JPH023599B2 - - Google Patents

Info

Publication number
JPH023599B2
JPH023599B2 JP10500280A JP10500280A JPH023599B2 JP H023599 B2 JPH023599 B2 JP H023599B2 JP 10500280 A JP10500280 A JP 10500280A JP 10500280 A JP10500280 A JP 10500280A JP H023599 B2 JPH023599 B2 JP H023599B2
Authority
JP
Japan
Prior art keywords
lead wires
piezoelectric material
electrodes
electrode
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10500280A
Other languages
Japanese (ja)
Other versions
JPS5731298A (en
Inventor
Etsuji Yamamoto
Hiroshi Kanda
Toshiro Kondo
Iwao Seo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Petrochemical Co Ltd
Original Assignee
Hitachi Ltd
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Mitsubishi Petrochemical Co Ltd filed Critical Hitachi Ltd
Priority to JP10500280A priority Critical patent/JPS5731298A/en
Publication of JPS5731298A publication Critical patent/JPS5731298A/en
Publication of JPH023599B2 publication Critical patent/JPH023599B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 本発明は超音波探触子、特に高分子圧電体を用
いた超音波探触子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrasonic probe, particularly an ultrasonic probe using a piezoelectric polymer.

一般に超音波探触子は医療診断装置あるいは構
造物の非破壊検査装置などに用いられるものであ
り、その構成は圧電体と、その圧電体の両面に形
成された金属電極と、上記金属電極に接続された
リード線とからなり、上記金属電極に上記リード
線を介して電気パルスを印加し、上記圧電体から
音波を放射せしめるものである。
Ultrasonic probes are generally used in medical diagnostic equipment or non-destructive inspection equipment for structures, and are composed of a piezoelectric body, metal electrodes formed on both sides of the piezoelectric body, and a metal electrode formed on both sides of the piezoelectric body. An electric pulse is applied to the metal electrode via the lead wire, and a sound wave is emitted from the piezoelectric body.

最近、ある種の合成高分子を延伸し、これに直
流高電場を加えて高温である時間保つた後、高電
場を加えたまま室温に冷却し、その後直流高電場
を除くと(この操作をボーリングという)、高分
子は安定な圧電体となることが明らかにされてい
る。また、強誘電体の粉末、例えばチタン酸ジル
コン酸鉛の粉末を高分子に混入した膜をボーリン
グすることによつても圧電体が得られることが知
られている。本発明では、このように高分子に無
機粉末を混入した圧電体をも高分子圧電体と呼ぶ
ことにする。
Recently, a certain type of synthetic polymer was stretched, a high DC electric field was applied to it, it was kept at a high temperature for a certain period of time, then it was cooled to room temperature while the high electric field was applied, and then the DC high electric field was removed (this operation was Boring), polymers have been shown to be stable piezoelectric materials. It is also known that a piezoelectric material can be obtained by boring a film in which ferroelectric powder, for example powder of lead zirconate titanate, is mixed into a polymer. In the present invention, such a piezoelectric material in which inorganic powder is mixed into a polymer is also referred to as a polymer piezoelectric material.

この高分子圧電体は、(1)音響インピーダンスが
4〜10×106Kg/m2/sと小さいため生体とのマ
ツチングをとりやすい、(2)大面積のものを容易に
作製できる、(3)可撓性に優れ、凹面状など任意形
状に容易に成形できる、などの利点を有するの
で、従来から用いられている水晶などの圧電性結
晶やチタン酸ジルコン酸鉛(PZT)などのセラ
ミツクス圧電体のかわりに用い得るとともに、こ
れらでは不可能であつた分野への応用も可能にな
つてきた。
This polymeric piezoelectric material has the following advantages: (1) It has a small acoustic impedance of 4 to 10 × 10 6 Kg/m 2 /s, so it is easy to match with living organisms, and (2) it can be easily manufactured with a large area. 3) They have the advantage of being highly flexible and easily molded into any shape, such as a concave shape, so piezoelectric crystals such as quartz and ceramics such as lead zirconate titanate (PZT) have been used. In addition to being able to be used in place of piezoelectric materials, it has also become possible to apply them to fields that were not possible with these materials.

しかしながら、かかる高分子圧電体を用いた探
触子においては、圧電体上に形成された電極とリ
ード線との接続に問題があつた。すなわち、高分
子圧電体は、それ自体が120℃程度以上になると
変形してしまうので、セラミツクス圧電体などに
おいて従来から用いられているハンダ付けを適用
することはできない。また、ハンダ付けのかわり
に導電性接着剤を用いた場合、リニア走査あるい
はセクタ走査形超音波診断装置用の探触子のよう
に、複数個の振動子エレメントを並置した探触子
に於ては、隣接するリード線が電極との接合部で
導電性接着剤により短絡してしまう危険性があつ
た。
However, in probes using such polymeric piezoelectric materials, there has been a problem in connection between electrodes formed on the piezoelectric material and lead wires. That is, since the polymer piezoelectric material itself deforms when the temperature exceeds about 120° C., the soldering conventionally used for ceramic piezoelectric materials cannot be applied. In addition, when conductive adhesive is used instead of soldering, it is difficult to use a probe with multiple transducer elements arranged side by side, such as a probe for a linear scanning or sector scanning ultrasonic diagnostic device. There was a risk that adjacent lead wires would be short-circuited due to the conductive adhesive at the joints with the electrodes.

さらに、電極に直接導電性ゴムを圧着しリード
線を引き出すことも考えられるが、この場合には
導電性ゴムが電極よりも前面にはり出すため、探
触子の振動面と被測定物の表面との接触が悪くな
るという欠点がある。
Furthermore, it is also possible to press conductive rubber directly to the electrode and pull out the lead wire, but in this case, the conductive rubber protrudes in front of the electrode, so the vibration surface of the probe and the surface of the object to be measured are The disadvantage is that the contact with the

本発明はかかる点に鑑みてなされたもので電極
とリード線との接続に伴なう欠点をことごとく除
去し得る探触子を提供することを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a probe that can completely eliminate the drawbacks associated with the connection between electrodes and lead wires.

かかる目的を達成するために本発明は、高分子
圧電体の可撓性を利用したもので、高分子圧電体
と、上記圧電体の相対向する二つの面に設けられ
た電極と、上記電極にそれぞれ接続されたリード
線とからなる超音波探触子において、上記リード
線を上記圧電体上に形成したことを特徴とする。
高分子圧電体としては、ポリフツ化ビニリデン、
ポリフツ化ビニル、フツ化ビニリデン−3フツ化
エチレン共重合体、ポリアクリロニトリル、ポリ
塩化ビニル、ポリ塩化ビニリデン、ポリシアン化
ビニリデン、シアン化ビニリデン共重合体、ナイ
ロン11などの一軸延伸物あるいは二軸延伸物など
を熱エレクトレツト化したものや、アセタール樹
脂、ポリ塩化ビニル、ポリフツ化ビニリデン、フ
ツ化ビニリデン共重合体、ニトリルブタジエンゴ
ム、エポキシ樹脂、ナイロンなどの高分子にチタ
ン酸ジルコン酸鉛、チタン酸鉛などのセラミツク
ス粉末を混入したものを熱エレクトレツト化した
ものなどがある。
In order to achieve this object, the present invention utilizes the flexibility of a polymeric piezoelectric material, and includes a polymeric piezoelectric material, electrodes provided on two opposing surfaces of the piezoelectric material, and the electrodes. and lead wires respectively connected to the ultrasonic probe, characterized in that the lead wires are formed on the piezoelectric body.
Polyvinylidene fluoride,
Uniaxially oriented or biaxially oriented products such as polyvinyl fluoride, vinylidene fluoride-ethylene trifluoride copolymer, polyacrylonitrile, polyvinyl chloride, polyvinylidene chloride, polyvinylidene cyanide, vinylidene cyanide copolymer, nylon 11, etc. etc., polymers such as acetal resin, polyvinyl chloride, polyvinylidene fluoride, vinylidene fluoride copolymer, nitrile butadiene rubber, epoxy resin, nylon, lead zirconate titanate, lead titanate, etc. There are also products that are made into thermoelectrets by mixing ceramic powder such as.

以下本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例の構成を示す概略図
であり、短冊状の振動子素子を複数個アレイ状に
配置したアレイ形の探触子の場合を示しているが
振動子素子は短冊状に限らず1個の場合でも本発
明を実現できるのは勿論である。第2図a及びb
はそれぞれ第1図の高分子圧電体を矢印Aの方向
からみた図、矢印Aの反対方向からみた図であ
る。第1図において、51は高分子圧電体からな
る長方形状の薄膜である。この高分子圧電体51
の表面には第2図aに示すように、その中間部分
にほぼ同一形状の短冊状電極53が複数個所定の
間隙をなしてほぼ平行に設けられ、右側端部分に
各電極53とそれぞれ電気的に接続された複数の
リード線57がほぼ平行に設けられている。電極
53及びリード線57はAl,AuあるいはCr等か
らなり、蒸着あるいはメツキ処理等により同時に
形成される。一方、圧電体51の裏面には第2図
bに示すようにその中間部分に短冊状電極53と
同じ形状の電極55が電極53と対向して複数個
設けられ、左側端部分には各電極55とそれぞれ
電気的に接続された複数のリード線59がほぼ平
行に設けられている。各リード線59は左側端に
設けられた共通線59′により接続されている。
電極55,リード線59及び共通線59′は表面
に形成された電極53及びリード線57と同様に
蒸着あるいはメツキ処理等により同時に形成され
る。
FIG. 1 is a schematic diagram showing the configuration of an embodiment of the present invention, and shows the case of an array type probe in which a plurality of rectangular transducer elements are arranged in an array. Of course, the present invention can be realized not only in the form of a strip but also in the case of one piece. Figure 2 a and b
1 are a view of the polymer piezoelectric material shown in FIG. 1 as seen from the direction of arrow A, and a view of the polymer piezoelectric material as seen from the direction opposite to arrow A, respectively. In FIG. 1, 51 is a rectangular thin film made of a piezoelectric polymer. This polymer piezoelectric material 51
As shown in FIG. 2a, a plurality of rectangular electrodes 53 having substantially the same shape are provided in the middle part thereof in parallel with each other with a predetermined gap, and each electrode 53 and an electric conductor are provided in the right end part thereof, as shown in FIG. 2a. A plurality of lead wires 57 are provided substantially parallel to each other. The electrode 53 and lead wire 57 are made of Al, Au, Cr, etc., and are formed simultaneously by vapor deposition, plating, or the like. On the other hand, on the back surface of the piezoelectric body 51, as shown in FIG. A plurality of lead wires 59 each electrically connected to the lead wires 55 are provided substantially in parallel. Each lead wire 59 is connected by a common wire 59' provided at the left end.
The electrode 55, lead wire 59, and common wire 59' are formed at the same time by vapor deposition or plating process, like the electrode 53 and lead wire 57 formed on the surface.

かくして、圧電体51の中間部分にはその両面
に設けられた複数組の対向電極53,55によつ
てアレイ状に配置された複数個の短冊状振動子素
子が構成され、圧電体の両端部分にはそれぞれそ
の片方の面上にリード線が構成される。このよう
に、本発明では高分子圧電体51が振動子素子の
振動子板とリード線の基板を兼ねている。なお、
高分子圧電体は弾性率が小さく、伝播損失が大き
いので、本実施例のように圧電体を切断しなくて
も短冊状電極の設けられた部分だけを振動させる
ことができるのである。高分子圧電体51は全面
ボーリングしてもよいが、短冊状電極の設けられ
た部分だけをボーリングすることもできる。
Thus, a plurality of strip-shaped vibrator elements arranged in an array are formed in the middle part of the piezoelectric body 51 by a plurality of pairs of opposing electrodes 53 and 55 provided on both sides thereof, and both end parts of the piezoelectric body A lead wire is formed on one side of each. In this way, in the present invention, the polymer piezoelectric material 51 serves both as the vibrator plate of the vibrator element and the substrate of the lead wire. In addition,
Since the polymer piezoelectric material has a small elastic modulus and a large propagation loss, it is possible to vibrate only the portion where the strip-shaped electrode is provided without cutting the piezoelectric material as in this embodiment. The entire surface of the polymer piezoelectric material 51 may be bored, but it is also possible to bore only the portion where the strip-shaped electrode is provided.

電極及びリード線が設けられた高分子圧電体5
1を第1図に示すように中間部分でバツキング部
材30の主面に固定支持し、この支持部分を振動
部とする。圧電体51のバツキング部材30から
はみ出した部分すなわちリード線部はバツキング
部材の側面に折り曲げられる。高分子圧電体は可
撓性があるので容易に折り曲げることができ、振
動部の表面(振動面)だけを被測定物の表面に接
触あるいは密着させることができる。しかも、振
動面上には従来の如きハンダ付け、導電性接着剤
あるいは導電性ゴムなどによるリード線と電極の
接合部がなく平面であるので、被測定物との密着
性に優れている。
Polymer piezoelectric material 5 provided with electrodes and lead wires
1 is fixedly supported on the main surface of the bucking member 30 at its intermediate portion, as shown in FIG. 1, and this supported portion is used as a vibrating portion. The portion of the piezoelectric body 51 protruding from the backing member 30, that is, the lead wire portion, is bent to the side surface of the backing member. Since the polymer piezoelectric material is flexible, it can be easily bent, and only the surface of the vibrating section (vibration surface) can be brought into contact or in close contact with the surface of the object to be measured. Furthermore, since the vibrating surface is flat and does not have the conventional soldering, conductive adhesive, or conductive rubber joints between lead wires and electrodes, it has excellent adhesion to the object to be measured.

表面のリード線57は電子回路(図示せず)に
ケーブル4を介して接続される。リード線57と
ケーブル40との接続部は振動面よりバツキング
部材側に位置するので、従来から用いられている
導電性接着剤、導電性ゴムあるいは圧着ピンなど
を用いて接続できる。裏面のリード線59は共通
線59′に導電性接着剤などで接続されたリード
線(図示せず)等により接地される。
Lead wires 57 on the surface are connected to an electronic circuit (not shown) via cable 4. Since the connecting portion between the lead wire 57 and the cable 40 is located closer to the backing member than the vibration surface, the connection can be made using a conventionally used conductive adhesive, conductive rubber, crimp pin, or the like. The lead wire 59 on the back side is grounded by a lead wire (not shown) or the like connected to the common wire 59' using a conductive adhesive or the like.

なお、本実施例では、圧電体51を接地される
方の電極55を下側にして、バツキング部材30
上に固定支持したが、圧電体51を裏返して、す
なわち電極55を上側にしてもよいことは勿論で
ある。また、本実施例において、表面のリード線
57と裏面のリード線59をそれぞれ互いに振動
部の反対側に設けたのは次の理由による。即ち、
高分子圧電体の比誘電率は6〜100と小さいので、
圧電体の両面に対向させてリード線を設けた場
合、これら対向リード線によるキヤパシタンスを
無視できないことがあるのである。例えば、高分
子圧電体として比誘電率が8、厚みが0.1mmのポ
リフツ化ビニリデンを用いて、その両面に長さ12
mm、幅0.5mmの短冊状電極と長さ50mm,幅0.1mmの
リード線を対向させて設けた場合を考えると、短
冊状電極によつて構成される振動子素子のキヤパ
シタンスは4.25pFとなりリード線間のキヤパシタ
ンスは3.54pFとなてしまう。リード線間のキヤパ
シタンスは素子のキヤパシタンスに比べ無視でき
ない大きさである。このような外部キヤパシタン
スは感度の低下及び波形の劣化をまねくので、で
きる限り小さい方が望ましいのである。そこで、
本実施例では表面のリード線7と裏面のリード線
59とがキヤパシタンスを形成しないように、こ
れらのリード線をそれぞれ振動部の反対側に設け
たのである。つまり、リード線57と59が高分
子圧電体をはさんで対向しない位置に設けたので
ある。
In this embodiment, the piezoelectric body 51 is connected to the backing member 30 with the electrode 55 that is grounded facing downward.
Although the piezoelectric body 51 is fixedly supported at the top, it goes without saying that the piezoelectric body 51 may be turned over, that is, the electrode 55 may be placed on the top side. Further, in this embodiment, the reason why the lead wire 57 on the front surface and the lead wire 59 on the back surface are provided on opposite sides of the vibrating section is as follows. That is,
Since the dielectric constant of polymer piezoelectric material is small at 6 to 100,
When lead wires are provided facing both sides of a piezoelectric body, the capacitance caused by these opposing lead wires may not be ignored. For example, if polyvinylidene fluoride with a dielectric constant of 8 and a thickness of 0.1 mm is used as a polymeric piezoelectric material, a length of 12
If we consider the case where a strip-shaped electrode with a length of 0.5 mm and a width of 0.5 mm and a lead wire with a length of 50 mm and a width of 0.1 mm are placed facing each other, the capacitance of the transducer element constituted by the strip-shaped electrode is 4.25 pF, and the lead wire The capacitance between the lines is 3.54pF. The capacitance between the lead wires is not negligible compared to the capacitance of the element. Since such external capacitance causes a decrease in sensitivity and deterioration of the waveform, it is desirable that it be as small as possible. Therefore,
In this embodiment, the lead wires 7 on the front surface and the lead wires 59 on the back surface are provided on opposite sides of the vibrating section so that they do not form capacitance. In other words, the lead wires 57 and 59 are provided at positions that do not face each other across the polymer piezoelectric material.

第3図は本発明の他の実施例の要部を示す図で
あり、リード線57の間隔をケーブル40との接
続部で広げた場合を示す。高分子圧電体51は長
方形と、その長方形の一辺と上辺で接触する台形
とを組み合わせた断面盃状の薄膜であり、その長
方形部分にはその両端に第2図と同様に短冊状電
極53,55リード線57,59及び共通線5
9′が設けられ、台形部分にはリード線57が延
在する。しかもリード線57は電極53から遠ざ
かるに従いその間隔が増大するように設けられ
る。即ち、台形部分において、リード線7は隣接
リード線との間隔が電極53から最も遠い部分
(右側最端部)で最も大きくなるように放射状に
設けられている。なお、図において点線は裏面の
リード線59及び共通線59′を示す。これは第
4図においても同様である。本実施例によれば、
リード線57の間隔はケーブル40との接続部で
広げられているので、ケーブル40との接続が容
易にできる。
FIG. 3 is a diagram showing a main part of another embodiment of the present invention, and shows a case where the interval between the lead wires 57 is widened at the connection part with the cable 40. The polymer piezoelectric material 51 is a thin film having a cup-shaped cross section, which is a combination of a rectangle and a trapezoid that contacts one side of the rectangle with its upper side.The rectangular portion has strip-shaped electrodes 53 at both ends, as shown in FIG. 55 lead wires 57, 59 and common wire 5
9' is provided, and a lead wire 57 extends in the trapezoidal portion. Furthermore, the lead wires 57 are provided so that the distance between them increases as the distance from the electrode 53 increases. That is, in the trapezoidal part, the lead wires 7 are provided radially such that the distance between the lead wires 7 and the adjacent lead wires is greatest at the part farthest from the electrode 53 (the rightmost end). In the figure, dotted lines indicate the lead wire 59 and the common line 59' on the back side. This also applies to FIG. According to this embodiment,
Since the interval between the lead wires 57 is widened at the connection portion with the cable 40, the connection with the cable 40 can be easily made.

第4図は、本発明の他の実施例の要部を示す図
であり、表面のリード線57と裏面のリード線5
9を同じ側に設けた場合を示す。図に示すよう
に、リード線57と59が高分子圧電体51をは
さんで対向しないように位置をずらして設けられ
ている。
FIG. 4 is a diagram showing the main parts of another embodiment of the present invention, in which a lead wire 57 on the front surface and a lead wire 5 on the back surface.
9 is provided on the same side. As shown in the figure, the lead wires 57 and 59 are provided at different positions so as not to face each other with the polymer piezoelectric material 51 in between.

以上の説明においては、両面の電極形状を短冊
状にして短冊状振動子素子を構成したが、接地さ
れる方の電極を短冊状にしないで、振動部全面に
設けてもよい。また、振動部の圧電体を電極の長
さ方向に沿つて切断し、各短冊状振動子素子を分
離してもよい。
In the above description, a strip-shaped vibrator element is constructed in which the electrodes on both sides are shaped like strips, but the electrode that is grounded may not be shaped like a strip and may be provided on the entire surface of the vibrating section. Alternatively, the piezoelectric body of the vibrating section may be cut along the length direction of the electrode to separate each strip-shaped vibrator element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成を示す図、第
2図a及びbは第1図の高分子圧電体の詳細を示
す平面図、第3図及び第4図はそれぞれ本発明の
他の実施例の要部を示す平面図である。
FIG. 1 is a diagram showing the configuration of an embodiment of the present invention, FIGS. 2 a and b are plan views showing details of the polymer piezoelectric material in FIG. 1, and FIGS. FIG. 7 is a plan view showing main parts of another embodiment.

Claims (1)

【特許請求の範囲】 1 高分子圧電体の一部分の相対向する二つの面
に電極がそれぞれ形成されて振動部を構成する超
音波探触子において、前記圧電体の前記振動部以
外の部分には上記電極にそれぞれ接続されたリー
ド線が形成され、かつ前記振動部はバツキング部
材の主面に固定支持され、前記圧電体の前記リー
ド線が形成された部分は、前記バツキング材の側
面に折り曲げられていることを特徴とする超周波
探触子。 2 前記電極の少なくとも一方は短冊状に分割さ
れ、分割された電極のそれぞれに接続されたリー
ド線はその間隔が前記電極から離れるに従がい広
がつている特許請求の範囲第1項に記載の超音波
探触子。
[Scope of Claims] 1. In an ultrasonic probe in which electrodes are formed on two opposing surfaces of a portion of a polymeric piezoelectric material to constitute a vibrating section, a portion of the piezoelectric material other than the vibrating section is provided with an ultrasonic probe. are formed with lead wires respectively connected to the electrodes, the vibrating part is fixedly supported on the main surface of the backing member, and the portion of the piezoelectric body on which the lead wires are formed is bent to the side surface of the backing member. An ultra-frequency probe characterized by: 2. At least one of the electrodes is divided into strips, and the distance between the lead wires connected to each of the divided electrodes increases as the distance from the electrode increases. Ultrasonic probe.
JP10500280A 1980-08-01 1980-08-01 Ultrasonic probe Granted JPS5731298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10500280A JPS5731298A (en) 1980-08-01 1980-08-01 Ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10500280A JPS5731298A (en) 1980-08-01 1980-08-01 Ultrasonic probe

Publications (2)

Publication Number Publication Date
JPS5731298A JPS5731298A (en) 1982-02-19
JPH023599B2 true JPH023599B2 (en) 1990-01-24

Family

ID=14395869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10500280A Granted JPS5731298A (en) 1980-08-01 1980-08-01 Ultrasonic probe

Country Status (1)

Country Link
JP (1) JPS5731298A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59300A (en) * 1982-06-26 1984-01-05 Matsushita Electric Ind Co Ltd Ultrasonic probe
US4773140A (en) * 1983-10-31 1988-09-27 Advanced Technology Laboratories, Inc. Phased array transducer construction
JPS60143358U (en) * 1984-03-05 1985-09-24 呉羽化学工業株式会社 Array type ultrasound probe
EP0210723B1 (en) * 1985-05-20 1991-04-10 Matsushita Electric Industrial Co., Ltd. Ultrasonic probe
JPH02122532A (en) * 1988-11-01 1990-05-10 Furukawa Electric Co Ltd:The Tape carrier
JP6203537B2 (en) * 2013-05-24 2017-09-27 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Flexible printed circuit board, ultrasonic probe, and ultrasonic diagnostic apparatus

Also Published As

Publication number Publication date
JPS5731298A (en) 1982-02-19

Similar Documents

Publication Publication Date Title
US10707407B2 (en) Ultrasonic device, method for manufacturing the same, electronic device and ultrasonic imaging device
US4783888A (en) Method of manufacturing an ultrasonic transducer
US4704774A (en) Ultrasonic transducer and method of manufacturing same
JPS61144565A (en) High-polymer piezo-electric type ultrasonic probe
US4326418A (en) Acoustic impedance matching device
JPH04211600A (en) Ultrasonic probe system
US4406967A (en) Ultrasonic probe
JPH023599B2 (en)
JPH0683516B2 (en) Ultrasonic probe and method of manufacturing the same
JPS6133517B2 (en)
JPS6178300A (en) Ultrasonic probe and manufacturing method thereof
JP2945978B2 (en) Array type ultrasonic probe
JPH0323209Y2 (en)
JPH0511479B2 (en)
JPH0434879B2 (en)
JPS6242373Y2 (en)
JP3171715B2 (en) Array type ultrasonic probe for high frequency
JP3363999B2 (en) Ultrasonic transducer
JPH01151900A (en) Ultrasonic wave probe
JPH019536Y2 (en)
JPH0342560B2 (en)
JPS63175761A (en) Ultrasonic probe
JPH0619279Y2 (en) Ultrasonic probe using piezo rubber
JPS6269800A (en) High molecular piezoelectric type ultrasonic probe
JPS6235800A (en) Ultrasonic probe