービングの補正装置。 11 前記横行駆動軸が、カッタを移動させる横行台に
回転可能に設けられためねじ体と螺合する送りねじで構
成され、この横行駆動軸と平行な横行補正軸によって回
転する駆動ギヤと、前記めねじ体と一体に連結し前記駆
動ギヤに噛み合う従動ギヤとを設けていることを特徴と
する特許請求の範囲第10項記載のタイヤグルービング
の補正装置。 12 前記横行駆動軸と横行補正軸をいずれも送りねじ
で構成し、カッタを移動させる横行台に設けためねじ体
にそれぞれの駆動軸と補正軸のいずれか一方軸を螺合さ
せ、他方軸を前記一方軸を支持した中間支持台のめねじ
部に螺合させて固定部に取り付けたことを特徴とする特
許請求の範囲第10項記載のタイヤグルービングの補正
装置。
[Claims] 1. A cutter that uses a plurality of operating axes, including a transverse drive shaft of a transverse table that moves the cutter in the radial direction of the tire or parallel to this, and a transverse drive shaft of a transverse table that moves the cutter in the width direction of the tire. In grouping tires to control the movement of tires and process desired pattern grooves on the tire surface, before or during grooving, the vertical runout in the radial direction and the lateral vibration in the width direction of the tire supported on the tire support shaft are controlled. A correction program is created that detects runout, moves the orthogonal carriage and the transverse carriage respectively based on the detected values, grooves the tire according to the standard program, and adjusts the amount of movement of the carriage by the orthogonal drive shaft and the traversal carriage by the transverse drive shaft. A tire grooving correction method characterized by superimposing each movement amount according to the correction program on the movement amount of the stand. 2. Controlling the movement of the cutter using a plurality of operating axes, including a transverse drive shaft of a transverse table that moves the cutter in the radial direction of the tire or parallel thereto, and a transverse drive shaft of a transverse table that moves the cutter in the width direction of the tire; A detector that detects vertical runout in the radial direction and lateral runout in the width direction of the tire supported by the tire support shaft before or during grooving when grouping tires to form desired pattern grooves on the tire surface. A orthogonal correction axis and a transverse correction axis that rotate according to a correction program based on the detection value of the detector are provided in parallel with the orthogonal drive axis and the transverse drive axis, respectively, which rotate according to the reference program together with each operating axis, and the A orthogonal drive device that superimposes the amount of movement of the orthogonal table due to the rotation of the orthogonal drive shaft and the amount of movement of the orthogonal table due to the rotation of the orthogonal correction axis, and the amount of movement of the orthogonal table due to the rotation of the traverse drive shaft and the amount of movement of the orthogonal table due to the rotation of the traverse correction axis. A tire grooving correction device characterized by comprising a traverse drive device that superimposes the amount of movement of a table. 3. The orthogonal drive shaft and the transverse drive shaft are each composed of a feed screw screwed into an internally threaded body provided on the orthogonal table and the transverse table for moving the cutter, and drive gears rotated by the respective correction shafts, and the female screws. 3. The tire grooving correction device according to claim 2, further comprising a driven gear that is integrally connected to the tire body and meshes with the drive gear. 4. The orthogonal drive shaft, the transverse drive shaft, the orthogonal correction axis, and the transverse correction axis are all composed of feed screws, and the respective drive shafts and correction axes are connected to internal screw bodies provided on the orthogonal table and the transverse table for moving the cutter. Screw one of the shafts together,
3. The tire grooving correction device according to claim 2, wherein the other shaft is screwed into a female threaded portion of an intermediate support supporting the one shaft and attached to the fixing portion. 5 In tire grooving, the movement of the cutter is controlled using multiple operating axes, including the orthogonal drive shaft of the orthogonal table that moves the cutter in the radial direction of the tire or parallel to the tire, to form a desired pattern of grooves on the tire surface. , detect the vertical runout in the radial direction of the tire supported by the tire support shaft before or during grooving, create a correction program that moves the straight platform based on this detected value, and then adjust the tire using the standard program. A tire grooving correction method characterized by grooving and superimposing a movement amount according to a correction program on the movement amount of the orthogonal carriage by the orthogonal drive shaft. 6. In tire grooving, the movement of the cutter is controlled using multiple operating axes, including the orthogonal drive shaft of the orthogonal table that moves the cutter in the radial direction of the tire or parallel to it, to form a desired pattern of grooves on the tire surface. , equipped with a detector that detects the vertical runout in the radial direction of the tire supported by the tire support shaft before or during grooving, parallel to the orthogonal drive shaft that rotates according to the standard program along with each operating axis. providing an orthogonal correction shaft that rotates according to a correction program based on the detected value of the detector;
A tire grooving correction device comprising a orthogonal drive device that superimposes the amount of movement of the orthogonal table due to rotation of the orthogonal drive shaft and the amount of movement of the orthogonal table due to rotation of the orthogonal correction shaft. 7. The orthogonal drive shaft is constituted by a feed screw rotatably provided on the orthogonal stand for moving the cutter and screwed into an internally threaded body, and the drive gear rotates by the orthogonal correction shaft parallel to the orthogonal drive shaft; 7. The tire grooving correction device according to claim 6, further comprising a driven gear that is integrally connected to the female threaded body and meshes with the drive gear. 8. Both the orthogonal drive shaft and the orthogonal correction shaft are configured with feed screws, and one of the respective drive shafts and correction shafts is screwed into a female screw body provided on the orthogonal table for moving the cutter, and the other shaft is 7. The tire grooving correction device according to claim 6, wherein the tire grooving correction device is attached to a fixing portion by being screwed into a female threaded portion of an intermediate support that supports the one shaft. 9 In tire grooving, the movement of the cutter is controlled using multiple operating axes, including the traverse drive axis of the traverse table that moves the cutter in the width direction of the tire, and the tire support shaft is used to machine a desired pattern of grooves on the tire surface. A correction program is created to detect the lateral vibration in the width direction of the tire supported by the tire before grooving or while grooving, and based on this detected value, a correction program is created to move the traverse platform, and the tire is grooved according to the standard program. A method for correcting tire grooving, characterized in that a movement amount according to a correction program is superimposed on the movement amount of the traverse table by the traverse drive shaft. 10 During tire grooving, the movement of the cutter is controlled using multiple operating axes, including the traverse drive axis of the traverse table that moves the cutter in the width direction of the tire, and a desired pattern of grooves is formed on the tire surface. A detector is provided for detecting the lateral runout in the width direction of the tire supported on the shaft before or during grooving, and the detector is arranged parallel to the traverse drive shaft which rotates according to a reference program together with each motion axis. A traversing correction shaft is provided which rotates according to a correction program based on the detected value of the traversing drive, and a traversing drive device is provided which superimposes the amount of movement of the traversing table due to the rotation of the traversing drive shaft and the amount of movement of the traversing table due to the rotation of the traversing correction axis. A tire grooving correction device featuring: 11. The traverse drive shaft is constituted by a feed screw that is rotatably provided on a traverse table for moving the cutter and is engaged with a female screw body, and the drive gear rotates by a traverse correction axis that is parallel to the traverse drive shaft; 11. The tire grooving correction device according to claim 10, further comprising a driven gear that is integrally connected to the female threaded body and meshes with the drive gear. 12 Both the traverse drive shaft and the traverse correction shaft are configured with feed screws, and one of the respective drive shafts and correction shafts is screwed into an internal threaded body provided on the traverse table for moving the cutter, and the other shaft is 11. The tire grooving correction device according to claim 10, wherein the tire grooving correction device is attached to a fixing portion by being screwed into a female threaded portion of an intermediate support that supports the one shaft.
JP63319255A 1987-12-19 1988-12-17 Correction of tire grooving and its apparatus Granted JPH0236934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63319255A JPH0236934A (en) 1987-12-19 1988-12-17 Correction of tire grooving and its apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62322202 1987-12-19
JP62-322202 1987-12-19
JP63319255A JPH0236934A (en) 1987-12-19 1988-12-17 Correction of tire grooving and its apparatus

Publications (2)

Publication Number Publication Date
JPH0236934A true JPH0236934A (en) 1990-02-06
JPH0541430B2 JPH0541430B2 (en) 1993-06-23

Family

ID=18141093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63319255A Granted JPH0236934A (en) 1987-12-19 1988-12-17 Correction of tire grooving and its apparatus

Country Status (1)

Country Link
JP (1) JPH0236934A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2896720A1 (en) * 2006-01-27 2007-08-03 P S O Pneu Service Outil Soc P Apparatus for cutting grooves in a tire tread, especially for retreading, comprises a measuring device for determining the optimum groove depth

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2896720A1 (en) * 2006-01-27 2007-08-03 P S O Pneu Service Outil Soc P Apparatus for cutting grooves in a tire tread, especially for retreading, comprises a measuring device for determining the optimum groove depth

Also Published As

Publication number Publication date
JPH0541430B2 (en) 1993-06-23

Similar Documents

Publication Publication Date Title
CN109975313B (en) Automatic wheel detection device
US5005628A (en) Method for correcting tire deflection in tire grooving and apparatus therefor
EP2516108B1 (en) Machine tools and methods of operation thereof
US7507142B2 (en) Eyeglass lens processing apparatus
JP2713708B2 (en) Apparatus and method for grinding sidewall of tire
CN210550116U (en) Intelligent ring polishing machine tool
US10730114B2 (en) Device for trimming positioning end surface of wheel blank
JPH0451959Y2 (en)
CN115008322A (en) Diamond wire cutting device
CN104339241A (en) Homogenization method of chipping allowance and periphery grinding apparatus of plate
JPH0236934A (en) Correction of tire grooving and its apparatus
US5144996A (en) Tire grooving apparatus and method
JP3216952B2 (en) Runout equipment for tire uniformity machines
JPH0387246A (en) Method and apparatus for correcting lateral vibration of tire grooving
SE426921B (en) PROCEDURE AND DEVICE FOR THE PREPARATION OF A ROLLING PILLOW IN PILGER ROLLS FOR A CALLPILGER ROLLING PLANT
JP2743759B2 (en) Automatic roll overlaying equipment
JPH01301233A (en) Method and apparatus for correcting vertical vibration of tire grooving
JPH05200649A (en) Tool centering device
JP5401858B2 (en) Grinding machine and grinding method
JP5087334B2 (en) Machining method and control unit of turret rotary processing machine
JP2546062B2 (en) Long shaft outer surface grinding machine
JPH0319832A (en) Grooving apparatus for tyre and grooving method thereof
JPS62297065A (en) Method and device for grinding outer surface of rotation symmetrical work
JPH0319833A (en) Grooving apparatus for tyre and grooving method thereof
JP2008073822A (en) Grinding method of peripheral edge of glass plate and device thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080623

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 16