JPH0236192B2 - - Google Patents

Info

Publication number
JPH0236192B2
JPH0236192B2 JP57234791A JP23479182A JPH0236192B2 JP H0236192 B2 JPH0236192 B2 JP H0236192B2 JP 57234791 A JP57234791 A JP 57234791A JP 23479182 A JP23479182 A JP 23479182A JP H0236192 B2 JPH0236192 B2 JP H0236192B2
Authority
JP
Japan
Prior art keywords
cable
voltage
insulation
value
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57234791A
Other languages
Japanese (ja)
Other versions
JPS59125075A (en
Inventor
Tadaharu Nakayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP57234791A priority Critical patent/JPS59125075A/en
Publication of JPS59125075A publication Critical patent/JPS59125075A/en
Publication of JPH0236192B2 publication Critical patent/JPH0236192B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/58Testing of lines, cables or conductors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Testing Relating To Insulation (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Electric Cable Installation (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、電力ケーブルの活線下でケーブルの
絶縁不良を監視できる活線下ケーブル絶縁監視方
法に関する。 第1図は従来の活線下の高圧電力ケーブル絶縁
監視方法を示す図である。従来、活線下にある高
圧電力ケーブルの絶縁劣化状況を監視する方法と
しては種々のものが既知であるが、その中でも特
に測定のためにケーブルに印加する電源を準備す
ることを要しないものとして知られているのが第
1図に示す方法である。第1図において1は被監
視ケーブルで高圧電力を送電中のものである。2
はその一方の端末でケーブルしやへい端電位が接
地線3により取出されている。ケーブルの他方の
端末2′においてはケーブルしやへいのその側の
端末は接地していない。4は接地線3に磁気的に
結合して3に流れる接地電流Ioを検出するための
電流変成器である。この状況はケーブルの零相電
流を検出するために通常使用されるいわゆる
ZCTと類似であるがZCTではケーブル3相分の
導体電流の総和を検出することを目的とし、従つ
てその磁芯の中央をケーブル3相導体が貫通して
おり、その検出感度は100mA程度が最小であま
り高くはない。しかし、4では10mA或はそれ以
下の接地電流Ioを検出することをねらつている。
5は4の二次側電流を増巾して電流計6に供給す
るための増巾器である。 第2図は第1図に示す回路の等価回路である。
R1、C1、R2、C2、R3、C3はケーブル各相の絶縁
抵抗と静電容量を示す。C1=C2=C3という前提
であるのでI〓C1+IC2+IC3=0となり、検出すべ
き接地電流IoはI〓o=IR1+IR2+I〓R3となる。即ち増
巾した電流計6の値から較正してIoを求め、Ioの
或る限度以上の電流値を観測した時にそのケーブ
ルの絶縁抵抗は不良であるとするのである。 この従来の監視方法は次のような欠点を有して
いる。つまり、3相の絶縁が同程度に劣化した場
合は不良検出が不可能であること。各相の絶縁抵
抗値が如何に低下してもその間に不平衡がなけれ
ば、即ち各相の電流の絶対値|IR1|=|IR2|=
|IR3|であればその値が如何に大きくなつても
IR1+IR2+I〓R3=0となり不良状態の検出は不可能
である。各相の絶縁抵抗値に大差がある場合のみ
Ioを検出することができる。Ioの検出感度を10m
Aとして、3KV電力ケーブルで検出し得る絶縁
抵抗不良値は|IR2|=|IR3|=0|IR1|=|Io
|という理想的な不平衡条件下で
TECHNICAL FIELD The present invention relates to a method for monitoring cable insulation under live power cables, which can monitor cable insulation defects under live power cables. FIG. 1 is a diagram showing a conventional method for monitoring the insulation of high-voltage power cables under live lines. Various methods have been known to monitor the insulation deterioration status of high-voltage power cables under live wires, but among them, there is a method that does not require the preparation of a power source to be applied to the cable for measurement. A known method is shown in FIG. In FIG. 1, reference numeral 1 indicates a monitored cable that is transmitting high-voltage power. 2
At one end of the cable, the potential at the lower end of the cable is taken out by a grounding wire 3. At the other end 2' of the cable, that end of the cable sheath is not grounded. Reference numeral 4 denotes a current transformer that is magnetically coupled to the grounding wire 3 and detects the grounding current Io flowing through the grounding wire 3. This situation is the so-called
Although it is similar to ZCT, the purpose of ZCT is to detect the sum of the conductor current for three phases of the cable, so the three-phase conductor of the cable passes through the center of the magnetic core, and the detection sensitivity is about 100 mA. It's the smallest and not very expensive. However, in No. 4, the aim is to detect a ground current Io of 10 mA or less.
Reference numeral 5 denotes an amplifier for amplifying the secondary current of 4 and supplying the amplified current to the ammeter 6. FIG. 2 is an equivalent circuit of the circuit shown in FIG.
R 1 , C 1 , R 2 , C 2 , R 3 , and C 3 indicate the insulation resistance and capacitance of each phase of the cable. Since it is assumed that C 1 =C 2 =C 3 , I〓C 1 +IC 2 +IC 3 =0, and the ground current Io to be detected is I〓o=I R1 +I R2 +I〓 R3 . That is, Io is determined by calibrating the amplified value of the ammeter 6, and when a current value exceeding a certain limit of Io is observed, the insulation resistance of the cable is determined to be defective. This conventional monitoring method has the following drawbacks. In other words, if the three-phase insulation deteriorates to the same degree, it is impossible to detect a defect. No matter how much the insulation resistance value of each phase decreases, if there is no unbalance between them, that is, the absolute value of the current of each phase |I R1 |= |I R2 |=
If |I R3 |, no matter how large the value becomes
I R1 +I R2 +I〓 R3 = 0, making it impossible to detect a defective state. Only when there is a large difference in the insulation resistance values of each phase
Io can be detected. Io detection sensitivity increased to 10m
As A, the defective insulation resistance value that can be detected in a 3KV power cable is |I R2 |= |I R3 |=0 |I R1 |=|Io
Under the ideal unbalanced condition of |

【式】であるが、 絶縁抵抗値がこの様に低い値にまで落ちないと検
出出来ないのでは実用性がないこと。静電容量不
平衡その他誘導の影響を受けやすく性能誤認の可
能性が大きいこと。検出感度を1mAまであげら
れたとしてこれに相応する充電電流を持つケーブ
ル静電容量は50Hz、3.3KV/√3で0.00167μFで
あるが、これは150mm2ケーブルで約3m長に相当
する。この程度の静電容量不平衡は通常大いに有
り得る。又、変成器コイルや増巾器は外部雑音を
拾いやすい。 本発明の目的は、測定用電源を別に必要とせず
に電力ケーブルの活線下で手軽にかつ良好な検出
感度をもつて電力ケーブルの絶縁不良を監視でき
る活線下ケーブル絶縁監視方法を提供することで
ある。 以下に図面を参照して本発明について詳細に説
明する。 第3図は本発明の活線下ケーブル絶縁監視方法
を説明する図である。1は被監視ケーブルで高圧
電力を送電中のものである。2はその一方の端末
でケーブルしやへい端電位が3に示す接地線によ
り取出される。なお、ケーブルの他方の端末2′
においてはケーブルしやへいのその側の端末は接
地していない。7は接地線3の大地への結線の途
中に挿入された開閉器、8,9は開閉器7に並列
に接線された静電容量及び保安用アレスタであ
る。さらに、直流電圧計11がその倍率器抵抗1
0とともに静電容量8の端子電圧を測定するよう
に接続される。 第4図は第3図の等価回路図である。R1、C1
R2、C2、R3、C3はケーブル各相の絶縁抵抗と静
電容量を示す。K1、K2、K3は各相絶縁体中に存
在が仮定される整流素子を示したもので、良好な
絶縁体中にはこの様なものは無いものであるが、
ケーブル絶縁体の劣化が進むと実効的に絶縁体内
に整流素子を有するのに等しい現象を生じ、導体
に印課される交流電圧の極性がプラス(しやへい
がマイナス)になつた場合と、マイナス(しやへ
いがプラス)になつた場合とでは絶縁体中を流れ
る電流に差を生じ、その結果としてIR1、IR2、IR3
で示す各相直流分電流がしやへい側をプラス電位
としてアースに向つて流れる方向で外部へ表われ
て来る。3相分を合計した直流分電流Io=IR1
IR2+IR3は接地線の途中に挿入した静電容量Coを
ほゞCo×Roで定まるところの時定数で充電し、
その端子電圧の時間的変化はRMを倍率器抵抗と
する直流電圧計により測定される。Coの充電が
終るとRM中を流れる電流がIoに等しくなる理で
あるが、実際的にはCoも有限の内部並列抵抗回
路を持つし、ケーブルの防食層絶縁抵抗も相当に
低い値として存在するのでそれらの並列抵抗を
Roとして示している。Ro≪RMとするCoの端子
電圧を抑制するのは現実にはRoである。何故な
らばIR1、IR2、IR3はRoに比して高い内部抵抗
(R1、R2、R3)を持つ定電流発電機の出力電流と
みられるからである。ケーブルの防食層絶縁抵抗
値の大小にあまり左右されずにCoの端子電圧を
読もうとすれば最初から或る程度低いRoをCoに
並列に準備するか、RM自体の値を最初から低い
ものを採用してもよい。 さて、第3図及び第4図を参照して具体的にケ
ーブルの絶縁を活線下で監視する方法について次
に述べる。まず、被監視ケーブル1の接地線3の
途中に開閉器7、静電容量8、保安用アレスタ
9、倍率器抵抗10、直流電圧計11を接続し第
3図の回路を完成する。この接続の具体的な方法
としては、常時これらのものを固定化して配線し
ておいても良ければ、測定の都度接続するように
しても良く、その場合開閉器7は固定配線として
静電容量8以下を持回り式測定セツトとする等、
固定部分と持回り部分の分割の方法は如何様にも
考えられる。又、常時接続の場合は多数のケーブ
ルを切替えて測定できるようにしてもよいし、こ
れらの切替え動作を自動的に行わせるようにして
もよい。回路が完成していることがたしかめられ
たら、開閉器7を開く。(或いは、測定回路を接
地線途中に挿入する。)今まで直接大地に流れて
いた直流分電流Ioは静電容量8を充電するべく流
れ込む。その端子電圧は回路定数で決まる時定数
で徐々に上昇し、その値は直流電圧計11によつ
て測定される。この場合、端子電圧の極性はしや
へいに接がれた側がプラス、大地に接がれた側が
マイナスである。 ケーブル防食層にピンホールがあり、ケーブル
しやへいと大地間で発生することがあり得る局部
電池の発生電圧を明らかに越える電圧が上記操作
により観測された場合には、このケーブルが絶縁
不良であるとして警報が発せられる。そのために
は、観測者が電圧計指示を読みとつて適宜の処置
に入つても良ければ、あらかじめ設定した電圧値
を越えれば自動的に警報を発せしめても良い。こ
れは直流電圧計11をメータリレー化すれば容易
に行える。警報を発するべき限界電圧値はケーブ
ルしやへい側をプラス電位、大地側をマイナス電
位として例えば1.0Vである。ケーブルしやへい
を構成する金属は電位系列的に卑なるものよりな
らべてアルミ、鉛、銅、である。これに対抗して
局部電池を防食層欠陥部で発生する可能性のある
地中金属体(接地電極)は卑なるものよりみてマ
グネシウム、アルミ、亜鉛、鉄、銅、等である。
これらの組合せでしやへい側をマイナス電位、大
地側をプラス電位とするものは省き、流電防食に
用いる特殊な犠牲電極との組合せは除くと、一般
に遭遇する可能性の最も高い組合せは銅対鉄であ
り、理論的な最大電位差は0.96Vである。実際に
はこの組合せでこれだけの電圧を発生することは
無いので警報を発する限界電圧値としては判り易
い1.0Vを採用して充分であり、これによつて局
部電池電圧を観測して絶縁体不良と誤認する可能
性は先ず払拭し得る。 第5図は本発明の方法により実際に得られた観
測値を示す図である。 ケーブル:3KV3×150mm2CVケーブル約50m長静
電容量値40μF 倍率器抵抗 2MΩ 観測電圧 2.8V、充電開始後3分半、充電曲線
を第5図に示す 撤去後メガによる絶縁抵抗測定値 赤相 350MΩ 白相 25MΩ 防食層 100MΩ以上 黒相 40MΩ 同上絶縁体目視で各相共水トリー無数に発見上
述観測例に示す如く、この程度に絶縁劣化したケ
ーブルは本発明により活線下で別にケーブルに印
加すべき測定用電源の準備不要で防食層絶縁不良
の場合の局部電池電圧の測定による誤認をさけ得
る高い観測電圧を得ることで絶縁不良を検出し得
るので得られる工業的価値は極めて高い。 本発明の監視方法は以下に示す効果を奏する。 (1) 3相が同程度に劣化しても不良として検出で
きること。測定に関与するのは絶縁体内で整流
されて生じた直流分電流のみであるから、交流
接地電流を測定する場合のように位相差を有す
る各相電流のベクトル和として考える必要はな
く、単に算術的に足し合わせた電流によつて静
電容量が充電されるその端子電圧を測定するの
みで劣化が検出できる。従つて、各相の劣化状
態が等しいとか等しくないといつたことは全く
問題にならない。 (2) 検出感度が良いこと。実測例にみられる如
く、従来の方法で接地電流の検出感度を実際に
は有り得ない0.1mAまで向上させたのに等し
いような高い領域の絶縁抵抗不良が検出し得
る。 (3) 静電容量不平衡その他誘導の影響等を受け難
く、誤認の可能性が少ないこと。静電容量が不
平衡で交流充電電流の総和が零でなくても検出
しようとしているのは直流電圧のそれも1V以
上という高いレベルであるので誤認に結び付く
ことがない。しやへいと大地間に接続した静電
容量の低インピーダンスが不平衡に基く交流接
地電流や誘導雑音電流によるしやへい電位の発
生を低減してくれているからである。防食層ピ
ンホール部の局部電池発生電圧より高い電圧を
警報発信電圧としているのでこの面からの誤認
の可能性もない。 (4) 手軽に実施できること。部品は簡単、少数、
安価、軽量であるから実施しやすい。
[Formula] is impractical if it cannot be detected unless the insulation resistance value falls to such a low value. It is susceptible to the effects of capacitance unbalance and other induction, and there is a high possibility of misperception of performance. If the detection sensitivity can be increased to 1mA, the capacitance of a cable with a corresponding charging current is 0.00167μF at 50Hz, 3.3KV/√3, which corresponds to a length of approximately 3m for a 150mm 2 cable. Capacitance imbalances of this magnitude are usually quite possible. Also, transformer coils and amplifiers tend to pick up external noise. An object of the present invention is to provide a method for monitoring cable insulation under live power cables that can easily monitor insulation defects in power cables with good detection sensitivity without requiring a separate power supply for measurement. That's true. The present invention will be described in detail below with reference to the drawings. FIG. 3 is a diagram illustrating a method for monitoring cable insulation under a live wire according to the present invention. 1 is a monitored cable that is transmitting high-voltage power. At one end of the cable 2, the potential at the other end of the cable is taken out by the ground wire shown at 3. In addition, the other terminal 2' of the cable
In this case, the terminal on that side of the cable cable is not grounded. 7 is a switch inserted in the middle of the connection of the grounding wire 3 to the ground, and 8 and 9 are capacitance and safety arresters connected in parallel to the switch 7. Furthermore, the DC voltmeter 11 is connected to the multiplier resistor 1
0 and is connected to measure the terminal voltage of the capacitance 8. FIG. 4 is an equivalent circuit diagram of FIG. 3. R 1 , C 1 ,
R 2 , C 2 , R 3 , and C 3 indicate the insulation resistance and capacitance of each phase of the cable. K 1 , K 2 , and K 3 indicate rectifying elements that are assumed to exist in each phase insulator, and although such elements are not found in good insulators,
As the cable insulator deteriorates, a phenomenon occurs that is effectively equivalent to having a rectifying element inside the insulator, and the polarity of the AC voltage applied to the conductor becomes positive (or negative). There is a difference in the current flowing through the insulator when the current becomes negative (positive), and as a result, I R1 , I R2 , I R3
The DC component currents of each phase shown by are shown to the outside in the direction of flowing toward the ground with the weaker side at a positive potential. DC current Io that is the sum of the three phases = I R1 +
I R2 + I R3 charges the capacitance Co inserted in the middle of the grounding wire with a time constant determined by approximately Co x Ro.
The temporal change in the terminal voltage is measured by a DC voltmeter with R M as the multiplier resistance. When charging of Co finishes, the current flowing through R M becomes equal to Io, but in reality Co also has a finite internal parallel resistance circuit, and the insulation resistance of the cable's anti-corrosion layer is assumed to be a fairly low value. exist, so their parallel resistance is
Shown as Ro. In reality, it is Ro that suppresses the terminal voltage of Co, where Ro≪RM . This is because I R1 , I R2 , and I R3 are considered to be the output currents of a constant current generator having internal resistance (R 1 , R 2 , R 3 ) higher than Ro. If you want to read the terminal voltage of Co without being influenced by the magnitude of the cable's anti-corrosion layer insulation resistance value, you need to prepare a somewhat low Ro in parallel with Co from the beginning, or set the value of R M itself to be low from the beginning. You may adopt something. Now, with reference to FIGS. 3 and 4, a method for specifically monitoring cable insulation under live wire conditions will be described below. First, a switch 7, a capacitor 8, a safety arrester 9, a multiplier resistor 10, and a DC voltmeter 11 are connected to the middle of the grounding wire 3 of the monitored cable 1 to complete the circuit shown in FIG. As for the specific method of this connection, it is possible to always have these things fixed and wired, or it is possible to connect them each time a measurement is made. 8 or less as a rotating measurement set, etc.
Any method of dividing the fixed part and the rotating part can be considered. Further, in the case of constant connection, measurement may be performed by switching between a large number of cables, or these switching operations may be performed automatically. When it is confirmed that the circuit is completed, switch 7 is opened. (Alternatively, a measuring circuit is inserted in the middle of the grounding wire.) The DC component current Io, which has been flowing directly to the ground, flows to charge the capacitance 8. The terminal voltage gradually increases with a time constant determined by a circuit constant, and its value is measured by a DC voltmeter 11. In this case, the polarity of the terminal voltage is positive on the side connected to the ground, and negative on the side connected to the earth. If there are pinholes in the cable corrosion protection layer and a voltage that clearly exceeds the voltage generated by a local battery that can occur between the cable layer and the ground is observed by the above operation, this cable has poor insulation. An alert will be issued if there is. For this purpose, an observer may read the voltmeter indication and take appropriate measures, or an alarm may be automatically issued if a preset voltage value is exceeded. This can be easily done by converting the DC voltmeter 11 into a meter relay. The limit voltage value at which an alarm should be issued is, for example, 1.0V, with the cable end at a positive potential and the ground side at a negative potential. The metals that make up cable cables and shields are aluminum, lead, and copper, in order of their base potential. On the other hand, underground metal bodies (ground electrodes) that can cause local batteries to occur in areas with defects in the corrosion protection layer include magnesium, aluminum, zinc, iron, copper, etc., in terms of base metals.
Among these combinations, excluding those in which the insulation side is at a negative potential and the ground side is at a positive potential, and excluding combinations with special sacrificial electrodes used for galvanic corrosion protection, the most likely combination to be encountered is copper. The theoretical maximum potential difference is 0.96V with respect to iron. In reality, such a voltage is not generated with this combination, so it is sufficient to adopt the easy-to-understand 1.0V as the limit voltage value for issuing an alarm, and by this, it is possible to observe the local battery voltage and determine whether the insulation is defective. First of all, the possibility of misidentification can be eliminated. FIG. 5 is a diagram showing observed values actually obtained by the method of the present invention. Cable: 3KV3×150mm 2 CV cable approximately 50m long Capacitance value 40μF Multiplier resistance 2MΩ Observation voltage 2.8V, 3 and a half minutes after charging started, the charging curve is shown in Figure 5 Insulation resistance measured using a megger after removal Red phase 350MΩ White phase 25MΩ Corrosion protection layer 100MΩ or more Black phase 40MΩ Same as above Insulator Visually inspected and found countless water trees in each phase As shown in the observation example above, cables with insulation deterioration to this extent can be separately applied to the cable under live wires according to the present invention. The industrial value obtained is extremely high because it is possible to detect insulation defects by obtaining a high observation voltage that avoids misunderstandings caused by measuring local battery voltage in the case of poor insulation of the corrosion protection layer without preparing a power source for measurement. The monitoring method of the present invention has the following effects. (1) Even if three phases deteriorate to the same degree, it can be detected as defective. What is involved in the measurement is only the direct current generated by rectification within the insulator, so there is no need to consider it as a vector sum of phase currents with phase differences, as is the case when measuring AC ground current. Deterioration can be detected simply by measuring the terminal voltage at which the capacitance is charged by the added current. Therefore, it does not matter at all whether the deterioration states of each phase are equal or unequal. (2) Good detection sensitivity. As seen in the actual measurement example, insulation resistance defects in a high region can be detected, which is equivalent to increasing the ground current detection sensitivity to 0.1 mA, which is actually impossible, using the conventional method. (3) It is less susceptible to the effects of capacitance unbalance and other induction, and there is less possibility of misidentification. Even if the capacitance is unbalanced and the total AC charging current is not zero, the DC voltage to be detected is also at a high level of 1V or more, so there will be no misidentification. This is because the low impedance of the capacitance connected between the capacitance and the ground reduces the generation of capacitance potential due to unbalanced alternating ground currents and induced noise currents. Since the alarm transmission voltage is set to a voltage higher than the local battery generated voltage in the pinhole portion of the corrosion protection layer, there is no possibility of misidentification from this point of view. (4) It must be easy to implement. The parts are simple and few.
It is easy to implement because it is cheap and lightweight.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の活線下の高圧電力ケーブル絶縁
監視方法を示す図、第2図は第1図に示す回路の
等価回路図、第3図は本発明の活線下ケーブル絶
縁監視方法を説明する図、第4図は第3図に示す
回路の等価回路図である。第5図は本発明の方法
によつて得られた観測値を示す図である。 1:被監視ケーブル、2,2′:ケーブル端末、
3:接地線、4:電流変成器、5:増幅器、6:
電流計、7:開閉器、8:静電容量、9:保安用
アレスタ、10:倍率器抵抗、11:直流電圧
計。
Fig. 1 is a diagram showing a conventional method for monitoring the insulation of high-voltage power cables under live lines, Fig. 2 is an equivalent circuit diagram of the circuit shown in Fig. 1, and Fig. 3 is a diagram showing the method for monitoring cable insulation under live lines according to the present invention. The explanatory diagram, FIG. 4, is an equivalent circuit diagram of the circuit shown in FIG. 3. FIG. 5 is a diagram showing observed values obtained by the method of the present invention. 1: Monitored cable, 2, 2': Cable terminal,
3: Ground wire, 4: Current transformer, 5: Amplifier, 6:
Ammeter, 7: Switch, 8: Capacitance, 9: Security arrester, 10: Multiplier resistance, 11: DC voltmeter.

Claims (1)

【特許請求の範囲】 1 活線下にある高圧電力ケーブルのしやへい接
地線の途中に静電容量を挿入し、該静電容量が絶
縁体内で発生する直流分電流により充電される電
圧を測定し、その極性がしやへい側をプラスとす
るものでありかつその値が規定値以上に達したこ
とを検出した場合にそのケーブルは絶縁不良であ
るとして警報を発生することを特徴とする活線下
ケーブル絶縁監視方法。 2 特許請求の範囲第1項において、上記警報を
発生すべき規定値電圧値が1Vであることを特徴
とする活線下ケーブル絶縁監視方法。
[Claims] 1. A capacitor is inserted in the middle of a thin ground wire of a high-voltage power cable under a live wire, and the voltage charged by the capacitor is charged by a direct current generated in an insulator. The cable is characterized in that when it is detected that the polarity is positive with the negative side being positive and the value has reached a specified value or more, an alarm is generated indicating that the cable has poor insulation. Cable insulation monitoring method under live wires. 2. A cable insulation monitoring method under a live wire according to claim 1, characterized in that the specified voltage value at which the alarm should be generated is 1V.
JP57234791A 1982-12-29 1982-12-29 Insulation monitoring method for cable under hot-line Granted JPS59125075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57234791A JPS59125075A (en) 1982-12-29 1982-12-29 Insulation monitoring method for cable under hot-line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57234791A JPS59125075A (en) 1982-12-29 1982-12-29 Insulation monitoring method for cable under hot-line

Publications (2)

Publication Number Publication Date
JPS59125075A JPS59125075A (en) 1984-07-19
JPH0236192B2 true JPH0236192B2 (en) 1990-08-15

Family

ID=16976438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57234791A Granted JPS59125075A (en) 1982-12-29 1982-12-29 Insulation monitoring method for cable under hot-line

Country Status (1)

Country Link
JP (1) JPS59125075A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236572A (en) * 1985-08-09 1987-02-17 Tokyo Electric Power Co Inc:The Decision of deterioration in insulation of power cable under hot line
US4897606A (en) * 1988-10-19 1990-01-30 Board Of Regents, University Of Texas System Method and apparatus for undesired ground path detection in a single-point grounded electrical system
DE19725611C2 (en) * 1997-06-17 2001-03-08 Siemens Ag Monitoring method and monitoring device for a cable

Also Published As

Publication number Publication date
JPS59125075A (en) 1984-07-19

Similar Documents

Publication Publication Date Title
KR920000566B1 (en) Method of and apparatus for assessing insucation conditions
AU6943296A (en) A device for sensing of electric discharges in a test object
Stone et al. In-service evaluation of motor and generator stator windings using partial discharge tests
CN110596538B (en) Method and system for calculating electrical parameters of power cable
JPS61243375A (en) Deterioration diagnosis for insulator of power cable
KR100918515B1 (en) Method for measuring earth resistance of a single ground in active state
US6124714A (en) Lightning and surge arrester test apparatus and method
JPH0236192B2 (en)
JPH03206976A (en) Diagnosis of insulation
JPH03128471A (en) Monitoring device for insulation deterioration of electric equipment
CN205958708U (en) Alternate water -cooled generator direct current test instrument that has water path connection
CN109374954B (en) Novel transmission line parameter measurement test line
JP2876322B2 (en) Diagnosis method for insulation deterioration of CV cable
CN110632375A (en) Differential residual current detection method
JPS59202073A (en) Diagnosis of insulation deterioration of power cable
JP7456868B2 (en) Connection body deterioration diagnosis device and connection body deterioration diagnosis method
JP2006038604A (en) Leakage current measuring instrument
JPS5856116B2 (en) Method for locating defective points of corrosion protection layer insulation under live wires
JPH0627766B2 (en) CV cable insulation deterioration diagnosis device
CN110456158A (en) A kind of method for preventing induced electricity from hurting sb.'s feelings when measurement circuit power frequency parameter
RU1803888C (en) Ground-fault detection method for buried high-voltage cables
JP2750888B2 (en) Power cable insulation resistance measurement method
Tsujimoto et al. Approach for wide use of diagnostic method for XLPE cables using harmonics in AC loss current
Qi et al. Development and Application of a Flexible Indication Device for Grounding Wire Status
JPS60169774A (en) Locating method of insulating failure point of cable under live state