JPH0236629Y2 - - Google Patents
Info
- Publication number
- JPH0236629Y2 JPH0236629Y2 JP1985092329U JP9232985U JPH0236629Y2 JP H0236629 Y2 JPH0236629 Y2 JP H0236629Y2 JP 1985092329 U JP1985092329 U JP 1985092329U JP 9232985 U JP9232985 U JP 9232985U JP H0236629 Y2 JPH0236629 Y2 JP H0236629Y2
- Authority
- JP
- Japan
- Prior art keywords
- internal combustion
- equipment
- exhaust gas
- combustion engine
- economizer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000002485 combustion reaction Methods 0.000 claims description 25
- 238000001035 drying Methods 0.000 claims description 25
- 238000012545 processing Methods 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 16
- 239000011248 coating agent Substances 0.000 claims description 15
- 238000000576 coating method Methods 0.000 claims description 15
- 238000010422 painting Methods 0.000 claims description 9
- 238000010248 power generation Methods 0.000 claims description 9
- 238000001816 cooling Methods 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 4
- 239000007789 gas Substances 0.000 description 33
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 239000000446 fuel Substances 0.000 description 7
- 238000005238 degreasing Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 230000005611 electricity Effects 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- 238000004378 air conditioning Methods 0.000 description 2
- 238000007739 conversion coating Methods 0.000 description 2
- 238000007591 painting process Methods 0.000 description 2
- 239000002918 waste heat Substances 0.000 description 2
- 239000000567 combustion gas Substances 0.000 description 1
- 239000012809 cooling fluid Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 239000008236 heating water Substances 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/10—Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Drying Of Solid Materials (AREA)
- Coating Apparatus (AREA)
Description
【考案の詳細な説明】
〔産業上の利用分野〕
この考案は、自動塗装加工設備などの塗装処理
装置に関するものであつて、省エネルギー性の高
い同装置に関するものである。[Detailed Description of the Invention] [Industrial Field of Application] This invention relates to a coating processing device such as automatic coating processing equipment, and is concerned with the device having high energy saving properties.
例えば、自動塗装加工設備の一般的な構成で
は、下地処理工程に使用する下地処理装置、前処
理工程に使用する水切乾燥炉、塗装処理工程に使
用する塗装装置、後処理工程に使用する焼付乾燥
炉の一連の工程装置が設置されていて、具体的に
は、下記の順序で各装置類が設置されている。
For example, the typical configuration of automatic painting processing equipment includes a base treatment device used in the base treatment process, a drain drying oven used in the pretreatment process, a coating device used in the painting process, and a baking dryer used in the post treatment process. A series of furnace process equipment is installed, and specifically, each equipment is installed in the following order.
下地処理工程(3工程)
予備脱脂装置→脱脂装置→化成皮膜装置
前処理工程(1工程)
水切乾燥炉
塗装処理工程(1工程)
塗装装置
後処理工程(1工程)
焼付乾燥炉
しかして、水切乾燥炉と焼付乾燥炉は、加熱作
動に基づいて処理作用を行つていることから、レ
ベルの高い熱エネルギーを消費しており、かつ、
下地処理装置を構成する上記の三つの装置では、
処理液保温等のために、汎用のボイラから多量の
水蒸気の供給を受けており、また、塗装装置で
は、その空調のために同様にして水蒸気を使用し
ており、従つて塗装設備全体では、かなり大きな
熱エネルギーを消費している。 Base treatment process (3 processes) Preliminary degreasing equipment → degreasing equipment → chemical coating equipment Pre-treatment process (1 process) Draining drying oven Painting process (1 process) Painting equipment Post-processing process (1 process) Baking drying oven Since drying ovens and baking drying ovens perform processing operations based on heating operations, they consume a high level of thermal energy, and
In the above three devices that make up the base treatment device,
A large amount of steam is supplied from a general-purpose boiler to keep the processing liquid warm, and the coating equipment also uses steam for its air conditioning. It consumes a considerable amount of heat energy.
ところで従来一般に使用されている設備では、
上記ボイラの燃料に重油が使われる一方、上記各
乾燥炉のバーナの燃料には、主にガス燃料が用い
られており、更に、設備全体の消費電力は、買電
で賄われていることから、塗装設備における熱源
と消費電力の供給システムは、複数のエネルギー
源が効率的な統制が取られずに利用されており、
その結果、各所に熱損失を招いて、エネルギー効
率が極めて低いのが現状である。 By the way, in the equipment commonly used in the past,
While heavy oil is used as fuel for the boiler, gas fuel is mainly used as fuel for the burners in each of the drying furnaces, and the power consumption of the entire facility is covered by purchased electricity. , the supply system for heat sources and power consumption in painting equipment uses multiple energy sources without efficient control.
As a result, heat loss occurs in various places, resulting in extremely low energy efficiency.
以上のような点に鑑み、実公昭41−2862号公報
に記載の省エネルギー形の装置が提案されてい
る。 In view of the above points, an energy-saving device has been proposed in Japanese Utility Model Publication No. 41-2862.
この公報記載の装置では、固有の内燃機関駆動
の発電装置によつて塗装設備を稼動させるととも
に、内燃機関用の冷却液を下地処理装置の加熱用
湯の加熱源として用い、発電機の冷却系から排出
される温風を水切乾燥炉に流通し、内燃機関の排
気ガスを焼付乾燥炉の燃焼器の燃料として用いて
いる。 In the apparatus described in this publication, the painting equipment is operated by a power generation device driven by a unique internal combustion engine, and the cooling fluid for the internal combustion engine is used as a heating source for the heating water of the surface treatment equipment, and the cooling system of the generator is The hot air discharged from the dryer is passed through the drying oven, and the exhaust gas from the internal combustion engine is used as fuel for the combustor of the baking oven.
ところが、上記公報に記載の従来技術では、内
燃機関の排気ガス中の高い熱エネルギーが有効に
再利用されておらず、この点省エネルギー形の装
置としては不完全なものであつた。
However, in the prior art described in the above-mentioned publication, the high thermal energy in the exhaust gas of the internal combustion engine is not effectively reused, and in this respect it is incomplete as an energy-saving device.
本考案は、以上の点に鑑みてなしたもので、特
に内燃機関の排ガス中の高い熱エネルギーを有効
に再利用した、この種省エネルギー形塗装処理装
置の改良を目的としたものである。 The present invention has been developed in view of the above points, and is particularly aimed at improving this type of energy-saving paint processing apparatus that effectively reuses the high thermal energy in the exhaust gas of an internal combustion engine.
本考案を、図の実施例を参照して説明する。 The invention will be explained with reference to the illustrated embodiment.
本考案の塗装処理装置によれば、前記内燃機関
の排気系から排出される排気ガスが、前記焼付乾
燥炉9及び前記水切乾燥炉7に流通された後、蒸
気発生器10及びエコノマイザ11に流通される
よう構成し、前記蒸気発生器10によつて発生せ
しめられた蒸気が、前記下地処理装置及び塗装装
置8に流通されるよう構成し、前記内燃機関若し
くは発電装置の空気冷却から排出される温風が、
前記エコノマイザ11で前記排気ガスによつて加
熱された後前記各処理工程装置に流通されるよう
構成したことを特徴としている。 According to the coating treatment apparatus of the present invention, the exhaust gas discharged from the exhaust system of the internal combustion engine is distributed to the baking drying oven 9 and the draining drying oven 7, and then to the steam generator 10 and the economizer 11. The steam generated by the steam generator 10 is configured to be distributed to the surface treatment device and coating device 8, and is discharged from the air cooling of the internal combustion engine or power generation device. The warm air
It is characterized in that it is configured such that it is heated by the exhaust gas in the economizer 11 and then distributed to each of the processing process apparatuses.
本考案によれば、内燃機関からの排気ガスは、
焼付乾燥炉9に供給されるのみならず、水切乾燥
炉7にも供給され、さらに蒸気発生器10によつ
て蒸気を発生せしめこの蒸気により下地処理装置
及び塗装装置8を加熱し、またさらにエコノマイ
ザ11によつて上記温風を加熱して各処理工程装
置を加熱している。
According to the present invention, exhaust gas from an internal combustion engine is
It is supplied not only to the baking drying furnace 9, but also to the draining drying furnace 7, and is further supplied to the steam generator 10 to generate steam, which heats the base treatment equipment and the coating equipment 8, and further to the economizer. 11 heats the hot air to heat each processing process apparatus.
[実施例]
以下、図面の一実施例に基づいて本考案を説明
する。[Example] The present invention will be described below based on an example shown in the drawings.
実施例の塗装装置では、付図に示すように、設
備全体に固有の、すなわち自家用の内燃発電装置
1が付設されていて、設備で消費される全エネル
ギー、すなわち熱エネルギーと電力エネルギーに
は、商用電源と等しい電気特性を有する発電機2
を駆動する内燃機関としてのガスタービン3の燃
料エネルギーが充てられており、しかも、後述す
る現由から、発電機2が発生する電力量が、設備
内部で消費される図示内部給電量を大幅(例えば
4倍)に上回ることから、余剰電力が部外に給電
されて、それだけ買電量を低減させている。 In the coating equipment of the embodiment, as shown in the attached figure, the entire equipment is equipped with a unique internal combustion power generation device 1 for private use, and the total energy consumed by the equipment, that is, thermal energy and electrical energy, is Generator 2 with electrical characteristics equal to the power supply
The fuel energy of the gas turbine 3, which is an internal combustion engine that drives (for example, 4 times), the surplus electricity is supplied outside the facility, reducing the amount of electricity purchased accordingly.
ところで、実施例の塗装装置では、上述した一
般構成におけると同様な工程装置類、すなわち、
予備脱脂装置4、脱脂装置5、化成皮膜装置6、
水切乾燥炉7、塗装装置8、および焼付乾燥炉9
のほかに、排熱ボイラ等の蒸気発生器10と、熱
交換器よりなるエコノマイザ11とが並設されて
いて、蒸気発生器10の水側10aには、ポンプ
12を介し給水タンク13の水が補給されてい
る。 By the way, the coating apparatus of the embodiment includes the same process equipment as in the general configuration described above, that is,
preliminary degreasing device 4, degreasing device 5, chemical conversion coating device 6,
Drain drying oven 7, coating device 8, and baking drying oven 9
In addition, a steam generator 10 such as a waste heat boiler and an economizer 11 consisting of a heat exchanger are installed in parallel. is being replenished.
なお、蒸気発生器10の構造は、一般の排熱ボ
イラの場合と変わらないが、エコノマイザ11の
構造は、1次側11a(後述)の高温ガス通路の
抵抗が低くなるように形成されていて、高温ガス
の背圧増大の防止が画られている。 The structure of the steam generator 10 is the same as that of a general waste heat boiler, but the structure of the economizer 11 is formed so that the resistance of the high temperature gas passage on the primary side 11a (described later) is low. , prevention of increase in back pressure of high temperature gas is planned.
しかして、これらの各装置類に対する熱源の供
給系は、aは内燃機関の排ガス、b水蒸気、c温
風、の各媒体による3系統で形成されていて、以
下、媒体ごとに具体的に述べる。尚図において、
aは内燃機関の排ガス、bは水、水蒸気、cは温
風、dは材料、eは自家用電源の流れを夫々示
し、X,X′は加工材と製品とを示すものである。 Therefore, the heat source supply system for each of these devices is formed of three systems using each medium: (a) exhaust gas from the internal combustion engine, (b) water vapor, and (c) warm air.The following describes each medium in detail. . In addition, in the figure,
a indicates the exhaust gas of the internal combustion engine, b indicates water or steam, c indicates hot air, d indicates the material, e indicates the flow of the private power source, and X and X' indicate the processed material and the product.
(a) 内燃機関の排ガス系統
ガスタービン3の燃焼ガス排気系3aから出る
高温の排ガスは、各乾燥炉9,7のバイパス弁1
4,15が閉められている全負荷作動状態では、
焼付乾燥炉9に続いて水切乾燥炉7の夫々の炉内
に直接に流れて、各炉内の加工材Xを乾燥させた
後、蒸気発生器10の高温ガス側10b、すなわ
ち1次側通路を通つて、水側、すなわち2次側通
路の水を蒸発させ、最後に、エコノマイザ11の
1次側通路11aを通つて、2次側11bの温気
(詳細後述)を加熱し、この間の奪熱と膨脹によ
り静ガス化された排ガスは、エコノマイザ11か
ら外部に放散される。(a) Exhaust gas system of internal combustion engine High-temperature exhaust gas coming out of the combustion gas exhaust system 3a of the gas turbine 3 is passed through the bypass valve 1 of each drying furnace 9, 7.
In full load operating condition with 4 and 15 closed,
Following the baking drying furnace 9, it flows directly into each furnace of the draining drying furnace 7, and after drying the processed material X in each furnace, the high temperature gas side 10b of the steam generator 10, that is, the primary side passage. , the water in the water side, that is, the secondary side passage, is evaporated, and finally, the hot air (details will be described later) on the secondary side 11b is heated through the primary side passage 11a of the economizer 11, and the temperature during this period is The exhaust gas, which has been turned into a static gas by heat removal and expansion, is radiated to the outside from the economizer 11.
なお、炉内に排ガスを直接に流す代わりに、ガ
スタービン3と焼付乾燥炉9との熱交換器を設け
て、ガスタービン3の排ガスで空気を加熱し、こ
の加熱空気を前記焼付乾燥炉9に供給するように
してもよい。また、各炉9,7の作動容量は、加
工材Xの移動速度と炉の運転時限等によつて変動
することから、これに対応し、バイパス弁14,
15の操作により、炉内流量が調節される。 Note that instead of flowing the exhaust gas directly into the furnace, a heat exchanger between the gas turbine 3 and the baking drying furnace 9 is provided to heat air with the exhaust gas of the gas turbine 3, and this heated air is transferred to the baking drying furnace 9. It may also be supplied to In addition, since the working capacity of each furnace 9, 7 varies depending on the moving speed of the workpiece X and the operating time of the furnace, the bypass valve 14,
By the operation 15, the flow rate in the furnace is adjusted.
(b) 水蒸気系統
蒸気発生器10で発生した高温(例えば17℃)
の水蒸気は、下地処理装置を構成する予備脱脂装
置4、脱脂装置5、及び化成皮膜装置6の夫々の
処理液加熱器4a,5a,6aに水蒸気供給通路
16aを介して並列に流され、同処理液を保温し
て凝縮した後、給水タンク13に導かれたドレー
ン16に排出される。(b) Steam system High temperature (e.g. 17°C) generated in the steam generator 10
The steam is passed in parallel through the steam supply passage 16a to the treatment liquid heaters 4a, 5a, and 6a of the preliminary degreasing device 4, the degreasing device 5, and the chemical conversion coating device 6 that constitute the surface treatment device. After the processing liquid is kept warm and condensed, it is discharged to a drain 16 led to a water supply tank 13.
これらと平行に、水蒸気の一部は、塗装装置8
の環境空調機構8aに流され、雰囲気を加熱、加
湿した後、同じくドレーン16aに排出される。 Parallel to these, a portion of the water vapor is transferred to the coating device 8
After flowing through the environmental air conditioning mechanism 8a and heating and humidifying the atmosphere, it is also discharged to the drain 16a.
なお、水蒸気供給通路16aには、蒸気取出口
Aが設けられていて、余剰水蒸気を適時部外に取
出し得るようになつている。 Note that the steam supply passage 16a is provided with a steam outlet A so that surplus steam can be taken out to the outside in a timely manner.
(c) 温気系統
内燃発電装置1の空気冷却系1aから排出され
た温風は、外部に放散されることなくダクト17
を経てエコノマイザ11の2次側11b、すなわ
ち、受熱側に送出される。(c) Hot air system The hot air discharged from the air cooling system 1a of the internal combustion power generation device 1 is routed through the duct 17 without being dissipated to the outside.
The heat is sent to the secondary side 11b of the economizer 11, that is, to the heat receiving side.
しかして、エコノマイザ11の2次側11bか
ら吐出された静浄な加熱温風(例えば、65℃)
は、二つの分岐通路18,19に分流し、かつ、
一方の分岐通路18を通る温風は、焼付乾燥炉9
に続き水切乾燥炉7の各炉内気に新気として混入
され、各炉内を換気させた後、外部に放散され
る。 Therefore, the quiet heated hot air (for example, 65°C) discharged from the secondary side 11b of the economizer 11
is divided into two branch passages 18 and 19, and
The hot air passing through one of the branch passages 18 is transferred to the baking drying furnace 9.
Subsequently, the fresh air is mixed into the air inside each oven of the draining and drying oven 7, and after ventilating the inside of each oven, it is released to the outside.
また他方の分岐通路19を通る温風は、下地処
理工程の各装置4,5,6の各ブースに新気とし
て並列に流れ込み、ブース内気を換気させた後、
外部に放散される。 In addition, the warm air passing through the other branch passage 19 flows in parallel as fresh air into each booth of each device 4, 5, and 6 in the base treatment process, and after ventilating the air inside the booth,
Dissipated to the outside.
このように構成された実施例の熱源ならびに電
力の供給装置では、塗装設備で消費される熱エネ
ルギーに、内燃発電装置1の排ガス熱と冷却系1
aから出る温風の熱エネルギーが充てられている
ことから、内燃機関の燃料エネルギーの利用効率
が極めて高く、具体的には、従来の塗装設備を稼
動させるために必要な燃料使用量に比し、ガスタ
ービン3を用いた実施例の場合の燃料使用量が、
約20%減となるような優れた効率が得られる。 In the heat source and power supply device of the embodiment configured in this way, the heat energy consumed by the painting equipment is combined with the exhaust gas heat of the internal combustion power generation device 1 and the cooling system 1.
Since the thermal energy of the hot air coming out of , the amount of fuel used in the example using the gas turbine 3 is
Excellent efficiency of approximately 20% reduction can be obtained.
更に、内燃発電装置1の内燃機関(この場合に
はタービン3)には、その排ガス発生量で十分に
設備の熱源を賄えるような定格出力のエンジンが
使用されることから、頭初に述べたように、発電
機2の出力容量は、塗装設備で消費される電力の
数倍の容量となり、すなわち、余剰電力の有効な
部外使用によつて、買電費用が大幅に低減する2
次的効果が相乗され、その結果、従来の供給装置
に比し、上述した20%の燃料費用減と相俟つて、
例えば40%という大幅な設備運転費用の低減が得
られる。 Furthermore, the internal combustion engine (in this case, the turbine 3) of the internal combustion power generation device 1 is an engine with a rated output that can sufficiently cover the heat source of the equipment with the amount of exhaust gas generated. As such, the output capacity of the generator 2 is several times the capacity of the electricity consumed by the painting equipment, which means that the power purchase cost is significantly reduced by effectively using the surplus electricity outside.
The following effects are combined, resulting in the above-mentioned 20% reduction in fuel costs compared to the conventional feeding system.
For example, equipment operating costs can be significantly reduced by 40%.
そのほか、実施例の装置では、設備から排出さ
れる有害ガスが、内燃機関の排ガスの1種類に絞
られているので、排ガス対策の設備費用が極めて
安くつくという長所がある。 In addition, in the device of the embodiment, the harmful gases emitted from the equipment are limited to one type of exhaust gas from the internal combustion engine, so there is an advantage that the equipment cost for exhaust gas countermeasures is extremely low.
ここで、本考案実施例の構成において、付設内
燃機関にデイーゼルエンジンを用いた場合でも、
上述ガスタービンを使つた時の効率には及びない
が、それでもかなり良好なエネルギー効率が得ら
れる。 Here, in the configuration of the embodiment of the present invention, even if a diesel engine is used as the attached internal combustion engine,
Although not as efficient as using the gas turbine described above, it still provides fairly good energy efficiency.
以上述べたように、本考案に係る塗装処理装置
によれば、塗装処理装置の作動に必要な熱源に、
内燃機関の排ガスと、同排ガスの熱交換によつて
得られた水蒸気ならびに温風とを充てるように構
成したので、同排ガス中の高い残存熱エネルギー
を最も有効に利用出来、エネルギー供給手段にお
けるエネルギー損失を最低に抑えることができ、
これにより、塗装処理装置のエネルギー効率を高
める経済上の効果と、省エネルギー上の効果が大
きい。
As described above, according to the paint processing device according to the present invention, the heat source necessary for the operation of the paint processing device
Since the structure is configured to use the exhaust gas of the internal combustion engine and the water vapor and warm air obtained by heat exchange of the exhaust gas, the high residual thermal energy in the exhaust gas can be used most effectively, and the energy in the energy supply means can be used most effectively. losses can be kept to a minimum,
Thereby, the economical effect of increasing the energy efficiency of the coating processing apparatus and the effect of energy saving are significant.
図は、本考案の一実施例を示す処理装置におけ
る熱源ならびに電力の供給装置を説明する系統図
である。
1……内燃発電装置、2……発電機、3……内
燃機関としてのガスタービン、4,5,6,8…
…水蒸気を使う各装置、4,5,6,7,9……
換気機関を備えた各装置、および同装置としての
各炉、7,9……加熱処理作動を行う装置として
の各炉、10……蒸気発生器、11……エコノマ
イザ。
The figure is a system diagram illustrating a heat source and a power supply device in a processing apparatus showing an embodiment of the present invention. 1... Internal combustion power generation device, 2... Generator, 3... Gas turbine as an internal combustion engine, 4, 5, 6, 8...
...Each device that uses water vapor, 4, 5, 6, 7, 9...
Each device equipped with a ventilation engine and each furnace as the device, 7, 9... each furnace as a device for performing heat treatment operation, 10... steam generator, 11... economizer.
Claims (1)
装装置及び焼付乾燥炉の各処理工程装置を順次経
て処理される塗装処理設備に、固有の内燃機関駆
動の発電装置を付設させる装置において、 前記内燃機関の排気系から排出される排気ガス
が、前記焼付乾燥炉9及び前記水切乾燥炉7に流
通された後、蒸気発生器10及びエコノマイザ1
1に流通されるよう構成し、 前記蒸気発生器10によつて発生せしめられた
蒸気が、前記下地処理装置及び塗装装置8に流通
されるよう構成し、 前記内燃機関若しくは発電装置の空気冷却系か
ら排出される温風が、前記エコノマイザ11で前
記排気ガスによつて加熱された後前記各処理工程
装置に流通されるよう構成したことを特徴とする
塗装処理装置。[Scope of Claim for Utility Model Registration] A power generation system driven by an internal combustion engine that is unique to painting processing equipment in which a predetermined material is sequentially processed through each processing equipment: a base treatment equipment, a drain drying oven, a coating equipment, and a baking drying oven. In the device to which the device is attached, after the exhaust gas discharged from the exhaust system of the internal combustion engine is distributed to the baking drying furnace 9 and the draining drying furnace 7, the exhaust gas is passed through the steam generator 10 and the economizer 1.
1, and the steam generated by the steam generator 10 is configured to be distributed to the base treatment device and coating device 8, and the air cooling system of the internal combustion engine or power generation device. A painting processing apparatus characterized in that the hot air discharged from the painting apparatus is configured such that hot air discharged from the apparatus is heated by the exhaust gas in the economizer 11 and then distributed to each of the processing process apparatuses.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1985092329U JPS6119475U (en) | 1985-06-20 | 1985-06-20 | Paint processing equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1985092329U JPS6119475U (en) | 1985-06-20 | 1985-06-20 | Paint processing equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6119475U JPS6119475U (en) | 1986-02-04 |
JPH0236629Y2 true JPH0236629Y2 (en) | 1990-10-04 |
Family
ID=30649030
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1985092329U Granted JPS6119475U (en) | 1985-06-20 | 1985-06-20 | Paint processing equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6119475U (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0192739U (en) * | 1987-12-12 | 1989-06-19 | ||
JPH0565033U (en) * | 1992-02-03 | 1993-08-27 | 豊田鉄工株式会社 | switch |
-
1985
- 1985-06-20 JP JP1985092329U patent/JPS6119475U/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6119475U (en) | 1986-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU600914B2 (en) | Improvements in chemical process fired heaters, furnaces or boilers | |
CN202482387U (en) | Flue gas waste heat recovery system for annealing furnace | |
JP2007247922A (en) | Exhaust gas treatment system | |
CN114909647B (en) | Cogeneration unit and method for low-load stable combustion and thermoelectric deep decoupling | |
CN106196125B (en) | A kind of exhaust-gas treatment structure applied to incinerator | |
JPH0236629Y2 (en) | ||
Thekdi et al. | Waste heat reduction and recovery options for metals industry | |
CN203547925U (en) | Gas-steam combined cycle power plant | |
CN2150929Y (en) | Hot air drier for coating | |
JPH05502932A (en) | Method and apparatus in closed heating plants | |
KR20030009230A (en) | Low Energy Electric Heat Drying Type Paint Booth | |
CN1033598C (en) | Technology for overheat steam temp. difference graded supply and its apparatus | |
CN220582449U (en) | Waste heat utilization device applied to baking oven of compounding machine | |
CN220624056U (en) | Device for improving RTO inlet temperature in chemical industry by using circulating air heat exchanger | |
CN216203397U (en) | Waste heat recovery system for direct-fired incinerator and automobile paint spraying process | |
JPS54137839A (en) | Device for cooling and heating | |
CN218912983U (en) | Combined cycle system | |
CN201431956Y (en) | Device for improving thermal conductivity of medium in curing oven | |
CN212584964U (en) | Aluminum steel coil processing waste gas treatment heat energy recycling system | |
JPH035837Y2 (en) | ||
RU184672U1 (en) | All-mode gas-water heater with protection against low-temperature corrosion on the gas side, designed to heat the working fluid of the cycle and network water of the heating network | |
CN101566425A (en) | Method for improving medium heat conductivity in curing furnace | |
SU1728577A1 (en) | Boiler unit of heat-electric generating plant | |
JPH0474531B2 (en) | ||
JPH062569A (en) | Multipurpose cooling method for gas turbine generating equipment |