JPH0236333A - Device for sampling suspended liquid for measuring particle size distribution - Google Patents

Device for sampling suspended liquid for measuring particle size distribution

Info

Publication number
JPH0236333A
JPH0236333A JP63185747A JP18574788A JPH0236333A JP H0236333 A JPH0236333 A JP H0236333A JP 63185747 A JP63185747 A JP 63185747A JP 18574788 A JP18574788 A JP 18574788A JP H0236333 A JPH0236333 A JP H0236333A
Authority
JP
Japan
Prior art keywords
liquid
bus
beaker
pipe
bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63185747A
Other languages
Japanese (ja)
Inventor
Kazuhiro Washio
鷲尾 一裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP63185747A priority Critical patent/JPH0236333A/en
Publication of JPH0236333A publication Critical patent/JPH0236333A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To accomplish effective sampling by selecting either a bus system or a beaker system in one sampling device. CONSTITUTION:In the case of applying the bus system, a channel switching valve 13 is set so that a tube 8c communicates with an entrance 12 for the liquid of a measur ing system and suspended liquid L is inducted in the bus 1. When a liquid feeding pump 9 is driven in a state where an ultrasonic oscillator 2 and a stirring device 3 are driven, the liquid L is made to cycle, such as the measuring system the pump 9 the tube 8a a discharging pipe 6 the bus 1 the value 13 the measuring system. In the case of applying the beaker system, the device 3 and sucking and discharging pipes 5 and 6 are respectively moved upward by holders 4a and 7a and a beaker placing table 10 is mounted in the bus 1, then a beaker B containing the liquid L is placed on the table 10. Water for transmitting ultrasonic wave is injected in the bus 1. Next, the device 3 and the pipes 5 and 6 are moved downward to be immersed in the beaker B and the valve 13 is set so that a tube 8b communicates with the entrance 12 for the liquid of the measuring system. By driving the oscillator 2, the device 3 and the pump 9 in such a state, the liquid L can be cycled in the measuring system.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、レーザ回折法、光散乱法もしくは液相沈降法
等に基づく、液相式の粒度分布測定装置において、試料
懸濁液の攪拌、分散および測定系への送液を行うための
サンプリング装置に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a liquid-phase particle size distribution measuring device based on a laser diffraction method, a light scattering method, a liquid-phase sedimentation method, etc. , relates to a sampling device for dispersing and feeding liquid to a measurement system.

〈従来の技術〉 上記した各測定法に基づく粒度分布測定装置では、いず
れも、被測定粉体を適当な媒液中に均一に分散させた懸
濁液を用いて粒度分布を測定する。
<Prior Art> In all of the particle size distribution measurement apparatuses based on the above-mentioned measurement methods, particle size distribution is measured using a suspension in which the powder to be measured is uniformly dispersed in an appropriate medium.

このような懸濁液をサンプリングする装置としては、(
a)送液のためのポンプおよび配管、(bl液の攪拌の
ためマグネチックスターラまたはプロペラ攪拌装置、(
C1粒子分散のための超音波発振器、および(dl試料
槽の全てが必要である。
Devices for sampling such suspensions include (
a) Pump and piping for liquid feeding, (magnetic stirrer or propeller stirring device for stirring BL liquid, (
An ultrasonic oscillator for C1 particle dispersion, and a (dl sample tank) are all required.

従来のこの種のサンプリング装置の構成を第6図乃至第
8図に示す。
The configuration of a conventional sampling device of this type is shown in FIGS. 6 to 8.

第6図および第7図に示す装置はビーカB等の容器を試
料槽として用いるタイプであって、試料懸濁液りを収容
したビーカB等を超音波発振子61付きのバス62内に
設置し、バス62内に満たされた液体を介して懸濁液り
に超音波を照射している。また、ビーカB内の懸濁液り
をプロペラ攪拌器63 (第6図)もしくは攪拌子71
aとモータ71bとからなるマグネチックスターラフ1
 (第7図)によって撹拌するとともに、吸引および排
出バイブロ4および65を懸濁液り中に浸し、ポンプ6
6によって測定系との間を循環させている。
The apparatus shown in FIGS. 6 and 7 is a type that uses a container such as a beaker B as a sample tank, and the beaker B containing a sample suspension is placed in a bath 62 equipped with an ultrasonic oscillator 61. Then, the suspension is irradiated with ultrasonic waves through the liquid filled in the bath 62. In addition, the suspension in beaker B can be mixed with a propeller stirrer 63 (Fig. 6) or with a stirrer 71.
Magnetic star rough 1 consisting of a and motor 71b
(Fig. 7), the suction and discharge vibros 4 and 65 are immersed in the suspension, and the pump 6
6 to circulate between the measurement system and the measurement system.

一方、第8図に示す装置は、超音波発振子81付きのバ
ス82そのものを試料槽としたタイプであって、バス8
2内で超音波により分散され、また、攪拌器83で撹拌
された懸濁液りは、ポンプ84の駆動によってバス82
の下面に設けられた出口82aから吸引され、測定系を
経てバス82の上方で開口する戻しパイプ85によって
バス82内に戻される。
On the other hand, the apparatus shown in FIG.
The suspension dispersed by ultrasonic waves in the bath 82 and stirred by the stirrer 83 is transferred to the bath 82 by the drive of the pump 84.
It is sucked in from an outlet 82a provided on the lower surface, passes through a measurement system, and is returned into the bath 82 by a return pipe 85 that opens above the bath 82.

〈発明が解決しようとする課題〉 上記した従来の各サンプリング装置のうち、第6図およ
び第7図に示すタイプは、操作性の点で第8図のタイプ
よりも優れている反面、比重の大きい粒子や径の極めて
大きい粒子が吸引されにくく、比較的細かい粒子のみが
測定系に導かれる傾向かあり、測定誤差の原因となる場
合がある。なお、ポンプ66の能力を向上させることに
よりこの点は改善されるが、そうすることによって懸濁
液り中に気泡が混入しやすくなったり、配管系の継手の
耐圧性が必要となる等の新たな問題が生ずる。
<Problems to be Solved by the Invention> Among the conventional sampling devices described above, the types shown in FIGS. 6 and 7 are superior to the type shown in FIG. 8 in terms of operability, but on the other hand, Large particles or particles with extremely large diameters are difficult to attract, and only relatively fine particles tend to be introduced into the measurement system, which may cause measurement errors. This point can be improved by improving the capacity of the pump 66, but this may cause air bubbles to easily get mixed into the suspension, or the joints of the piping system will need to be pressure resistant, etc. A new problem arises.

また、第8図に示すタイプは上述の傾向はないものの、
比較的多量の懸濁液りを必要とするとともに、試料槽(
バス82)の洗浄が困難である等の欠点がある。
In addition, although the type shown in Figure 8 does not have the above-mentioned tendency,
In addition to requiring a relatively large amount of suspension, a sample tank (
There are drawbacks such as difficulty in cleaning the bus 82).

更に、第7図のようにマグネチックスターラフ 場合には問題がある。Furthermore, as shown in Figure 7, magnetic star rough There is a problem in some cases.

く課題を解決するための手段〉 本発明はこのような点に鑑み、測定目的や条件に応じて
より効率的なサンプリングを行うことのできる装置の提
供を目的とするもので、その構成を実施例に対応する第
1図乃至第3図を参照しつつ説明すると、本発明では、
下面に液出口1aを備え、かつ、超音波発振器2によっ
て内部に超音波を照射し得るバス1の内部に、ビー力載
台10を着脱自在に設け、バス1内もしくはビー力載台
10上のビーカB内には、バス1の上方から攪拌装置3
.吸引パイプ5および排出バイブロを挿入して、これ、
らの支持高さが可変となるよう構成している。そして、
測定系の液出口11には排出バイブロを連通させ、また
、測定系の液入口12には、吸引パイプ5もしくはバス
1の液出口1aのいずれか一方を択一的に連通させ得る
配管系(8a。
Means for Solving the Problems> In view of these points, the present invention aims to provide a device that can perform more efficient sampling according to the measurement purpose and conditions, and the present invention has the following features: To explain with reference to FIGS. 1 to 3 corresponding to examples, in the present invention,
A bea force platform 10 is removably provided inside a bus 1 which is provided with a liquid outlet 1a on the bottom surface and can be irradiated with ultrasonic waves by an ultrasonic oscillator 2. A stirring device 3 is placed in the beaker B from above the bath 1.
.. Insert the suction pipe 5 and the discharge vibro,
The structure is such that the support height of the two is variable. and,
The liquid outlet 11 of the measuring system is connected to a discharge vibro, and the liquid inlet 12 of the measuring system is connected to a piping system (which can selectively connect either the suction pipe 5 or the liquid outlet 1a of the bath 1). 8a.

8b、8cおよび流路切換パルプ13)を設け、この配
管系内に送液ポンプ9を配設している。
8b, 8c and a flow path switching pulp 13) are provided, and a liquid feeding pump 9 is disposed within this piping system.

く作用〉 測定系の液入口12にバス1の液出口1aを連通させた
状態で、バス1内に懸濁液りを収容することによって(
第1図の状C,)、前記した従来の第8図に示すタイプ
と同等のタイプとなる。
Effect> By storing the suspension liquid in the bath 1 with the liquid outlet 1a of the bath 1 communicating with the liquid inlet 12 of the measurement system,
The shape C,) in FIG. 1 is the same type as the conventional type shown in FIG. 8 described above.

また、バス1内にビー力載台10を装着してその上に懸
濁液りを収容したビーカB等を載せ、その内部に攪拌装
置3.吸引および排出パイプ5および6を浸すとともに
(第3図の状態)、測定系の液入口12に吸引パイプ5
を連通させることによって、従来の第6図のタイプと同
等のタイプとなる。なお、ビー力Bのバス1内への着脱
は、攪拌装置3.吸引および排出パイプ5および6の支
持高さが可変であるが故に可能である。
In addition, a beaker B or the like containing the suspension is placed on the beaker 10 installed in the bus 1, and the stirring device 3 is placed inside the beaker B. While immersing the suction and discharge pipes 5 and 6 (the state shown in Figure 3), insert the suction pipe 5 into the liquid inlet 12 of the measurement system.
By communicating with each other, a type equivalent to the conventional type shown in FIG. 6 is obtained. Note that the bee force B is attached to and removed from the bath 1 using the stirring device 3. This is possible because the support height of the suction and discharge pipes 5 and 6 is variable.

このように2つの異なるタイプでの使用を随時に行える
ことで、測定目的や条件に応じた最適のサンプリングが
可能となる。
By being able to use two different types at any time in this way, it is possible to perform optimal sampling according to the measurement purpose and conditions.

〈実施例〉 第1図は本発明実施例の全体構成図で、バス方式(後述
)を選択した状態で示す図である。また、第2図はその
バス1内に着脱自在に配設されるビー力載台10の説明
図である。
<Embodiment> FIG. 1 is an overall configuration diagram of an embodiment of the present invention, and is shown in a state where a bus system (described later) is selected. Further, FIG. 2 is an explanatory diagram of a bead force mounting table 10 that is detachably disposed within the bus 1.

ロート状の下端部に液出口1aを備えたバス1には、超
音波発振子2aとその駆動回路2bからなる超音波発振
器2が装着されており、内部の液体に超音波を照射する
ことができる。
An ultrasonic oscillator 2 consisting of an ultrasonic oscillator 2a and its drive circuit 2b is attached to the bath 1, which has a liquid outlet 1a at the lower end of the funnel shape, and is capable of irradiating ultrasonic waves to the liquid inside. can.

バス1の上方から、プロペラ3aおよびその駆動モータ
3bからなる攪拌装置3がバス1の内部に挿入されてお
り、この攪拌装置3は撹拌装置支持機構4によってバス
1に対する支持高さを変更することができる。
A stirring device 3 consisting of a propeller 3a and its drive motor 3b is inserted into the bus 1 from above the bus 1, and the stirring device 3 can change its support height relative to the bus 1 by a stirring device support mechanism 4. Can be done.

すなわち、攪拌装置3はホルダ4aを介して鉛直の支柱
4bに支持されており、ホルダ4aは、支柱4bに沿っ
て摺動自在で、かつ、その少くとも2箇所の高さ位置で
支柱4bにクランプすることができる。
That is, the stirring device 3 is supported by a vertical support 4b via a holder 4a, and the holder 4a is slidable along the support 4b and is attached to the support 4b at at least two height positions. Can be clamped.

バス1の上方から、また、吸引パイプ5と排出バイブロ
がバス1内に挿入されており、これらは同様にパイプ支
持機構7によってバス1に対する高さを変更することが
できる。
A suction pipe 5 and a discharge vibro are inserted into the bath 1 from above the bath 1, and the height of these with respect to the bath 1 can be changed by a pipe support mechanism 7 as well.

すなわち、吸引パイプ5および排出バイブロは共通のホ
ルダ7aに固着されており、このホルダ7aは鉛直の支
柱7bに沿って摺動自在で、かつ、その少くとも2箇所
の高さ位置で支柱7bにクランプすることができる。
That is, the suction pipe 5 and the discharge vibro are fixed to a common holder 7a, and this holder 7a is slidable along the vertical support 7b, and is attached to the support 7b at at least two height positions. Can be clamped.

排出バイブロは管8aによって送液ポンプ9の吐出口に
接続されており、この送液ポンプ9の吸入口は測定系の
液出口11に接続されている。
The discharge vibro is connected to the discharge port of a liquid feed pump 9 through a pipe 8a, and the suction port of this liquid feed pump 9 is connected to a liquid outlet 11 of the measurement system.

また、吸引パイプ5は、管8bによって流路切換バルブ
13を介して測定系の液入口12に接続されている。
Further, the suction pipe 5 is connected to the liquid inlet 12 of the measurement system via a flow path switching valve 13 by a pipe 8b.

前述したバス1の液出口1aには分岐管14が装着され
ており、その分岐管14の一方の分岐路は開閉バルブ1
5を介してドレインパイプ16に接続され、また、他方
の分岐路は、管8cによって流路切換バルブ13を介し
て測定系の液入口12に接続されている。
A branch pipe 14 is attached to the liquid outlet 1a of the bath 1 described above, and one branch of the branch pipe 14 is connected to the on-off valve 1.
5 to the drain pipe 16, and the other branch is connected to the liquid inlet 12 of the measuring system via the flow path switching valve 13 by a pipe 8c.

流路切換バルブ13は、バス1の液出口1aもしくは吸
引パイプ5のうちいずれか一方を択一的に測定系の液入
口12に連通させることができる。
The flow path switching valve 13 can selectively connect either the liquid outlet 1a of the bath 1 or the suction pipe 5 to the liquid inlet 12 of the measurement system.

なお、管8aおよび8bは、少くとも一部が可撓性のチ
ューブ、例えばシリコフチ1−ブによって形成されてい
る。
The tubes 8a and 8b are at least partially formed of flexible tubes, such as silicone tubes.

さて、第1図に示されているバス1には、その内部に第
2図に示すようなビー力載台10を着脱自在に装着する
ことができる。ビー力載台10は、第2図に示すように
多数の小孔が穿たれた円盤10aと、その円盤10aの
外縁部に固着された複数のフック10b・・・10bか
らなり、バス1の上端外縁部にフック10b・・・10
bを掛けることによて、円盤10aがバス1内の適当な
高さに懸吊されるよう構成されている。
Now, the bus 1 shown in FIG. 1 can be removably mounted therein with a bead force platform 10 as shown in FIG. 2. As shown in FIG. 2, the bee force platform 10 consists of a disk 10a with a large number of small holes and a plurality of hooks 10b...10b fixed to the outer edge of the disk 10a. Hook 10b...10 on the outer edge of the upper end
By multiplying by b, the disc 10a is suspended at an appropriate height within the bus 1.

次に使用方法を述べる。Next, we will explain how to use it.

以上の本発明実施例では、と−カ等を使用せずにバス1
そのものを試料槽とする方式(以後、バス方式と称する
)と、ビー力等を試料槽として用いる方式(以後、ビー
力方式と称する)のいずれをも選択することができる。
In the embodiment of the present invention described above, the bus 1 is
It is possible to select either a method in which the sample tank itself is used as a sample tank (hereinafter referred to as the bus method) or a method in which a bee force or the like is used as a sample tank (hereinafter referred to as the bee force method).

バス方式を採用する場合、流路切換バルブ13を管8C
と測定基液人口12が連通ずるようセットし、第1図に
示すようにバス1内に懸濁液りを入れる。この状態で超
音波発振器2と攪拌器3を駆動し7つつ送液ポンプ9を
駆動すれば、分散、攪拌された懸濁液りは測定系−ポン
ブ9−管8a−排出パイブ6−バス1−・管8C−流路
切換バルブ13→測定系へと循環することになり、第8
図に示した従来装置と同等となる。
When adopting the bus method, the flow path switching valve 13 is connected to pipe 8C.
and the measurement base liquid volume 12 are set so that they are in communication with each other, and the suspension liquid is poured into the bath 1 as shown in FIG. In this state, if the ultrasonic oscillator 2 and stirrer 3 are driven and the liquid feeding pump 9 is driven, the dispersed and stirred suspension will be distributed between the measurement system - pump 9 - pipe 8a - discharge pipe 6 - bus 1. - Pipe 8C - Flow path switching valve 13 → It will circulate to the measurement system, and the 8th
This is equivalent to the conventional device shown in the figure.

ビー力方式を採用する場合、攪拌装置3および吸引、排
出パイプ5.6をそれぞれのホルダ4aおよび7aのス
ライドによって上方に移動させた状態でクランプし、ビ
ー力載台1oをバス1内に装着してその上に懸濁液I2
を収容したビーカB等を載せる。なお、バス1内には超
音波伝達用の水を注入する。次に、攪拌装置3、吸引パ
イプ5および排出バイブロをそれぞれ下方に移動させて
ビーカB内に浸す。この状態の要部を第3図に示ず。
When adopting the bee force method, the agitation device 3 and the suction and discharge pipes 5.6 are moved upward by the slides of the respective holders 4a and 7a and then clamped, and the bee force mounting table 1o is installed in the bath 1. and on top of that suspension I2
Place beaker B etc. containing . Note that water for ultrasonic transmission is injected into the bath 1. Next, the stirring device 3, the suction pipe 5, and the discharge vibro are each moved downward and immersed in the beaker B. The main part of this state is not shown in FIG.

そして、流路切換バルブ13を管8bと測定基液人口1
2が連通ずるようセットする。この状態で超音波発振器
2、撹拌装置3および送液ポンプ9を駆動すれば、懸濁
液りは測定系−ポンプ9−・管8a→排出パイプ6−ビ
ーカB=吸引パイプ5−管8b−流路切換バルブ13−
測定系へと循環することになり、第6図に示した従来装
置と同等となる。
Then, the flow path switching valve 13 is connected to the pipe 8b and the measurement base liquid population 1.
Set so that 2 is connected. If the ultrasonic oscillator 2, stirring device 3, and liquid sending pump 9 are driven in this state, the suspension will be adjusted to the measurement system - pump 9 - pipe 8a -> discharge pipe 6 - beaker B = suction pipe 5 - pipe 8b - Flow path switching valve 13-
It circulates to the measurement system, making it equivalent to the conventional device shown in FIG.

なお、以上の実施例では、攪拌装置3と吸引および排出
パイプ5および6の移動やクランプを測定者の操作によ
って行う例を示したが、流路切換バルブ13と連動して
ホルダ4a、7aのクランプ解除、移動およびクランプ
を自動的に行うよう構成することもできる。また、攪拌
装置3と吸引、排出パイプ5,6とを一つの支持機構で
支持し、まとめて上下動およびクランプを行うよう構成
し得ることは勿論である。
In the above embodiment, the stirring device 3 and the suction and discharge pipes 5 and 6 are moved and clamped by the measurer's operation, but the holders 4a and 7a are moved in conjunction with the flow path switching valve 13. It can also be configured to automatically unclamp, move and clamp. Moreover, it is of course possible to support the stirring device 3 and the suction and discharge pipes 5 and 6 by one support mechanism, and to perform vertical movement and clamping together.

更に、ビー力載台10は第2図に示す吊り下げ弐のほか
、例えば第4図に番号20で示すように、バス1の底面
に支持する方式も採用することができる。
Furthermore, in addition to the suspended structure shown in FIG. 2, the bee force platform 10 may also be supported on the bottom surface of the bus 1, as shown by numeral 20 in FIG. 4, for example.

更にまた、攪拌装置としては、プロペラ攪拌装置のほか
に、第5図に示すような投入式超音波ホモジナイザ30
を使用することができる。ただし、この場合、粒子の破
壊(細分化)が進行しやすいため、用途としては限定さ
れる。
Furthermore, as a stirring device, in addition to a propeller stirring device, an input type ultrasonic homogenizer 30 as shown in FIG.
can be used. However, in this case, the particles tend to break down (fragmentation), so the use is limited.

〈発明の効果〉 以上説明したように、本発明によれば、1台のサンプリ
ング装置でバス方式とピー力方式のいずれかを簡単に選
択できるので、粒度分布測定に際してその測定目的や条
件等に応じて最も効率的なサンプリングを行うことがで
きる。
<Effects of the Invention> As explained above, according to the present invention, it is possible to easily select either the bus method or the peak force method with one sampling device, so that it is possible to easily select either the bus method or the peak force method with one sampling device. The most efficient sampling can be performed accordingly.

すなわち、例えば試料量が少ない場合にはピー力方式、
できるだけサンプリング誤差を減らす目的でサンプリン
グ量を多くしたい場合にはバス方式を選択する等、ある
いは、大径の粒子をより正確に測定したい場合はバス方
式、小量の粒子ないしは媒液の使用量に制約がある場合
等において多数種の試料を短時間に測定したい場合には
ピー力方式等、種々の使い分けが可能となり、粒度分布
測定作業の効率化を達成できる。
In other words, for example, when the amount of sample is small, the Pea force method,
If you want to increase the sampling amount to reduce sampling errors as much as possible, choose the bus method, or if you want to measure large particles more accurately, choose the bus method, or choose the bus method if you want to measure small particles or the amount of medium used. When there are restrictions and it is desired to measure a large number of samples in a short time, it is possible to use various methods such as the pea-force method, thereby increasing the efficiency of particle size distribution measurement work.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はバス方式を採用した状態で示す本発明実施例の
全体構成図、 第2図はそのバス内に着脱自在のビー力載台10の説明
図、 第3図はピー力方式を採用した状態で示す本発明実施例
の要部構成図である。 第4図および第5図はそれぞれ本発明の他の実施例の要
部構成図である。 第6図、第7図および第8図は従来装置の説明図である
。 1 ・ ・ 1 a ・ ・ 2 ・ ・ 3 ・ ・ 4 ・ ・ 5 ・ ・ 6 ・ ・ 7 ・ ・ 8a。 9 ・ 10 ・ 11 ・ 12 ・ 13 ・ B ・ L ・ バス 液出口 超音波発振器 攪拌装置 攪拌装置支持機構 吸引パイプ 排出パイプ パイプ支持機構 b  3c・・・管 送ン夜ポンフ。 ビー力載台 測定系液出口 測定系液入口 流路切換バルブ ビー力 4%、i ン((( 第2図 第1図
Fig. 1 is an overall configuration diagram of an embodiment of the present invention in which a bus system is adopted, Fig. 2 is an explanatory diagram of a bee force mounting table 10 that can be attached and detached within the bus, and Fig. 3 is a diagram in which a p force system is adopted. 1 is a configuration diagram of main parts of an embodiment of the present invention shown in a state where FIGS. 4 and 5 are diagrams showing the main parts of other embodiments of the present invention, respectively. FIG. 6, FIG. 7, and FIG. 8 are explanatory diagrams of conventional devices. 1 ・ ・ 1 a ・ ・ 2 ・ ・ 3 ・ ・ 4 ・ ・ 5 ・ ・ 6 ・ ・ 7 ・ 8a. 9 ・ 10 ・ 11 ・ 12 ・ 13 ・ B ・ L ・ Bath liquid outlet Ultrasonic oscillator Stirring device Stirring device support mechanism Suction pipe Discharge pipe Pipe support mechanism b 3c... Pipe feed night pump. Bee force mounting table measurement system Liquid outlet measurement system Liquid inlet flow path switching valve Bee force 4%, i (((Figure 2Figure 1

Claims (1)

【特許請求の範囲】[Claims]  被測定粉体を媒液中に分散させてなる懸濁液を、液相
式の粒度分布測定装置の測定系に供給するための装置で
あって、下面に液出口を備え、かつ、超音波発振器によ
り内部に超音波を照射し得るバスと、そのバス内に着脱
自在のビーカ載台と、上記バス内もしくはビーカ載台上
のビーカ内に上記バスの上方から挿入され、かつ、その
支持高さが可変の攪拌装置、吸引パイプおよび排出パイ
プと、上記測定系の液出口に上記排出パイプを連通させ
るとともに、上記測定系の液入口に上記吸引パイプもし
くは上記バスの液出口のいずれか一方を択一的に連通さ
せ得る配管系と、その配管系内に配設される送液ポンプ
を備えたことを特徴とする、粒度分布測定用懸濁液サン
プリング装置。
A device for supplying a suspension obtained by dispersing a powder to be measured in a medium to a measurement system of a liquid-phase particle size distribution measuring device, which is equipped with a liquid outlet on the bottom surface and is equipped with an ultrasonic A bus capable of irradiating the inside with ultrasonic waves by an oscillator, a removable beaker mount inside the bus, and a beaker that is inserted from above into the bus or the beaker on the beaker mount from above, and whose support height is A variable-strength stirring device, a suction pipe, a discharge pipe, and the discharge pipe are connected to the liquid outlet of the measurement system, and either the suction pipe or the liquid outlet of the bath is connected to the liquid inlet of the measurement system. A suspension sampling device for particle size distribution measurement, characterized by comprising a piping system that can be selectively communicated with, and a liquid sending pump disposed within the piping system.
JP63185747A 1988-07-26 1988-07-26 Device for sampling suspended liquid for measuring particle size distribution Pending JPH0236333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63185747A JPH0236333A (en) 1988-07-26 1988-07-26 Device for sampling suspended liquid for measuring particle size distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63185747A JPH0236333A (en) 1988-07-26 1988-07-26 Device for sampling suspended liquid for measuring particle size distribution

Publications (1)

Publication Number Publication Date
JPH0236333A true JPH0236333A (en) 1990-02-06

Family

ID=16176153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63185747A Pending JPH0236333A (en) 1988-07-26 1988-07-26 Device for sampling suspended liquid for measuring particle size distribution

Country Status (1)

Country Link
JP (1) JPH0236333A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH052054U (en) * 1991-06-24 1993-01-14 日機装株式会社 Powder sampling sample transfer device
JP2000146986A (en) * 1998-11-18 2000-05-26 Hitachi Ltd Chemical analyzer
US8262279B2 (en) 2007-05-08 2012-09-11 Korea Institute of Geoscience and Mineral Resouces Automated recirculation system for large particle size analysis
JP2018069184A (en) * 2016-10-31 2018-05-10 東ソー株式会社 Agitation vessel, and agitation dispensing device using the vessel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5830639A (en) * 1981-08-18 1983-02-23 Toshiba Corp Enclosure type dispensing and diluting device
JPS6240564B2 (en) * 1977-11-09 1987-08-28 Vsi Corp

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240564B2 (en) * 1977-11-09 1987-08-28 Vsi Corp
JPS5830639A (en) * 1981-08-18 1983-02-23 Toshiba Corp Enclosure type dispensing and diluting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH052054U (en) * 1991-06-24 1993-01-14 日機装株式会社 Powder sampling sample transfer device
JP2000146986A (en) * 1998-11-18 2000-05-26 Hitachi Ltd Chemical analyzer
US8262279B2 (en) 2007-05-08 2012-09-11 Korea Institute of Geoscience and Mineral Resouces Automated recirculation system for large particle size analysis
JP2018069184A (en) * 2016-10-31 2018-05-10 東ソー株式会社 Agitation vessel, and agitation dispensing device using the vessel

Similar Documents

Publication Publication Date Title
US4046515A (en) Diluting and agitating device
TW506853B (en) Whirlpool reduction cap
EP0402611B1 (en) Process for performing a dialysis operation using a magnetic weighted clamp
US5695721A (en) Specimen stirring device and specimen sampling apparatus
JPH0236333A (en) Device for sampling suspended liquid for measuring particle size distribution
JPH04126066A (en) Device for stirring cell, cell fusion apparatus and flow cytometer apparatus containing the same
US5236473A (en) Sipper tube with ultrasonic debubbling
JPH04502725A (en) Container cleaning equipment
JP2520108B2 (en) Fluid handling device and handling method
US5413005A (en) Sample collector for fog-containing wastewater
JP2004101271A (en) Sampling device for liquid sample and suction nozzle thereof, and liquid sample stirring method and sampling method
CN208990708U (en) A kind of magnetic stirring apparatus
JPH0236334A (en) Device for sampling suspended liquid for measuring particle size distribution
JPS63104664A (en) Method for classifying fine particles utilizing ultrasonic wave
KR100406430B1 (en) Density concentrating device for examining the aquatic microalgae
JPS6058235A (en) Stirring method and apparatus thereof
CN206334627U (en) Vortex fixed mount and swirling device
CN218077984U (en) Mix liquid feeding device that flows automatically
CN215586289U (en) Latex dispersion system and latex dispersion device
CN218944864U (en) Device for mixing materials uniformly
JPH02198336A (en) Suspension substance sampling apparatus for measuring particle-size distribution
JP3237799B2 (en) Automatic cleaning equipment for continuous processing tools for various liquids
SU1082807A1 (en) Apparatus for culturing cells on microcarriers
CN217117270U (en) Fish tank for cultivation
CN213160432U (en) Agar mixing preparation device