JPH0235664B2 - - Google Patents

Info

Publication number
JPH0235664B2
JPH0235664B2 JP56152125A JP15212581A JPH0235664B2 JP H0235664 B2 JPH0235664 B2 JP H0235664B2 JP 56152125 A JP56152125 A JP 56152125A JP 15212581 A JP15212581 A JP 15212581A JP H0235664 B2 JPH0235664 B2 JP H0235664B2
Authority
JP
Japan
Prior art keywords
foam
elongation
break
axis
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56152125A
Other languages
Japanese (ja)
Other versions
JPS5853422A (en
Inventor
Hiroshi Tonokawa
Masao Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Kakoh KK
Dow Chemical Co
Original Assignee
Dow Kakoh KK
Dow Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Kakoh KK, Dow Chemical Co filed Critical Dow Kakoh KK
Priority to JP56152125A priority Critical patent/JPS5853422A/en
Priority to AU82282/82A priority patent/AU553465B2/en
Priority to NZ200225A priority patent/NZ200225A/en
Priority to CA000400837A priority patent/CA1179463A/en
Priority to NO821219A priority patent/NO163903C/en
Priority to ES511420A priority patent/ES511420A0/en
Priority to GB8210938A priority patent/GB2096616B/en
Priority to KR8201657A priority patent/KR880001770B1/en
Publication of JPS5853422A publication Critical patent/JPS5853422A/en
Priority to SG695/86A priority patent/SG69586G/en
Priority to HK996/86A priority patent/HK99686A/en
Priority to MY101/87A priority patent/MY8700101A/en
Publication of JPH0235664B2 publication Critical patent/JPH0235664B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/56After-treatment of articles, e.g. for altering the shape
    • B29C44/5627After-treatment of articles, e.g. for altering the shape by mechanical deformation, e.g. crushing, embossing, stretching

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、気泡壁にシワを有した独立気泡構造
の直方体様の発泡体で、これを直交する三軸方向
(X、Y、Z軸)に引伸ばしたときに、X軸とZ
軸が8〜60〔%〕の破断伸び特性を有し、そのY
軸方向の水蒸気透過率が、1.5〔g/m2hr℃〕以下の
特定2方向に大きい伸び特性を有することを特徴
とする合成樹脂発泡体に関する。 近来、独立気泡構造の発泡体を、構築物の外
面、内面、或は構造内部に固定して、該発泡体の
特性(例えば、断熱性、圧縮強さ等)を活用しよ
うとするこころみは多い。特に、省資源、省エネ
ルギー問題が国家の課題となつている今日ではそ
の傾向は著るしく、反面従来潜在していても重視
されることのなかつた問題が顕在化するといつた
現象も認められる。 例えば、独立気泡の硬質発泡板は、圧縮強さ等
の剛性、軽量性、断熱性能を兼備している点で、
早くから構築物の断熱材として使用されて来た
が、固定する対象面が例えば曲面を持つ建屋の屋
上・タンク類の外面・トンネル内面・パイプ類の
外内面であるときは、発泡板の持つ剛性、弾性が
わざわいとなつて、これを密に面着固定すること
が困難で、強制的に面着固定を行なうと発泡板が
折損したり、ひび割れが生じたりするし、断熱性
能の低下をさけることが難しい欠点がある。とは
云え、曲面に合わせて発泡板面を切削加工するこ
とは、技術的に困難な上に経済的なデメリツトも
大きい。この困難性は、対象面の曲率半径が小さ
い程、曲率が複雑化する程著るしい。又これをさ
ける方式としては、対象面の曲率に合つた発泡成
形体を工場で作成し、これを現地に輸送し使用す
る方法が古くから行なわれているが、互換性に乏
しく、輸送、保管、仕様変更面に著るしい困難性
が伴なう。 本発明は、このような現状に鑑みてなされたも
ので、その目的は、下記1〜6を満す発泡体を提
供することにある。 1 平板のままで運び、現地で、円筒状、又は球
面状の被断熱体に押圧してなじませる。或い
は、必要とする曲率の型に添わせて押曲げ、加
熱して型通りに賦形させて使用する等が可能で
あること。 2 上記押圧施工、及び押圧加工時に、大きな変
形力を必要とせず、かつ曲げ変形時にひび割
れ、折損、引きちぎれ等が発生しない、いわゆ
る曲げ加工性にすぐれていること。 3 曲げ施工後にも充分な圧縮強度があり、断熱
性が高く、長期間その性能が保持されること。 4 液化天然ガス等の貯蔵輸送の如き、極低温断
熱用途に使用する際に、配管断熱カバー、球形
タンク断熱材、角型タンク用パネル材として2
軸方向に極低温特性を有し、充分なクラツク抵
抗性と永続性のある断熱性能を兼備したもので
あること。 5 補強用複合材等を使わなくてもパネルとして
の極低温耐クラツク性、すぐれた断熱性と機械
的特性、長期間の高荷重に耐える耐クリープ特
性を兼備していること。 6 以上1〜5迄の諸特性のすべてを高水準の域
に兼備した硬質発泡体を従来の発泡体に比べ遜
色のない経済性をもつこと。 本発明に従えば、本発明の上記目的のすべて
は、気泡壁にシワを有した独立気泡構造の直方体
様の発泡体にあつて該気泡を互に直交する三軸
(X、Y、Z)方向に測定した各々の平均気泡径
(x、y、z)〔mm〕が、該発泡体密度(D)〔Kg/m3
(約20〜100)との間で、0.05y1.0〔mm〕、
y/x1.05、y/z1.05の範囲において、
(−75log y+55)D(−5log y+20)の関
係を満し、Y軸方向の水蒸気透過率Py〔g/m2hr〕
が、1.5以下の値を満し、更にこの発泡体をX、
Y、Z軸方向に各々引伸ばしたときに、各々の方
向の破断伸び率Ex、Ey、Ez〔%〕の間に60Ex
8、60Ez8の範囲で(8Ex−56)Ez
(1/8Ex+7)かつ(90−Ex)Ez但し、8.3> Ex/Ey>1.8、8.3>Ez/Ey>1.8かつEx+Ez<12Eyの 関係の伸び特性を有することを特徴とする合成樹
脂発泡体によつて容易に達成させることができ
る。 以下本発明の内容を図面等を用いて詳述する。 第1〜3図は、本発明の発泡体の気泡構造を、
直方体の三面方向から、互に直交する三軸方向
(X、Y、Z軸方向)に見た拡大図例で、第1図
はX軸方向、第2,3図は各々Y、Z軸方向に見
た構造状態を示す。 又第4図は、上記X、Y、Z軸方向及び、後記
する気泡寸法の測定方向(x、y、z)の表現の
理解を深める意味での概念図である。 第1〜4図において、本発明でいう合成樹脂発
泡体は、独立気泡に富む気泡構造の外形は直方体
様の発泡体である。 そして、その気泡膜には、相当数のシワが存在
している。一般に合成樹脂発泡体の気泡形状は、
ほぼ12面体をなしているといわれているので、上
記シワの存在位置を構造的に定量的に適確にとら
えることは難かしい。それでこれを、上記、X、
Y、Zの三方向から見て全体的に表現すると、い
ずれの軸方向から見ても気壁にシワが見える(第
1,2及び3図参照)が、そのシワの方向と存在
する気泡壁をよく観察すると、Z軸方向(第1及
び2図)とのX軸方向(第2及び3図)の気泡壁
には、多くのシワが各々の方向に存在するが、Y
軸方向(第1及び3図)の気泡壁には、あまりシ
ワが存在しないという、気泡壁のシワに分布と方
向性あることが分かる。このシワの分布と方向性
は、後述する本発明の発泡体の製造法によつて形
成される特殊なシワと考えられ、更にこのシワそ
のものが、発泡体の密度、気泡寸法、形状と相俟
つて、諸特性を兼備した上で、X軸及びZ軸方向
にのみ大きな伸長特性を発揮する根源であると考
えられる。 次に、本発明の特定二軸方向の気泡壁にシワが
あり、その方向にのみ大きい伸び特性を有する合
成樹脂発泡体とその構造及び諸特性の関係につい
て検討を加える。 先ず、気泡壁にシワのある発泡体の密度D〔Kg/
m3〕と気泡寸法、特にY軸方向に測つた気泡径y
〔mm〕について検討したもので、耐クリープ性を
予測するためY軸方向の圧縮強度〔Kg/cm2〕、使用
中の発泡体の破断抵抗性を予測するためX軸及び
Y軸方向の引張強度〔Kg/cm2〕、性能の均一性を予
測するため両方向の引張強度のバラツキ〔%〕及
び熱伝導率〔kcal/mhr℃〕に着目し、本文記載
の方法で評価した結果を、第1表に示した。第5
図は、第1表の結果の総合評価を、たて軸に発泡
体密度(D)〔Kg/m3〕、よこ軸にY軸方向の気泡径
(y)〔mm〕を目盛つた座標にプロツトし、本発明
の目的を達成するもの(〇印)、更に好しいもの
(◎印)、目的を達成出来ないもの(×印)で層別
した解析図である。第5図の解析結果によると、
本発明の目的を達成する発泡体は、発泡体密度D
〔Kg/m3〕が、約20〜100、Y軸方向に測つた気泡
径y〔mm〕が0.05〜1の範囲にあつて、その両者
の間で、 (−75log y+55)D(−5log y+20) の関係を満すものでなければならない。 上記すべての評価特性をより高水準で達成する
ためには、密度D〔Kg/m3〕が約23〜93、気泡径y
〔mm〕が0.07〜0.8の範囲で (−75log y+48)D(−5log y+23) の関係を満すものがより好しいことが分かる。 本発明者等の実験によると、上記関係式は、y
=0.05の場合でも充分満されるものであることが
確認されている。 次に、上述した気泡体密度(D)及び気泡径(y)
の関係をすべて満した発泡体について検討を加え
たもので、更に、X軸方向、Z軸方向に測つた気
泡径x、zと、Y軸方向の気泡径yの関係、即
ち、本発明でいう発泡体が具備すべき気泡の寸法
形状、y/xとy/zについて、検討し本文記載
の方法で評価したものである。着目した評価項目
は、圧縮強度(Y軸方向)、引張強度(X及びZ
軸方向)、引張強度のバラツキ(X及びZ軸方向)
及び熱伝導率(Y軸方向)であり、それらの評価
を本文記載の方法と基準で評価した結果を第2表
に示し、又、それらの総合評価を下記の基準(以
下総合評価はこの基準を使用)に従い行つたもの
も併記した。 ◎:すべて〇印で最も好しいもの。 〇:△印はあるが、実用上目的を達成するもの。 ×:1つでも×印があり、目的を達成出来ないも
の。 第2表の結果によると、本発明に求められる発
泡体は、上記諸範囲、即ち、発泡体密度D〔Kg/
m3〕が約20〜100、Y軸方向に測つた気泡径y
〔mm〕が0.05〜1の範囲にあつて、その両者の間
で、 (−75log y+55)D(−5log y+20)
の関係をすべて満したものであつても、気泡の寸
法形状は、y/x1.05、y/z1.05でなけれ
ばならない。 上記すべての評価特性をより高水準で達成する
ためには、気泡寸法形状は、各々y/x1.10、
y/z1.10である方が好ましく、Y軸により長
径の気泡群の集合体でなければならないことが分
かる。 しかし、y/x及びy/zが4を越える発泡体
は、寸法安定性、線膨脹係数、圧縮強度、引張強
度等のバランスが悪化する傾向があるので注意が
必要である。 次に、上述した発泡体密度D〔Kg/m3〕、Y軸方
向のの気泡径y〔mm〕の関係及び気泡径x、y、
zの寸法形状y/xとy/zの関係をすべて満し
た発泡体について検討を加えてもので、第1〜第
3図で述べた気泡膜を存在するシワやシワの存在
場所、シワの状態等を総合的に評価しようとした
ものである。しかしながら発泡体の気泡は小さく
且つ上述の通り多面形状をなしているので、これ
を形状構造的に定量的に表現することは、極めて
困難であつた。 種々の検討の結果、本発明者等は、Y軸方向に
測つた水蒸気透過率、(即ち、端的にはシワにク
ラツクや破れが存在していないか?)、三軸方向
に引き伸ばしたときの各破断伸び率、(即ち端的
には、引き伸ばせるシワか?シワの存在場所及び
分布は?)等の特性が、これ等の1つの構造指標
となり得ることとようやく究明し、シワ構造の区
分化に成功したものである。 着目した評価項目は、どれだけ伸び率が断面内
で均一であるかを示すX軸及びZ軸の破断伸び率
Ex、Ezのバラツキ〔%〕、Y軸方向に長期間使用
している間の吸湿による断熱性能の劣化を示すY
軸方向の熱伝導率の径時変化比率は、パネル形状
で液化天然ガスタンクの断熱材として使つた際及
び液化窒素タンクの断熱材としての使つた際のク
ラツク耐久性を示す約−160℃と−196℃での極低
温適性を評価項目に選び、本文記載の評価方法に
従つて評価した結果及び、それらの結果を上述し
た同一基準で総合評価して、第3表に示した。 第6図は、第3表の結果の理解を深めるための
参考図で、たて軸にZ軸方向に測つた破断伸び率
Ez〔%〕、よこ軸には、X軸方向に測つた破断伸
び率Ex〔%〕を目盛り、第3表の総合評価結果
を、◎、〇、×印で層別してプロツトしたもので
ある。又、第7図は、第3表の結果の、X、Y、
Z軸の破断伸び率Ex、Ey、Ezの分布、即ち、伸
び特性の大きいX軸とZ軸の破断伸び率Ex、Ez
と、伸び特性の小さい他の1軸(Y軸)方向の破
断伸び率Eyとの関係の理解を深めるために、た
て軸にZ軸とY軸の破断伸び率の比Ez/Ey、よ
こ軸には、X軸とY軸の破断伸び率の比Ex/Ey
を目盛り、第3表の各々の発泡体の総合評価結果
を◎、〇、×印で層別してプロツトしたものであ
る。 第6図の結果によると、本発明の目的を達成す
る発泡体は、60Ex8〔%〕、かつ60Ez8
〔%〕の範囲で、ExとEzの間に、 (8Ex−56)Ez(1/8Ex+7) かつEz(90−Ex) の関係が満されるものでなければならない。 座標点(X軸方向破断伸び率Ex、Z軸方向破
断伸び率Ez)で示すと、(8、8)、60、14.5)、
(60、30)、(30、60)及び(14.5、60)を直線で
結ぶ五角形の範囲内にある。 更に、液化窒素タンク断熱材としての適性を満
し、他の特性も最高水準にある発泡体では、 40Ex12〔%〕かつ40Ez12〔%〕 の範囲でEz(52−Ex)の関係を満すものでな
ければならないことが分かる。 同様に座標点で示すと(12、12)、(40、12)及
び(12、40)を直線で結んだ三角形の線上を含む
範囲内にある。 一方、3軸方向、X、Y、Z軸間の破断伸び率
Ex、Ey、Ezの分布の関係を示す第7図の結果に
よると、本発明の目的を満す発泡体は、各々の破
断伸び率の比Ex/Ey、Ez/Eyが、各々8.3>
Ex/Ey>1.8、8.3>Ez/Ey>1.8及びEx+Ez<
12Eyの関係を満すものでなければならない。即
ち、座標点(Ex/Ey、Ez/Ey)で示すと、(1.8、1.8)
、 (8.3、1.8)、(8.3、3.3)、(3.3、8.3)及び(1.8

8.3)を直線で結ぶ五角形の中にあることが分か
る。 更に第3表の評価項目であるY軸方向の水蒸気
透過率Py〔g/m2hr〕について述べると本発明の
目的を達成する発泡体は、断熱性の長期使用中の
劣化を押えるために、この値が少くとも1.5以下
である必要が分かる。 長期的な断熱性能の維持を重視するならば、
Pyの値は1.0以下であれば更によい。 第3表の結果である第6図、第7図及びY軸方
向の水蒸気透過率Py〔g/m2hr〕の結果を総合す
ると、本発明を達成するための発泡体は、上述の
第1表及び第2表の結果を充分満すものであつて
もX、Y及びZ軸の破断伸び率Ex、Ey、Ezが
各々、60Ex8〔%〕、60Ez8〔%〕の範囲
で(8Ex−56)Ez(1/8Ex+7)及びEz (90−Ex)の範囲にありかつ8.3>Exx/Ey>1.8、
8.3>Ez/Ey>1.8及びEx+Ez<12Eyの関係を満
しY軸方向の水蒸気透過率〔g/m2・hr〕が1.5以
下であらねばならない。 本発明の発泡体が、液化窒素の極低温にも耐え
かつ長期的な断熱性能の維持も重視した最高水準
の目的を達成するには、第1表〜第2表の結果を
満すと同時にEx、Ey及びEzが40Ex12〔%〕、
40Ez12〔%〕及びEz(52−Ex)の範囲を
満しかつ8.3>Ex/Ey>1.8、8.3>Ez/Ey>1.8及
びEx+Ez<12Eyでかこまれる範囲に3軸(X、
Y、Z)間の破断伸び率の分布があり、かつY軸
方向の水蒸気透過率Py〔g/m2hr〕が、1.0以下で
あれば、より好ましいことが分かる。
The present invention is a rectangular parallelepiped-like foam having a closed cell structure with wrinkles on the cell walls, and when stretched in three orthogonal axes (X, Y, and Z axes),
The axis has an elongation at break of 8 to 60%, and its Y
The present invention relates to a synthetic resin foam characterized by having an axial water vapor permeability of 1.5 [g/m 2 hr°C] or less and high elongation properties in two specific directions. In recent years, there have been many attempts to utilize the properties (eg, heat insulation, compressive strength, etc.) of closed-cell foams by fixing them on the outer surface, inner surface, or inside of structures. In particular, this trend is remarkable today, when resource conservation and energy conservation have become national issues, and on the other hand, there are also phenomena where problems that were previously latent but not given attention to are now coming to the surface. For example, closed-cell rigid foam board has rigidity such as compressive strength, light weight, and heat insulation performance.
Foam boards have been used as insulation materials for buildings since early times, but when the surface to be fixed is the roof of a building with a curved surface, the outside surface of a tank, the inside surface of a tunnel, or the outside surface of a pipe, the rigidity of foam board, The elasticity becomes a problem, and it is difficult to tightly fix the foam board, and if you force the foam board to do so, the foam board will break or crack, so avoid deteriorating the insulation performance. There are drawbacks that make it difficult. However, cutting the surface of a foam board to fit a curved surface is not only technically difficult but also economically disadvantageous. This difficulty becomes more significant as the radius of curvature of the target surface becomes smaller and as the curvature becomes more complex. In addition, as a method to avoid this, a method has long been used in which a foam molded product that matches the curvature of the target surface is created in a factory and then transported to the site for use, but it is not compatible and is difficult to transport and store. , it is accompanied by significant difficulties in changing specifications. The present invention was made in view of the current situation, and an object thereof is to provide a foam that satisfies the following conditions 1 to 6. 1 Transport it as a flat plate and press it onto a cylindrical or spherical body to be insulated at the site. Alternatively, it should be possible to use it by pressing and bending it according to a mold with the required curvature, heating it, and shaping it according to the mold. 2. It does not require a large deforming force during the above-mentioned press construction and press processing, and has excellent so-called bending workability, which does not cause cracking, breakage, tearing, etc. during bending deformation. 3. Even after bending, it has sufficient compressive strength, has high insulation properties, and maintains its performance for a long period of time. 4 When used for cryogenic insulation applications such as storage and transportation of liquefied natural gas, etc., it can be used as a piping insulation cover, spherical tank insulation material, and panel material for square tanks.
It must have cryogenic properties in the axial direction, sufficient crack resistance, and durable heat insulation performance. 5. Even without the use of reinforcing composite materials, the panel must have cryogenic crack resistance, excellent heat insulation and mechanical properties, and creep resistance that can withstand high loads over long periods of time. 6. A rigid foam that has all of the properties listed in 1 to 5 above at a high level has an economical efficiency comparable to that of conventional foams. According to the present invention, all of the above objects of the present invention are achieved by providing a rectangular parallelepiped-like foam having a closed cell structure with wrinkles on the cell walls, and moving the cells along three axes (X, Y, Z) perpendicular to each other. Each average cell diameter (x, y, z) [mm] measured in the direction is the foam density (D) [Kg/m 3 ]
(approximately 20 to 100), 0.05y1.0 [mm],
In the range of y/x1.05, y/z1.05,
(-75log y+55)D(-5log y+20), water vapor permeability Py in the Y-axis direction [g/m 2 hr]
satisfies a value of 1.5 or less, and furthermore, this foam is
When stretched in the Y and Z axis directions, the elongation at break in each direction is 60Ex between Ex, Ey, and Ez [%].
8, (8Ex−56)Ez in the range of 60Ez8
(1/8Ex+7) and (90-Ex)Ez However, a synthetic resin foam characterized by having an elongation characteristic of the relationship 8.3>Ex/Ey>1.8, 8.3>Ez/Ey>1.8 and Ex+Ez<12Ey. Therefore, it can be easily achieved. The contents of the present invention will be explained in detail below using drawings and the like. Figures 1 to 3 show the cell structure of the foam of the present invention.
This is an example of an enlarged view taken from the three sides of a rectangular parallelepiped in the three axes (X, Y, and Z axes) that are orthogonal to each other. The structural state as seen in the figure is shown below. Moreover, FIG. 4 is a conceptual diagram for the purpose of deepening the understanding of expressions of the above-mentioned X, Y, and Z axis directions and the bubble size measurement direction (x, y, z) described later. In FIGS. 1 to 4, the synthetic resin foam referred to in the present invention is a foam having a cell structure rich in closed cells and having a rectangular parallelepiped-like outer shape. The bubble film has a considerable number of wrinkles. Generally, the cell shape of synthetic resin foam is
Since it is said to have an approximately dodecahedral shape, it is difficult to accurately determine the location of the wrinkles structurally and quantitatively. So this, above, X,
When expressed as a whole when viewed from the three directions Y and Z, wrinkles can be seen in the air wall when viewed from any axial direction (see Figures 1, 2, and 3), but the direction of the wrinkles and the existing air bubble wall differ. If you closely observe the bubble walls in the Z-axis direction (Figures 1 and 2) and the X-axis direction (Figures 2 and 3), there are many wrinkles in each direction.
It can be seen that there are not many wrinkles on the cell wall in the axial direction (FIGS. 1 and 3), indicating that the wrinkles on the cell wall have distribution and directionality. The distribution and directionality of these wrinkles are considered to be special wrinkles formed by the foam manufacturing method of the present invention, which will be described later, and furthermore, the wrinkles themselves are dependent on the density, cell size, and shape of the foam. Therefore, it is thought that this is the source of exhibiting large elongation properties only in the X-axis and Z-axis directions, while having various properties. Next, we will discuss the relationship between the structure and various properties of the synthetic resin foam of the present invention, which has wrinkles on its cell walls in specific biaxial directions and has large elongation properties only in those directions. First, the density D [Kg/
m 3 ] and the bubble size, especially the bubble diameter y measured in the Y-axis direction
[mm], compressive strength in the Y-axis direction [Kg/cm 2 ] to predict creep resistance, and tensile strength in the X- and Y-axis directions to predict the fracture resistance of the foam during use. We focused on strength [Kg/cm 2 ], variation in tensile strength in both directions [%] and thermal conductivity [kcal/mhr℃] to predict the uniformity of performance, and evaluated the results using the method described in the main text. It is shown in Table 1. Fifth
The figure shows the overall evaluation of the results in Table 1 in coordinates with the vertical axis representing the foam density (D) [Kg/m 3 ] and the horizontal axis representing the bubble diameter (y) [mm] in the Y-axis direction. It is an analysis diagram stratified into those that achieve the object of the present invention (○ mark), those that are more preferable (◎ mark), and those that cannot achieve the object (x mark). According to the analysis results in Figure 5,
A foam that achieves the objects of the present invention has a foam density D
[Kg/m 3 ] is in the range of about 20 to 100, and the bubble diameter y [mm] measured in the Y-axis direction is in the range of 0.05 to 1, and between the two, (-75log y + 55)D (-5log y+20) must be satisfied. In order to achieve all of the above evaluation characteristics at a higher level, the density D [Kg/m 3 ] must be approximately 23 to 93, the bubble diameter y
It can be seen that it is more preferable that [mm] is in the range of 0.07 to 0.8 and satisfies the relationship (-75log y+48)D(-5log y+23). According to the inventors' experiments, the above relational expression is y
It has been confirmed that even the case of =0.05 is sufficiently satisfied. Next, the bubble density (D) and bubble diameter (y) described above
In addition, the relationship between the bubble diameters x and z measured in the X-axis direction and the Z-axis direction and the bubble diameter y in the Y-axis direction, that is, the present invention The size and shape of the cells, y/x and y/z, that the foam should have were examined and evaluated using the method described in the text. The evaluation items we focused on were compressive strength (Y-axis direction), tensile strength (X and Z
(axial direction), variation in tensile strength (X and Z axis directions)
and thermal conductivity (Y-axis direction), and the results of their evaluation using the methods and criteria described in the text are shown in Table 2, and their comprehensive evaluation is based on the following criteria (hereinafter, comprehensive evaluation will be based on this standard). I have also included the results that were carried out in accordance with the following. ◎: All are marked with ○ and are the most preferred. 〇: There is a △ mark, but the purpose is achieved in practical terms. ×: There is at least one × mark, and the purpose cannot be achieved. According to the results in Table 2, the foam required for the present invention has a foam density D [Kg/
m 3 ] is approximately 20 to 100, and the bubble diameter y measured in the Y-axis direction
[mm] is in the range of 0.05 to 1, and between the two, (-75log y+55)D(-5log y+20)
Even if all of the following relationships are satisfied, the size and shape of the bubble must be y/x1.05 and y/z1.05. In order to achieve all of the above evaluation characteristics at a higher level, the bubble size and shape should be y/x1.10,
It can be seen that y/z is preferably 1.10, and that it must be an aggregate of bubbles with a longer diameter along the Y axis. However, foams with y/x and y/z of more than 4 tend to have poor balance in dimensional stability, coefficient of linear expansion, compressive strength, tensile strength, etc., so care must be taken. Next, the relationship between the foam density D [Kg/m 3 ], the cell diameter y [mm] in the Y-axis direction, and the cell diameters x, y,
Since we have considered a foam that satisfies all the relationships between dimensions and shapes of z, y/x and y/z, we have investigated the wrinkles, locations of wrinkles, and wrinkles in the bubble membrane described in Figures 1 to 3. This is an attempt to comprehensively evaluate the condition, etc. However, since the cells of the foam are small and have a multifaceted shape as described above, it has been extremely difficult to quantitatively express them in terms of shape and structure. As a result of various studies, the present inventors determined the water vapor transmission rate measured in the Y-axis direction (in other words, are there any cracks or tears in the wrinkles?), and the water vapor transmission rate when stretched in the triaxial direction. It was finally determined that characteristics such as each elongation rate at break (in other words, are the wrinkles stretchable? What is the location and distribution of the wrinkles?) can be used as one of these structural indicators, and the wrinkle structure can be segmented. It was a success. The evaluation item we focused on was the elongation rate at break on the X and Z axes, which indicates how uniform the elongation rate is within the cross section.
Variation in Ex and Ez [%], Y indicating deterioration of insulation performance due to moisture absorption during long-term use in the Y-axis direction
The radial change ratio of thermal conductivity in the axial direction is approximately -160℃, which indicates crack durability when used as a heat insulator for liquefied natural gas tanks and as a heat insulator for liquefied nitrogen tanks in panel form. Cryogenic suitability at 196°C was selected as an evaluation item, and the results of evaluation according to the evaluation method described in the text and the comprehensive evaluation of those results using the same criteria described above are shown in Table 3. Figure 6 is a reference diagram to help you better understand the results in Table 3, and shows the elongation at break measured in the Z-axis direction on the vertical axis.
Ez [%], the horizontal axis is the elongation at break Ex [%] measured in the X-axis direction, and the overall evaluation results in Table 3 are plotted by stratifying them with ◎, 〇, and × marks. Also, Figure 7 shows the results of Table 3, X, Y,
Distribution of the elongation at break Ex, Ey, Ez on the Z axis, that is, the elongation at break Ex, Ez on the X and Z axes, which have large elongation characteristics.
In order to deepen the understanding of the relationship between the elongation rate Ey and the elongation rate Ey at break in the other axis (Y-axis) direction, which has small elongation properties, The axis shows the ratio of elongation at break between the X and Y axes, Ex/Ey.
The overall evaluation results for each of the foams in Table 3 are plotted with ◎, ○, and × marks as a scale. According to the results shown in FIG. 6, the foam that achieves the purpose of the present invention is 60Ex8 [%] and 60Ez8
Within the [%] range, the following relationships must be satisfied between Ex and Ez: (8Ex-56)Ez(1/8Ex+7) and Ez(90-Ex). Indicated by coordinate points (X-axis elongation at break Ex, Z-axis elongation at break Ez): (8, 8), 60, 14.5),
It is within the range of a pentagon connecting (60, 30), (30, 60) and (14.5, 60) with a straight line. Furthermore, a foam that satisfies suitability as a liquefied nitrogen tank insulation material and has the highest level of other properties also satisfies the Ez (52−Ex) relationship within the range of 40Ex12 [%] and 40Ez12 [%]. I know it has to be. Similarly, when expressed as coordinate points, it is within a range that includes the triangular line connecting (12, 12), (40, 12), and (12, 40) with a straight line. On the other hand, the elongation at break in the three axial directions, X, Y, and Z axes
According to the results shown in FIG. 7, which shows the relationships among the distributions of Ex, Ey, and Ez, the foam that satisfies the purpose of the present invention has a ratio of elongation at break of Ex/Ey and Ez/Ey of 8.3>
Ex/Ey>1.8, 8.3>Ez/Ey>1.8 and Ex+Ez<
It must satisfy the 12Ey relationship. In other words, when expressed as coordinate points (Ex/Ey, Ez/Ey), (1.8, 1.8)
, (8.3, 1.8), (8.3, 3.3), (3.3, 8.3) and (1.8
,
8.3) can be found in a pentagon connected by a straight line. Furthermore, regarding the water vapor permeability Py [g/m 2 hr] in the Y-axis direction, which is an evaluation item in Table 3, the foam that achieves the objective of the present invention has , it can be seen that this value needs to be at least 1.5 or less. If you place importance on maintaining long-term insulation performance,
It is even better if the value of Py is 1.0 or less. Combining the results of FIGS. 6 and 7, which are the results of Table 3, and the results of the water vapor permeability Py [g/m 2 hr] in the Y-axis direction, the foam for achieving the present invention can be Even if the results in Tables 1 and 2 are fully satisfied, if the elongation at break Ex, Ey, and Ez of the 56) Ez (1/8Ex+7) and Ez (90−Ex) and 8.3>Exx/Ey>1.8,
8.3>Ez/Ey>1.8 and Ex+Ez<12Ey, and the water vapor transmission rate [g/m 2 hr] in the Y-axis direction must be 1.5 or less. In order for the foam of the present invention to withstand the extremely low temperatures of liquefied nitrogen and to achieve the objectives of the highest level, which emphasizes maintaining long-term insulation performance, it is necessary to meet the results shown in Tables 1 and 2 while at the same time Ex, Ey and Ez are 40Ex12 [%],
The three axes (X,
It can be seen that it is more preferable if there is a distribution of elongation at break between Y and Z) and the water vapor permeability Py [g/m 2 hr] in the Y-axis direction is 1.0 or less.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 第4表は、本発明の発泡体と比較の発泡体との
各代表について、本発明でいうすべての評価特性
と一連評価した総合評価を示すものである。 この第4表は、第1〜第3表までが各要件ごと
に断片的に評価して来たことの正当性を客観的に
立証するためのものである。 第4表の結果によると、本発明の発泡体は本発
明の目標とする評価特性のほとんどすべてを高水
準の値で満足するものであるのに対し、比較のも
のは、本発明でいう構成要件のいづれかが欠如し
ているために目標とする特性は満しきれない発泡
体になつていることが分かる。 この結果は、第1〜第3表の結果とは、全く矛
盾していないことが分かる。
[Table] Table 4 shows all the evaluation characteristics referred to in the present invention and the comprehensive evaluation of a series of evaluations for each representative of the foam of the present invention and the comparative foam. This Table 4 is intended to objectively prove the validity of the fragmentary evaluation of each requirement in Tables 1 to 3. According to the results in Table 4, the foam of the present invention satisfies almost all of the target evaluation characteristics of the present invention with high values, while the comparative foam has the structure defined in the present invention. It can be seen that the lack of one of the requirements results in a foam that does not meet the target properties. It can be seen that this result is completely consistent with the results in Tables 1 to 3.

【表】【table】

【表】 次に、本発明の発泡体と比較発泡体について、
円筒状の被断熱体へこれらを施工する場合の、施
工性、加工性、それに極低温下での断熱材として
の機能を検討するために、非常に曲率の大きい円
筒体の代表として外径約114mm(100A)のパイプ
に施工することにより本文記載の方法でパイプ表
面への押曲加工性、押曲げた状態での熱賦形性、
極低温下の断熱性及び、耐クラツク抵抗性につい
て評価したのが第5表で、合せてそれらの総合評
価も示したものである。 第5表の総合評価で分かる如く、非常にすぐれ
た小口径パイプへの押曲加工性、熱成形性及び施
工性を示し、パイプの外径と発泡体の厚さに応じ
て、湾曲させる軸方向の伸び率を調節すれば、巻
き付けに際し、大きな力を必要としないし押曲げ
操作中に微小なクラツクの発生がなく、従つて断
熱性能の低下もないパイプカバーになしうること
が分かる。 極低温流体での冷熱サイクルテストにおいて、
本発明の発泡体のみが、目標とする性能を示し、
従来の発泡体に比較し、補強材等の複合をするこ
となく単体の極低温断熱材として特に驚くべき特
性を発揮することが分かり、現地での簡便なる押
曲加工性とすぐれた、極低温断熱材としての機能
を合せ考えると、画期的な極低温用パイプカバ
ー、円筒タンク及び球型タンク等の断熱材である
ことが分かる。
[Table] Next, regarding the foam of the present invention and comparative foam,
In order to study the workability, workability, and function as a heat insulating material under extremely low temperatures when applying these materials to a cylindrical body to be insulated, we used a cylindrical body with an outer diameter of approximately By applying it to a 114mm (100A) pipe, the method described in the text improves the bending workability of the pipe surface, the heat formability in the pressed and bent state,
Table 5 evaluates the thermal insulation properties under extremely low temperatures and crack resistance, and also shows the comprehensive evaluation thereof. As can be seen from the comprehensive evaluation in Table 5, it exhibits excellent bending workability, thermoformability, and workability into small-diameter pipes, and the shaft can be bent according to the outside diameter of the pipe and the thickness of the foam. It can be seen that by adjusting the elongation rate in the direction, it is possible to create a pipe cover that does not require a large force when wrapping, does not generate minute cracks during the pressing and bending operation, and does not deteriorate its insulation performance. In a thermal cycle test using cryogenic fluid,
Only the foam of the present invention exhibits the targeted performance,
Compared to conventional foam, it has been found that it exhibits particularly surprising properties as a single cryogenic insulation material without the need for composites such as reinforcing materials. Considering its function as a heat insulating material, it can be seen that it is an innovative insulating material for cryogenic pipe covers, cylindrical tanks, spherical tanks, etc.

【表】【table】

【表】 次に、第1〜第5表まで使用したポリスチレン
樹脂発泡体の代りに、市販の塩化ビニル樹脂発泡
体と実施例1〜4で使用した押出発泡装置でほぼ
同様の条件で成形したメチルメタクリル酸樹脂発
泡体を押圧加工用素材とし、本発明で実施してき
た装置(第9図)と方法(第9表)で押圧加工し
たものが、本発明の発泡体の基準を満たすものに
なりうるか否かを評価するために行つたものであ
る。 本発明の発泡体の必要構造要因及び評価特性を
すべて同じとし評価した第6表の結果によると、
本発明の発泡体を構成する樹脂としては、ポリス
チレンの外に塩化ビニル樹脂及びそれと無機物の
ブレンドしたもの及びメチルメタクリル樹脂でも
本発明の目標とする評価特性を満たすと同時に円
筒体への押曲げ加工も容易に出来ることが分かつ
た。
[Table] Next, instead of the polystyrene resin foam used in Tables 1 to 5, a commercially available vinyl chloride resin foam was molded using the extrusion foaming device used in Examples 1 to 4 under almost the same conditions. Methyl methacrylic acid resin foam was used as a material for press processing and was press-processed using the apparatus (Fig. 9) and method (Table 9) implemented in the present invention, and it was found that it met the criteria for the foam of the present invention. This was done to evaluate whether it is possible. According to the results in Table 6, which were evaluated with all the necessary structural factors and evaluation characteristics of the foam of the present invention being the same,
In addition to polystyrene, the resin constituting the foam of the present invention may include vinyl chloride resin, a blend thereof with inorganic substances, and methyl methacrylic resin that meet the evaluation characteristics targeted by the present invention and can be pressed and bent into a cylindrical body. I found out that it can also be done easily.

【表】【table】

【表】 次に、ビーズ型スチレン発泡体を、本発明の発
泡体の実施例、比較例で使用した押圧加工装置
(第9図)と異なる押圧装置(第33図)でX軸
及びY軸の2軸方向に押圧加工した発泡体と、比
較のためにX軸方向のみ及びX、Y、Z軸の3軸
共に加工した発泡体について、第4表で行つた本
発明の発泡体でいうすべての要件と評価特性につ
いて同様に評価し、総合評価した結果を第7表に
示した。 第7表の結果から明らかなように、本発明でい
う構成要件のいづれかが欠如しているために目標
とする特性を満たしきれない発泡体になつている
ことが分る。 X軸、Y軸方向の破断伸び率が、充分大きいに
もかかわらず−196℃での極低温に耐えられぬ理
由としては、非常に大きい圧縮率(80%)を多数
回(3回)加えた押圧条件のために、引張強度の
劣化が大きく、線膨脹率が過大となりすぎ、極低
温での発泡体の収縮率が、その条件での破断伸び
率を上廻つてしまうため、クラツクが発生するも
のと考えられ、押圧加工素材の特性だけでなく、
第33図による押圧加工方法にも原因するものが
あることが考えられる。
[Table] Next, the bead-shaped styrene foam was processed on the X and Y axes using a pressing device (Fig. 33) different from the pressing device (Fig. 9) used in the Examples and Comparative Examples of the foam of the present invention. Table 4 shows the foams of the present invention that were press-processed in two axes, and for comparison, the foams that were press-processed only in the X-axis direction and in all three axes, X, Y, and Z. All requirements and evaluation characteristics were evaluated in the same manner, and the comprehensive evaluation results are shown in Table 7. As is clear from the results in Table 7, it can be seen that the lack of one of the constituent requirements of the present invention resulted in a foam that could not satisfy the target properties. The reason why the elongation at break in the X-axis and Y-axis directions is sufficiently large but it cannot withstand the extremely low temperature of -196℃ is because a very large compression ratio (80%) is applied many times (3 times). Due to the pressing conditions, the tensile strength deteriorates significantly and the linear expansion rate becomes excessively high, causing the shrinkage rate of the foam at cryogenic temperatures to exceed the elongation rate at break under those conditions, resulting in cracks. It is considered that not only the characteristics of the pressed material but also
It is thought that the pressing method shown in FIG. 33 is also responsible.

【表】【table】

【表】 第1表〜第7表にかけて評価して来た特性は、
そのほとんどが、発泡体の実用上の必要特性、押
曲げ加工性、曲げ施工適性、極低温断熱適性等の
実用上の代表特性であることを考慮すると、これ
らの結果は、発泡体の実用途における適応性その
ものを示すものである。 このような発泡体は、従来充分に研究されてい
ない新規な発泡体で、例えば、液化石油ガス、液
化エチレン、液化天然ガス、液化酸素、液化窒素
等の低温〜極低温流体の輸送、貯蔵を中心とし
て、更には、パイプ、円筒形や球形のタンク、ト
ンネル、建物の曲面部の断熱等が一層重要となつ
た今日、これ等の構築物に合成樹脂発泡体を密着
させて施工することが、これまで以上に容易に、
広範囲に、経済的に、確実に行なえるようになる
ことから、その有用性はきわめて高い発泡体とい
うことが出来る。 更に本発明の発泡体は、2軸方向に伸び特性が
大きく、残る一軸方向は圧縮特性にすぐれるとい
う方向性を応用して、各種素材との組合せ使用、
パネル構造体としての利用等多数の応用が考えら
れる。 上述した構成要件を持つ本発明の発泡体は、基
本的には、合成樹脂発泡成形体を二軸方向に適度
に押圧加工することで製造することが出来るが、
本発明の如き高水準の発泡体を得るには、製造技
術条牛の選択を行なわねば、上記構成要件を満た
すことが出来ないので注意を要する。 例えば、ポリスチレン系押出発泡成形板につい
て述べると、先ずX軸方向を押圧加工し、次いで
Z軸方向を押圧加工することによつて製造され
る。製造上の主要点を列挙すると、例えば、 イ) 出来るだけ均質な断面の素材発泡体を選
ぶ。 ロ) Y軸方向に長い寸法形状の気泡を持つ素材
発泡体を選ぶ。 ハ) 発泡成型後割に新しい素材発泡体を選ぶ。 ニ) スリツプの少ない押圧装置を工夫する。 ホ) 押圧が行なわれる発泡体部分の実長を短く
する。 ヘ) 押圧持続時間を長めに定める。 ト) 伸びの大きい発泡体を得るときには、押圧
を段階的にする。 等の、少なくとも5項、望ましくは、すべてにつ
いて満足する条件を定めるべきである。 第8、及び9図は、発泡体の押圧を行なう装置
の原理図で、発泡体は、上下一対の駆動ローラ
1,2又は挟持駆動体9,10と、後方にあるも
う一対の駆動ローラ3,4又は挟持駆動体11,
12との間に駆動速度差を設け、その速度差で、
搬送方向軸に押圧加工がなされ、次に加工された
方向と直角の他の方向に上記と同様にローラ又は
挟持駆動体間の駆動速度差でもう1軸方向が押圧
加工されて、本発明の二軸方向に伸び特性の大き
い発泡体となる。 第8図の5,6及び第9図13,14は各駆動
部での発泡体のスリツプを防止しながら搬送する
ためのY軸方向の挟持装置を意味するが、これが
強すぎると、厚さ方向に押圧が進むので充分な調
節が必要である。 以下、第8,9図の装置を用いて行なつた二軸
方向押圧加工での上記イ)〜ト)の現象について
述べる。 先ずイ)については、Y軸方向に挟持しつつ、
他の2軸を、1軸毎に押圧加工するので、断面内
の機械的強度、特に圧縮強度のバラツキが少ない
ことが必要である。 次に第10図は、素材となる発泡体の気泡形状
と押圧加工後の発泡体が示すY軸方向の水蒸気透
過率との関係例図である。この素材発泡体の物性
は、密度27Kg/m3と気泡径y≒0.6mmを維持し、
y/x≒y/z=0.7〜2の間に調整したものに
し、これを1日経過後X軸次にZ軸の順序で押圧
加工した。得た発泡体のX軸、Y軸の破断伸び率
Ex、Eyは、各々約20%と16%の値を示した。第
10図によると、素材発泡体にはy/x≒y/z
が約1以上、即ちY軸方向に長径の気泡構造の発
泡体を選ぶ方が良いことが分る。 第11図は発泡体の発泡成形後、押圧加工まで
の経過日数と得られた発泡体が示す水蒸気透過率
Pyとの関係例図で、素材発泡体は密度27Kg/m3
気泡径x、y、zは各々0.55mm、0.72mm、0.58mm、
厚さ100mmを25mmにスライスしたものを押圧加工
後のX軸、Z軸の破断伸び率Ex、Ezが各々約20
%、16%を示すように押圧圧縮率=20%〜37%と
押圧加工回数=1〜3回を選択して実施した。 第12図は同じく発泡体の発泡成形後、押圧加
工するまでの経過日数とX軸の破断伸び率Exの
関係例図で、素材発泡体は第11図の実験と同一
の物性の100mm厚さのものを用い、厚さ25mmにス
ライスしたものも加工用素材とし、各々の厚さの
ものを押圧条件一定(X軸、Y軸共に37%の圧縮
率×1回)とし破断伸び率はX軸の値Exで代表
させて25mmと100mmの場合に区分して表現したも
のである(Z軸の破断伸び率Ezは約Exの80〜90
%を示した)。X軸とZ軸への経時変化の破断伸
び率に対する影響は、ほぼ同じであることが分つ
ている。 これら第11図と第12図の結果によると、伸
び特性、耐水蒸気透過性に優れた発泡体を得るた
めには、少なくとも、25mmの如く薄い場合は、10
日以内望ましくは、3日以内という経過日数の少
ない素材発泡体を用いた方が好ましいことが分
る。 第13図は、第8図及び第9図の押圧装置で
各々厚さの異なる素材発泡体を加工したときに生
じるY軸方向の厚み減少量〔mm〕の比較図で、素
材発泡体は第11図の実験と同一の物性のものを
用い、厚さ100mmのものをスライス及び積層(少
量の接着剤による点接着で、接着層の影響が最小
限となる工夫を施した)し試験素材に再加工し
た。押圧条件は、各装置、各厚み及びX軸、Z軸
共に同一の圧縮率20%×1回とし、X軸→Z軸の
順序に加工テストした。△印は第8図の装置の場
合、〇印は第9図の装置の場合を、そして点線
は、加工不可能だつた厚さ領域を示している。 第13図によると、第8図の装置では加工によ
る発泡体の厚み減少が大きく、かつ、厚くなると
すぐにロールと材料の間でスリツプが起り加工出
来ない状態になつてしまう。 又厚み減少率の大きい発泡体は、Y軸方向の圧
縮特性、伸び特性及びそのバラツキ及び、水蒸気
透過率が悪化することからして、第8図の装置に
よる押圧加工は好ましくないことが分る。一方、
第9図の装置では、300mmの厚さを容易に押圧加
工出来、薄いものから厚いものまで、ほとんどY
軸方向の圧縮強度等を劣化させずに加工出来る優
れた装置であることが分る。 第14図は、第9図の装置を用いて、2対の狭
持駆動体間の距離〔押圧距離←→印で示す)〕を調
整し、発泡体のX軸破断伸び率の関係を示す例図
であり、使用した素材発泡体物性及び押圧条件
は、第11図の実験と同一のものである。この時
のEx、Ezは約20%と16%を示した。 第14図によると、押圧距離は少なくとも300
mm以下、望ましくは200mm以下に調整すると良い
ことが分る。 第15図は、第9図の装置を用いて、後方の狭
持駆動体による押圧持続時間〔秒〕と破断伸び率
Ex〔%〕との関係を示す例図で、第12図の実験
と同一の素材発泡体100mmと圧縮率と圧縮順序で
行ない、Exで代表させたものである。 第15図によると、押圧持続時間は、少なくと
も1秒以上、好ましくは、2秒以上にする方がよ
い。 第16図は、第9図の装置を用いて加工した場
合、同一軸(ここではZ軸)の加工順位とその破
断伸び率Ezのバラツキ〔%〕の関係を示す例図
で、押圧条件のみ同一(圧縮率=20%)にし異な
る3種の素材で行つた。Z軸を最初に押圧した時
の破断伸び率Ezのバラツキ〔%〕と、X軸を
加工した後Z軸を押圧した時の破断伸び率Ez
のバラツキ〔%〕をグラフに表したものである。
この実験の破断伸び率EzとEzの値は各々15
〜16%、14〜16%の間にあつた。 第16図によると、最初に加工した場合より二
番目に加工した場合の方が破断伸び率のバラツキ
が少なく、約1/2に減少することを示してい
る。 これ等の結果は、検討項目以外は、各々最適条
件にそろえるようにして単純比較した結果であ
り、これ等の要因を考慮して製造するとしないで
は、これ等の要因が組合されて作用することもあ
るので、最終発泡体の品質は、変つたものになつ
てしまうことは容易に想像されよう。 本発明でいう合成樹脂発泡体とは、独立気泡構
造のものをさし、ビーズ等の発泡成形体、押出発
泡成形体を含み、最も望ましくは、押出発泡成形
板をさす。 又これらの発泡体を構成する合成樹脂とは、ス
チレン、塩化ビニル、塩化ビニリデン、メタアク
リル酸メチル、ナイロンを主成分とする樹脂ある
いは、これらに共重合可能なものとの共重合体又
はブレンドしたものも含まれる。 より好ましい樹脂としては、スチレンを主成分
とする樹脂であるが、スチレンの代りにα−メチ
ルスチレン、ビニルトルエン、クロルスチレン等
他のスチレン系モノマーであつてもよい。 又上記スチレン系モノマーに共重合可能なモノ
マー、例えばアクリロニトリル、メタクリロニト
リル、アクリル酸メチル、メタクリル酸メチル、
無水マレイン酸、アクリルアミド、ビニルピリジ
ン、アクリル酸、メタクリル酸等を共重合したコ
ポリマーが含まれる。 更に上記したスチレン系ポリマーにその特性が
損われない程度に他のポリマーをブレンドしたも
のも差し支えない。 最も好ましくはスチレンモノマー単体からなる
ポリスチレンである。ポリスチレンの中でも、ス
チレン単量体含量が0.3重量%以下でスチレン三
量体含量が0.5重量%〜1.5重量%の範囲のものを
選定することが好ましい。 この範囲のものであると断面内の気泡径密度が
均質で、アスフアルト耐熱性と繰返し圧縮歪に対
する耐久力の高い発泡体となる。特に、特定2軸
方向へ押圧加工をすることにより、目標が達成さ
れる本発明のの発泡体には上記の如き素材が必要
であり非常に好都合なポリマーとなる。 また、本発明でいう各特性の測定及び評価は、
以下のようにして行つた。 (1) 密度〔Kg/m3〕 第17図に示す如き押出発泡原板の厚さ方向
上下面及び、巾方向両側面からスキンを除去し
た厚さ約100mm、巾約300mmの断面を有する製品
を調整し、第16図に示すごとく、巾方向及び
厚さ方向を3及び2分割して、厚さ方向上部か
ら巾方向に3個(L.C.R.)を採り、体積V
〔cm3〕、重量〔g〕から密度D〔Kg/m3を求める。 (2) 気泡径〔mm〕 第4図に示す各方向(X、Y及びZ)毎に
各々の方向の気泡径x、y及びz〔mm〕は
ASTM D2842に規定する測定法にて、第19
図に示す位置関係から巾方向(L.C.R.)より各
1ケ計n=3の試験片を採り、X、Y、Z軸の
気泡径x、y、z〔mm〕を平均値で求める。 (3) 気泡形状;y/x、及びy/z 上の方法で求めたx、y、zの平均値の比
y/x、y/zを計算で求める。 (4) 圧縮強度〔Kg/cm2〕 第18図に示す位置と寸法のサンプルを巾方
向からL、C、R各1ケ、長さ方向から2ケづ
つ採取し、合計6ケの試験片のY軸方向の圧縮
強度をASTM D 1621の測定法で測定し平均
値で表わし以下の基準で評価する。
[Table] The characteristics evaluated in Tables 1 to 7 are as follows:
Considering that most of these are representative properties for practical use of foam, such as push-bending workability, bending workability, cryogenic insulation suitability, etc., these results are not suitable for practical use of foam. This shows the adaptability itself. These foams are novel foams that have not been sufficiently researched in the past, and are suitable for transporting and storing low-temperature to cryogenic fluids such as liquefied petroleum gas, liquefied ethylene, liquefied natural gas, liquefied oxygen, and liquefied nitrogen. Nowadays, as insulation of pipes, cylindrical and spherical tanks, tunnels, and curved parts of buildings has become even more important, it is important to install synthetic resin foam in close contact with these structures. Easier than ever
Since it can be carried out over a wide range, economically, and reliably, it can be said that the foam is extremely useful. Furthermore, the foam of the present invention has great elongation properties in two axial directions and excellent compression properties in the remaining uniaxial direction, so that it can be used in combination with various materials,
Many applications such as use as a panel structure are possible. The foam of the present invention having the above-mentioned structural requirements can basically be produced by moderately pressing a synthetic resin foam molded product in biaxial directions.
In order to obtain a high-quality foam such as that of the present invention, care must be taken because the above-mentioned structural requirements cannot be met unless the manufacturing technology is properly selected. For example, regarding a polystyrene extruded foam molded board, it is manufactured by first pressing in the X-axis direction and then pressing in the Z-axis direction. To enumerate the main points in manufacturing, for example: a) Select a material foam with a cross section as homogeneous as possible. b) Select a material foam that has cells with long dimensions in the Y-axis direction. c) Select a new foam material after foam molding. d) Devise a pressing device with less slip. e) Shorten the actual length of the foam portion where pressing is performed. F) Set a longer pressing duration. g) When obtaining a foam with high elongation, press in stages. Conditions that satisfy at least five, preferably all, conditions should be established. 8 and 9 are principle diagrams of a device for pressing foam, in which the foam is pressed by a pair of upper and lower drive rollers 1, 2 or nipping drives 9, 10, and another pair of drive rollers 3 at the rear. , 4 or the clamping drive body 11,
A driving speed difference is provided between 12 and 12, and with that speed difference,
Pressure processing is performed on the axis in the conveyance direction, and then pressure processing is performed on another axis in the other direction perpendicular to the processed direction using the drive speed difference between the rollers or the nipping drive body in the same manner as described above. It becomes a foam with high elongation properties in biaxial directions. Reference numbers 5 and 6 in Fig. 8 and 13 and 14 in Fig. 9 refer to clamping devices in the Y-axis direction for transporting the foam while preventing it from slipping in each driving section. Since the pressure advances in the direction, sufficient adjustment is required. Hereinafter, the above-mentioned phenomena (a) to (g) in biaxial pressing performed using the apparatus shown in FIGS. 8 and 9 will be described. First, regarding a), while holding it in the Y-axis direction,
Since the other two axes are press-processed one by one, it is necessary that there be little variation in mechanical strength, especially compressive strength, within the cross section. Next, FIG. 10 is a diagram showing an example of the relationship between the cell shape of the foam material and the water vapor permeability in the Y-axis direction of the foam material after pressing. The physical properties of this material foam maintain a density of 27Kg/ m3 and a cell diameter of y≒0.6mm.
It was adjusted so that y/x≒y/z=0.7 to 2, and after one day, it was pressed in the order of the X axis and then the Z axis. Elongation at break on the X-axis and Y-axis of the obtained foam
Ex and Ey showed values of approximately 20% and 16%, respectively. According to Figure 10, the material foam has y/x≒y/z
It can be seen that it is better to select a foam having a cell structure in which the diameter is about 1 or more, that is, the long diameter is in the Y-axis direction. Figure 11 shows the number of days elapsed from foam molding to pressing processing and the water vapor permeability of the resulting foam.
In the diagram showing the relationship with Py, the material foam has a density of 27Kg/m 3 ,
The bubble diameters x, y, and z are 0.55 mm, 0.72 mm, and 0.58 mm, respectively.
The X-axis and Z-axis fracture elongation rates Ex and Ez of 100mm thick slices into 25mm slices after pressing are approximately 20 each.
% and 16%, the pressing compression ratio was selected to be 20% to 37% and the number of pressing processes was 1 to 3 times. Figure 12 is an example of the relationship between the elapsed number of days after foam molding and pressing processing of the foam and the elongation at break Ex on the The material for processing was sliced to a thickness of 25 mm, and the pressing conditions for each thickness were constant (compression rate of 37% x 1 time on both the X and Y axes), and the elongation at break was It is expressed by dividing it into 25 mm and 100 mm, represented by the axis value Ex.
%showed that). It has been found that the effects of changes over time on the X- and Z-axes on elongation at break are approximately the same. According to the results shown in Figures 11 and 12, in order to obtain a foam with excellent elongation properties and water vapor permeability, it is necessary to
It can be seen that it is preferable to use a material foam that has elapsed within a few days, preferably within 3 days. Figure 13 is a comparison diagram of the amount of thickness reduction [mm] in the Y-axis direction that occurs when foamed materials having different thicknesses are processed using the pressing devices shown in Figures 8 and 9. Using materials with the same physical properties as in the experiment shown in Figure 11, 100 mm thick specimens were sliced and laminated (point bonding with a small amount of adhesive was used to minimize the effect of the adhesive layer) to form the test material. Reworked. The pressing conditions were the same for each device, each thickness, and the same compression ratio of 20% for both the X and Z axes, and the processing test was performed in the order of the X axis → Z axis. The △ mark indicates the case of the apparatus shown in FIG. 8, the ○ mark indicates the case of the apparatus shown in FIG. 9, and the dotted line indicates the thickness region that cannot be processed. According to FIG. 13, in the apparatus of FIG. 8, the thickness of the foam decreases significantly during processing, and as soon as it becomes thick, slip occurs between the roll and the material, making it impossible to process. In addition, it can be seen that pressing with the apparatus shown in Figure 8 is not preferable for foams with a large thickness reduction rate, since compression characteristics, elongation characteristics, and their dispersion in the Y-axis direction, and water vapor permeability deteriorate. . on the other hand,
The device shown in Figure 9 can easily press a thickness of 300 mm, and can process almost all Y-type materials, from thin to thick.
It can be seen that this is an excellent device that can perform processing without deteriorating the compressive strength in the axial direction. Fig. 14 shows the relationship between the X-axis elongation at break of the foam by adjusting the distance between the two pairs of clamping drive bodies (indicated by the press distance ←→ mark) using the apparatus shown in Fig. 9. This is an example diagram, and the physical properties of the foam material and pressing conditions used are the same as in the experiment in FIG. 11. At this time, Ex and Ez were approximately 20% and 16%. According to Figure 14, the pressing distance is at least 300
It turns out that it is best to adjust it to less than mm, preferably less than 200 mm. Figure 15 shows the pressing duration [seconds] and elongation rate at break by the rear gripping drive using the device shown in Figure 9.
This is an example diagram showing the relationship with Ex [%]. The experiment was conducted using the same foam material of 100 mm as in the experiment in Figure 12, and the compression ratio and compression order, and is represented by Ex. According to FIG. 15, the pressing duration should be at least 1 second or more, preferably 2 seconds or more. Figure 16 is an example diagram showing the relationship between the machining order of the same axis (in this case, the Z axis) and the variation [%] of the elongation at break Ez when machining is performed using the apparatus shown in Figure 9. Three different materials were used at the same compression rate (compression rate = 20%). Variation [%] of the elongation at break Ez when the Z-axis is first pressed and elongation at break Ez when the Z-axis is pressed after processing the X-axis
This is a graph showing the variation [%].
The values of elongation at break Ez and Ez in this experiment are 15 each.
~16%, between 14 and 16%. According to FIG. 16, there is less variation in the elongation at break when the material is processed second than when it is processed first, and it is reduced to about 1/2. These results are simply the results of a simple comparison with the optimum conditions set for each item other than the items to be considered, and it is important to note that these factors may work in combination if they are not manufactured with these factors in mind. Therefore, it is easy to imagine that the quality of the final foam would be different. The term "synthetic resin foam" as used in the present invention refers to one having a closed cell structure, and includes foam molded products such as beads and extruded foam molded products, and most preferably refers to extruded foam molded plates. In addition, the synthetic resins constituting these foams are resins whose main components are styrene, vinyl chloride, vinylidene chloride, methyl methacrylate, and nylon, or copolymers or blends of these with copolymerizable materials. Also includes things. A more preferred resin is a resin containing styrene as a main component, but other styrene monomers such as α-methylstyrene, vinyltoluene, chlorostyrene, etc. may be used instead of styrene. In addition, monomers copolymerizable with the above styrene monomers, such as acrylonitrile, methacrylonitrile, methyl acrylate, methyl methacrylate,
Copolymers of maleic anhydride, acrylamide, vinylpyridine, acrylic acid, methacrylic acid, etc. are included. Furthermore, the above-mentioned styrenic polymer may be blended with other polymers to the extent that its properties are not impaired. Most preferred is polystyrene consisting of a single styrene monomer. Among polystyrenes, it is preferable to select one having a styrene monomer content of 0.3% by weight or less and a styrene trimer content of 0.5% to 1.5% by weight. If the foam is within this range, the cell diameter density within the cross section will be uniform, and the foam will have high asphalt heat resistance and durability against repeated compressive strain. In particular, the foam of the present invention, which achieves the goal by pressing in two specific axial directions, requires the above-mentioned materials and is a very convenient polymer. In addition, the measurement and evaluation of each characteristic in the present invention is as follows:
I did it as follows. (1) Density [Kg/m 3 ] A product having a cross section of about 100 mm thick and about 300 mm wide, obtained by removing the skin from the upper and lower surfaces in the thickness direction and both sides in the width direction of the extruded foam base plate as shown in Figure 17. As shown in Figure 16, divide the width direction and thickness direction into 3 and 2 parts, take 3 pieces (LCR) in the width direction from the upper part in the thickness direction, and calculate the volume V.
Find the density D [Kg/m 3 ] from [cm 3 ] and weight [g]. (2) Bubble diameter [mm] For each direction (X, Y, and Z) shown in Figure 4, the bubble diameter x, y, and z [mm] in each direction is
According to the measurement method specified in ASTM D2842, the 19th
From the positional relationship shown in the figure, take a total of 3 test pieces (n = 3) from each side in the width direction (LCR), and determine the average values of the bubble diameters x, y, and z [mm] on the X, Y, and Z axes. (3) Bubble shape; y/x and y/z Calculate the ratio y/x and y/z of the average values of x, y, and z obtained by the above method. (4) Compressive strength [Kg/cm 2 ] Samples with the positions and dimensions shown in Figure 18 were taken, one each from L, C, and R from the width direction, and two from each length, making a total of 6 test pieces. The compressive strength in the Y-axis direction is measured using the ASTM D 1621 measuring method, expressed as an average value, and evaluated using the following criteria.

【表】 (5) 引張強度〔Kg/cm2〕及びバラツキ〔%〕 ASTM D−1623B法に基づき第20図によ
り試験片を50mm×50mm×50mmに調整後、L.C.R
より各々4ケづつ合計12個の試験片に治具を引
張強度を測定する上下面に各々接着する。 X軸及びZ軸の引張強度の平均値及びバラツ
キは次の方法で計算し、以下の基準で評価す
る。 引張強度(平均) =個々のデータの総和/12〔Kg/cm2〕 引張強度のバラツキ=最大値−最小値/平均値 ×100〔%〕 〔引張強度の単位;Kg/cm2
[Table] (5) Tensile strength [Kg/cm 2 ] and variation [%] After adjusting the test piece to 50 mm x 50 mm x 50 mm according to Figure 20 based on ASTM D-1623B method, LCR
A total of 12 test specimens, 4 of each, were bonded with jigs on the upper and lower surfaces of which the tensile strength was to be measured. The average value and variation of the tensile strength on the X-axis and Z-axis are calculated by the following method and evaluated based on the following criteria. Tensile strength (average) = sum of individual data / 12 [Kg/cm 2 ] Variation in tensile strength = maximum value - minimum value / average value × 100 [%] [Unit of tensile strength; Kg/cm 2 ]

【表】 (6) 熱伝導率〔kcal/m hr℃〕 第21図の試験用サンプル3枚を用い、
ASTM C−518による測定法により、0℃の
値を求め、その平均値を以下の基準で評価す
る。巾不足のものは接着剤で継いで試験片とす
る。
[Table] (6) Thermal conductivity [kcal/m hr℃] Using the three test samples shown in Figure 21,
The value at 0°C is determined by the measurement method according to ASTM C-518, and the average value is evaluated based on the following criteria. If the width is insufficient, connect it with adhesive and use it as a test piece.

【表】 (7) 破断伸び率〔%〕及びバラツキ〔%〕 引張強度測定法、ASTM D 1623B法に基
づき指定の方向(X、Y及びZ)に、試験片を
引張り、破断した時の歪量(伸び量)〔mm〕を
測定し以下の式で計算し評価する。 試験片は各方向毎に第20図に基づき合計12
個。 破断伸び率 =破断時の伸び量〔mm〕/試験片の厚さ〔mm〕×100
〔%〕 上記破断伸び率のデータ12個から 破断伸び率のバラツキ =最大値−最小値/平均伸び率〔%〕×100〔%〕
[Table] (7) Elongation at break [%] and variation [%] Based on the tensile strength measurement method, ASTM D 1623B method, the test piece is pulled in the specified directions (X, Y, and Z), and the strain at break is measured. Measure the amount (amount of elongation) [mm] and calculate and evaluate using the following formula. A total of 12 test pieces were prepared in each direction based on Figure 20.
Individual. Elongation at break = Elongation at break [mm] / Thickness of test piece [mm] x 100
[%] Variation in elongation at break from the 12 pieces of elongation at break data = maximum value - minimum value / average elongation rate [%] x 100 [%]

【表】 (8) 破断伸び率の比:Ex/Ey及びEz/Ey 破断伸び率Ex、Ey及びEzの20個の平均値か
ら各々の比率Ex/Ey、Ez/Eyを計算する。 (9) 水蒸気透過率;WVTR〔g/m2・hr〕 第25図のサンプリング要領で25mm×80φの
試験片3ケを採取し、ASTM D 355に準じ
て測定する。25mm厚さでのWVTRは次式で計
算する。但し蒸留水を用いる方法で行う。 WVTR〔g/m2・hr〕=G/A・t G;重量変化〔g〕 t; 〃 Gの生じた時間巾(hr) A;透過面積(m2) (10) 熱伝導率の経時変化率 第21図に示すように押圧加工した製品を上
部より厚さ25mm、巾200mm、長さ200mmの試験片
を採取し、第22図に示す装置を用いて測定す
る。 断熱材26で囲んだ温度調節機27を備えた
容器25に27℃の水28を入れ、該容器の開口
部側を、前記の試料片29により、パツキン3
0を介して閉塞する。この際、試料片の下面と
容器内の水面との間は約30mmの距離を設けるよ
うに配置する。また、試験片29の上面は、循
環水口31及び32から循環される冷却水によ
つて2℃に冷却されている冷却板33に密着し
ている。このような状態を保つて14日間放置し
たのち、試料片の表面をガーゼで軽く拭きと
り、ASTM C 518に従つてこのものの熱伝
導率λ′を測定し、あらかじめ試験前に同じ条件
下で測定した熱伝導率λとの変化の割合λ′/λ
を求め、次表に従つて評価する。
[Table] (8) Ratio of elongation at break: Ex/Ey and Ez/Ey Calculate the respective ratios Ex/Ey and Ez/Ey from the average values of 20 elongation at break Ex, Ey, and Ez. (9) Water vapor transmission rate; WVTR [g/m 2 hr] Three test pieces of 25 mm x 80φ are taken according to the sampling procedure shown in Figure 25, and measured according to ASTM D 355. WVTR at 25mm thickness is calculated using the following formula. However, it is carried out using a method using distilled water. WVTR [g/m 2・hr] = G / A ・t G: Weight change [g] t: Time span during which G occurred (hr) A: Transmission area (m 2 ) (10) Thermal conductivity over time Rate of change A test piece of 25 mm in thickness, 200 mm in width, and 200 mm in length is taken from the top of the pressed product as shown in Figure 21, and measured using the apparatus shown in Figure 22. Water 28 at 27° C. is placed in a container 25 equipped with a temperature controller 27 surrounded by a heat insulating material 26, and the opening side of the container is sealed with the gasket 3 using the sample piece 29.
Block through 0. At this time, the sample piece is placed so that there is a distance of about 30 mm between the bottom surface of the sample and the water surface in the container. Further, the upper surface of the test piece 29 is in close contact with a cooling plate 33 that is cooled to 2° C. by cooling water that is circulated from circulating water ports 31 and 32. After being left in this condition for 14 days, the surface of the sample piece was wiped gently with gauze, and the thermal conductivity λ' of this piece was measured in accordance with ASTM C 518, and the thermal conductivity λ' was measured under the same conditions before the test. The rate of change from the thermal conductivity λ is λ′/λ
Calculate and evaluate according to the table below.

【表】 (11) パネル極低温抵抗性 第24図に示すように50mm×試験板巾(170
〜270mm)×300mmの試験板を採り、上下面を切
削仕上後、第25図のようにX軸、Z軸方向を
明示した試験発泡体35上下面に12mm×(170〜
270mm)×300mmの合板(JAS規格品)37,3
8をポリウレタン系2液型極低温用接着剤(住
友ベークライト社製:スミタツクEA90177)3
6で接着し24時間×23℃の条件で0.5Kg/cm2の加
圧下で熱成硬化させて、試験用パネル34と
し、3枚を製作、試験する。 1) 極低温:−160℃テスト 第26図に示すように上記試験用パネル3
4を−160℃±5℃に内部を温調した極低温
槽39の中に急激に入れ、5時間放置後常温
に急激に手り出し1時間放置する。この操作
を繰返し、4回行い、4回目に極低温槽39
から試験パネル34を取り出した直後試験発
泡板35の4つの面を観察しクラツクの有無
と発生した方向を確認する。1時間後に合板
37,38、試験発泡板35の境界面にそつ
て1コ歯型スライサーでスライスし、更に試
験発泡板35の内部に向つて約10mm厚さで5
分割したスライスサンプルを調整し、各々の
スライスサンプル面に界面活性剤と着色用イ
ンクを混合した水を塗付し、サンプル表面の
クラツクの有無と方向を調査記録する。 なお、極低温槽39内の温度コントロール
は、液体窒素ボンベ40から液体窒素配管4
1を介して槽内頂部の噴出ノズル43に導
き、ここで有孔ジヤマ板44に接触しながら
気化し、ガスは排出口46から出て槽内の温
度を下げる。液体窒素は槽内の温度計45と
タイマーを連動させたコントロール装置によ
り流量自動調節弁42の開閉で液体窒素流量
が調節される。 2) 極低温:−196テスト 第27図に示すように、上記の試験用パネ
ル35を断熱材47で密閉された液体窒素浸
漬装置48で試験する。 ステンレス製の深底トレー49に液体窒素
50を液体窒素ボンベから直接、液体窒素配
管41と液体窒素導入弁51を介して導入
後、上記試験用パネル34を急激に液体窒素
50内に充分浸漬するように入れ、鉄製サポ
ート51の上にあらかじめ液体窒素中で冷却
済の鉄製重錘52をのせ、30分間連続浸漬し
た後、上記試験パネル34をふん囲気中に取
り出し、通風しながら1時間放置する。この
操作を4回行い、極低温−160℃のテストで
行つたと同様の装置と方法で発泡体外面、内
面のクラツクの有無と方向を調査記録する。 各々のテスト温度条件について、3ケの試
験パネルの調査記録の結果をもとに以下の基
準に従つて評価する。
[Table] (11) Panel cryogenic resistance As shown in Figure 24, 50 mm x test plate width (170
270mm) x 300mm, and after cutting and finishing the upper and lower surfaces, test foam 35 with the X-axis and Z-axis directions clearly marked as shown in Figure 25, was 12mm x (170mm)
270mm) x 300mm plywood (JAS standard product) 37.3
8 is a polyurethane-based two-component cryogenic adhesive (manufactured by Sumitomo Bakelite Co., Ltd.: Sumitaku EA90177) 3
6 and heat-cured under a pressure of 0.5 Kg/cm 2 for 24 hours at 23° C. to prepare three test panels 34 and test them. 1) Cryogenic temperature: -160℃ test As shown in Figure 26, the above test panel 3
4 was suddenly put into a cryogenic chamber 39 whose internal temperature was controlled to -160°C±5°C, and after being left for 5 hours, it was rapidly brought back to room temperature and left to stand for 1 hour. Repeat this operation 4 times, and the cryogenic chamber 39
Immediately after taking out the test panel 34 from the test foam board 35, the four sides of the test foam board 35 are observed to confirm the presence or absence of cracks and the direction in which they occur. After 1 hour, the plywood 37, 38 and the test foam board 35 were sliced with a single-tooth slicer along the interface, and then sliced into the test foam board 35 to a thickness of about 10 mm.
The divided slice samples are prepared, water mixed with a surfactant and coloring ink is applied to the surface of each slice sample, and the presence or absence and direction of cracks on the sample surface are investigated and recorded. The temperature inside the cryogenic chamber 39 is controlled by the liquid nitrogen pipe 4 from the liquid nitrogen cylinder 40.
1 to a jet nozzle 43 at the top of the tank, where it is vaporized while contacting a perforated barrier plate 44, and the gas exits from an outlet 46 to lower the temperature inside the tank. The flow rate of liquid nitrogen is regulated by opening and closing an automatic flow rate control valve 42 by a control device that interlocks a thermometer 45 in the tank and a timer. 2) Cryogenic temperature: -196 test As shown in FIG. 27, the test panel 35 described above is tested in a liquid nitrogen immersion device 48 sealed with a heat insulating material 47. After introducing liquid nitrogen 50 directly from the liquid nitrogen cylinder into the stainless steel deep-bottom tray 49 via the liquid nitrogen piping 41 and liquid nitrogen introduction valve 51, the test panel 34 is rapidly and sufficiently immersed in the liquid nitrogen 50. A steel weight 52 that has been cooled in liquid nitrogen in advance is placed on top of the iron support 51, and after being continuously immersed for 30 minutes, the test panel 34 is taken out into an ambient atmosphere and left for one hour while being ventilated. . This operation was repeated four times, and the existence and direction of cracks on the outer and inner surfaces of the foam were investigated and recorded using the same equipment and method as used in the cryogenic -160°C test. Each test temperature condition will be evaluated according to the following criteria based on the results of the investigation records of the three test panels.

【表】 (12) パイプ押曲げ加工性 第28図に示すように、試験用発泡体厚さ
(25、37.5及び75mm)×巾(200mm)×長さ(500
mm)の評価用サンプル53を調整後第29図の
外径約114mm(100A)の鉄製パイプ54、に対
しX軸方向をその曲率にそわせて押曲げ、少く
ともパイプの半円周(A−A線)を超えるまで
密着させる。 その押曲げ加工性について以下の基準で評価
する。
[Table] (12) Pipe bending workability As shown in Figure 28, test foam thickness (25, 37.5 and 75 mm) x width (200 mm) x length (500 mm)
After adjusting the evaluation sample 53 with a diameter of about 114 mm (100 A) shown in FIG. -A line). The bending workability is evaluated based on the following criteria.

【表】 (13) パイプカバー熱成形性 第30図に示すように、試験発泡体53、の
X軸方向を熱成形用鉄製パイプ54の外径
(114mm、100A)に直角に添わせて押曲げた後、
0.3mmの亜鉛引き鉄板55を押曲げた試験発泡
体56の上に完全に覆つた後、緊張用バンド5
7でその両端を固定した後、 発泡体部分が上部に位置するように85℃に温
調した熱風オーブンに入れ、45分間加熱後、取
り出し大気中で2時間放冷する。 亜鉛引き鉄板55を外して、パイプに刻印し
た半円周直径部A−A線上で、パイプ外表面と
成形体56のすき間58,59をmm単位で計測
し記録する。評価するすき間は記録したすき間
58,59の平均したもので表わす。 その結果を以下の基準で評価する。
[Table] (13) Pipe cover thermoformability As shown in Fig. 30, the test foam 53 was pressed so that the X-axis direction was perpendicular to the outer diameter (114 mm, 100 A) of the iron pipe 54 for thermoforming. After bending
After completely covering the 0.3 mm galvanized iron plate 55 on the pressed and bent test foam 56, the tension band 5
After fixing both ends in step 7, place it in a hot air oven adjusted to 85℃ with the foam part at the top, heat it for 45 minutes, then take it out and leave it to cool in the air for 2 hours. The galvanized iron plate 55 is removed, and the gaps 58 and 59 between the outer surface of the pipe and the molded body 56 are measured and recorded in mm on the semicircumferential diameter line A-A stamped on the pipe. The gap to be evaluated is expressed as the average of recorded gaps 58 and 59. The results will be evaluated based on the following criteria.

【表】 (14) パイプカバー断熱性 厚さ37.5mm×巾200mm×長さ500mmの材料を2
枚作り、その中の1枚を第29図の如く外径
114mmのパイプにX軸方向をその曲率にそわせ
て押曲げ、次に他の1枚を同一方向にしてすで
に押曲げた最初の板の上に重ねて押曲げ2層と
なし、第30図に示す熱成形パイプカバー製造
方法を応用し、85℃×45分加熱、2時間放冷の
条件で熱成形し、長さ約200mmの1/2円弧状
パイプカバーに調整する。第1層用パイプカバ
ー61,62及び第2層用パイプカバー64,
65を各々4組づつ準備し、第31図に示す断
面構造体60を次に示す要領で施工する。 1対の1/2円弧状の第1層用パイプカバー
61,62をステンレス304のパイプ、54
(直径100A、長さ約800mm)に装置し目地部は
ポリウレタン系極低温用接着剤(西独ヘンケル
社製マクロプラストUK8605P/UK5400)で接
着固定し、同様の方法で第32図の側面で示す
ように第一層の施工を終える。 パイプカバー各対間の目地部69及び仕切フ
ランジ70の間の目地部71は同上の接着剤を
使用する。次に長さ方向及び円周方向の目地部
が重ならぬようにずらしながら、第2層用パイ
プカバー64,65等を順次施工する。第2層
の外表面にポリウレタン系マスチツク(ニチア
ス社製:エラストナートANo.9840A)を約2.5
mm塗布して防湿層66とする。4日間熱成放置
後、第32図の極低温実用配管テスト装置67
に接続し、液体窒素ボンベ40からフレキシブ
ルパイプ41と手動バルブ42を介して液体窒
素50を急激に導入して内面を常に−196℃に
6時間維持し、内部の液体窒素50をバルブ6
8から急激に抜取り空にして23℃×80%(湿
度)のふん囲気で12時間自然放置して昇温させ
る。この操作を合計3回繰返して試験体の防湿
層上の表面状態を観察して、表面結露の有無、
氷着の有無を記録し、以下の基準で評価する。
[Table] (14) Pipe cover insulation properties 2 materials with thickness 37.5 mm x width 200 mm x length 500 mm
Make one sheet, and one of them has an outer diameter as shown in Figure 29.
A 114 mm pipe is pressed and bent in the X-axis direction along its curvature, and then another sheet is placed in the same direction on top of the first sheet that has already been pressed and bent, creating two layers of pressing and bending, as shown in Figure 30. Applying the thermoforming pipe cover manufacturing method shown in Figure 2, thermoforming is performed under the conditions of heating at 85℃ x 45 minutes and cooling for 2 hours, and adjusting it to a 1/2 arc-shaped pipe cover with a length of approximately 200 mm. Pipe covers 61, 62 for the first layer and pipe cover 64 for the second layer,
65 are prepared, and the cross-sectional structure 60 shown in FIG. 31 is constructed in the following manner. A pair of 1/2 arc-shaped first layer pipe covers 61, 62 are made of stainless steel 304 pipe, 54
(diameter 100A, length approximately 800mm), and the joints were glued and fixed with a polyurethane cryogenic adhesive (Macroplast UK8605P/UK5400 manufactured by Henkel, West Germany), and in the same way as shown in the side view of Figure 32. Construction of the first layer will be completed. The same adhesive is used for the joints 69 between each pair of pipe covers and the joints 71 between the partition flanges 70. Next, the second layer pipe covers 64, 65, etc. are sequentially installed while shifting the joints in the longitudinal direction and circumferential direction so that they do not overlap. Approximately 2.5 mm of polyurethane mastic (manufactured by Nichias Corporation: Elastonato A No. 9840A) is applied to the outer surface of the second layer.
mm to form a moisture-proof layer 66. After being heated for 4 days, the cryogenic practical piping test device 67 shown in Fig. 32
The liquid nitrogen 50 is rapidly introduced from the liquid nitrogen cylinder 40 through the flexible pipe 41 and the manual valve 42 to maintain the inner surface at -196°C for 6 hours, and the liquid nitrogen 50 inside is connected to the valve 6.
At step 8, the container was suddenly removed, emptied, and left to rise naturally in a 23°C x 80% (humidity) atmosphere for 12 hours. Repeat this operation three times in total and observe the surface condition on the moisture-proof layer of the test piece to determine whether there is surface condensation or not.
Record the presence or absence of icing and evaluate based on the following criteria.

【表】 (15) パイプカバークラツク抵抗性 前記のパイプカバー断熱性の試験終了後直ち
に極低温実用配管テスト装置67上の保冷部分
を注意深く分解し、第1層のパイプカバー6
1,62群及び第2層のパイプカバー64,6
5群の内外面を観察し、クラツクの有無及びク
ラツクの方向性を目視あるいは「パネル極低温
抵抗性」評価試験で用いたカラーチエツクで調
べ、その結果を記録し、下記の基準で評価す
る。
[Table] (15) Pipe Cover Cracking Resistance Immediately after completing the above-mentioned pipe cover insulation test, carefully disassemble the cold storage part on the cryogenic practical piping test device 67, and crack the first layer of pipe cover 6.
1st, 62nd group and 2nd layer pipe covers 64, 6
The inner and outer surfaces of Group 5 were observed, and the presence or absence of cracks and the direction of the cracks were checked visually or with the color check used in the "panel cryogenic resistance" evaluation test. The results were recorded and evaluated according to the following criteria.

【表】 なお、本発明の発泡体製造の実施例、比較例で
使用したスチレン樹脂の代表特性については測定
法を以下に記す。 ポリマー粘度 トルエン30℃での極限粘度は、約0.83であつ
た。 スチレン単量体 ガスクロマトグラフイ法(検出器FID)で分
析定量した値で表わし、0.20重量%を示した スチレン三量体 ポリマーをメチルエチルケトンに溶解し、更
にメタノールを加えてポリマー分を沈降させ、
その上澄液をシリコンDC−410/Chromosorb
−Wを充填したガスクロマトグラフイ法(検出
器FID)で、分析定量した値で表わし、0.87重
量%を示した。 実施例 1 スチレン単量体含量が0.20重量%、スチレン三
量体含量が0.80重量%を含むスチレン樹脂をスク
リユー型押出機、発泡剤注入混合機、冷却機、板
状物成形用のダイスからなる押出発泡装置にて発
泡を行つた。 ポリマー100重量部、難燃剤2重量部、造核剤
0.03〜0.1重量部からなる原料を押出機スクリユ
ーホツパー部に連続供給し、発泡剤注入混合機に
て、ジクロロジフルオルメタンとメチルクロライ
ド、1対1からなる混合発泡剤12〜17重量部を加
圧注入した。得られた混合物は、続いて冷却機に
て加圧下のもとで混和、冷却され、最終的に樹脂
温度は、90〜118℃に調整された。続いて発泡剤
混合樹脂は、ダイスより大気圧下に押出され、同
時に発泡された押圧加工用素材発泡体を得た。 この際、気泡径x、y及びzからなる気泡形状
y/x及びy/zが、各々1.1〜1.25、及び1.1〜
1.17、断面の大きさは約110mm×350mmとなるよう
に一定に維持して、製造条件を調節し、気泡径y
と密度Dのみ調整して各々、0.07〜1.6mm、約2.15
〜77Kg/cm2の範囲発泡体を得た。 密度21、Kg/m3以下のものについては、更に2
〜6分間100℃のスチームで、2次発泡して、約
15.5〜20Kg/m3の密度に調整して、特殊低密度素
材とした。 これらの押出板状体から第17図に示す断面約
100mm×300mm×2000mmの押圧加工用素材を製造し
た。 これらの素材を第9図に示す機械的押圧装置
で、本文記載の製造方法に準じて、X方向を押圧
加工し、次いで、Z軸方向を押圧加工した。特に
この際の主要条件は第8表に示す通りのものであ
つた。押圧加工後の製品の気泡形状y/x、y/
zは各々1.2〜1.4の範囲でほぼ一定となつた。 押圧加工後の発泡体について各々本文記載の方
法によつて、密度、D、Y方向の気泡径y、気泡
形状y/x、y/zを測定した。更に、これらの
発泡体について圧縮強度(Y方向)、引張強度
(X及びZ方向)、引張強度のバラツキ(X及びZ
方向)及び、熱伝導率(Y方向)について、本文
記載の方法で測定し、評価した結果を第1表に示
した。 即ち、第1表の総合結果に基づき、本発明の目
的を満すもの(〇印)最も好しいもの(◎印)、
満さないもの(×印)に区分し、その評価結果
を、たて軸に密度(D)〔Kg/m3〕、よこ軸に発泡
体のY軸方向の気泡径(y)を目盛つたグラフに
プロツトし、その分布状態を分析したその結果を
第5図に示す。 第5図の結果によると、本発明の目的を満す発
泡体は座標点(気泡径y、密度D)で示すと、
(1.0、55)、(0.25、100)、(0.05、100)、(0.05

26.5)及び(1.0、20)を直線で結ぶ五角形の範
囲内に、更に望ましくは、(0.8、55)、(0.25、
93)、(0.07、93)、(0.07、28.5)及び(0.8、23.5

を直線で結ぶ五角形の範囲になければならないこ
とを示す。 換言すれば、本発明の発泡体は、押圧加工され
た発泡体の密度D〔Kg/m3〕が約20〜100及びY方
向に測つた気泡径y〔mm〕が約0.05〜1の範囲で
あつて、yとDとの間において、 (−75log y+55)D(−5log y+20) の関係を満し、更に望ましくは、密度D〔Kg/m3
が約23〜93気泡径y〔mm〕が、0.07〜0.8の範囲で
あつて、yとDの間に、 (−75log y+48)D(−5log y+23) の関係を満すことが必要であることが分る。 第 8 表 加工条件 加工までのエージング日数 :1日 加工厚さ :100mm 加工速度(入口ベルト) :12m/sec 圧縮率(出入口ベルト速度比):22/21〜28/21 押圧距離(入、出口ベルト軸間距離) :200mm 押圧固定時間 :3.6秒 加工回数 :1〜3回 実施例 2 実施例1と同様のスチレン樹脂(スチレン単量
体:0.20重量%)(スチレン三量体:0.80重量%)
を使い同一の装置と方法を繰返して、押圧加工用
素材を製造した。 この際素材密度を約21〜55Kg/m3、Y方向の気
泡径yを0.1〜0.75mmとして実施例1の好しい値
の範囲に調整した上で、気泡形状y/x、y/z
の影響を検討出来るように各々約0.7〜2に調整
して押圧加工用素材を製造した。これらの素材を
第9図の機械的押圧装置で、本文記載の製造方法
に従い第8表に記載の主要加工条件と上記の素材
を組合せることによつて、気泡形状y/x及び
y/zの値が0.8〜3.25の広い範囲の2軸方向に
押圧された評価用発泡体を製造した。 得られた押圧加工発泡体は、実施例1の結果を
プロツトした第5図において、密度DとY方向の
気泡径yの関係において、最も望ましい範囲、即
ち、座標点(0.8、55)、(0.25、93)、(0.07、93)

(0.07、28.5)及び(0.08、23.5)を直線で結ぶ五
角形の中に存在するものであつた。 これらの発泡体について、実施例1と同様の本
文記載の方法により同様の評価項目と基準で気泡
形状y/x、y/zで評価した結果を第2表に示
した。 第2表の結果から、本発明の目的を満す密度D
〔Kg/m3〕が、約20〜100Kg/m3、Y軸方向に測つた
気泡径y〔mm〕が0.05〜1の範囲でyとDの間に
おいて、 (−75log y+55)D(−5log y+20) の関係を満したものであつても、気泡の寸法形状
y/x、y/zは各々y/x1.05、y/z
1.05でなければならない。 上記すべての評価特性をより高水準に達成する
ためには、気泡寸法形状は各々y/x1.10、
y/z1.10である方が好しいことが分る。即
ち、本発明の目的を最高水準で達成する発泡体
は、密度D〔Kg/m3〕が約23〜93、気泡径y〔mm〕
が0.07〜0.8でかつ密度DとY方向の気泡径yと
の関係で、 (−75log y+48)D>(−5log y+23) を満し、かつ気泡形状y/x1.1、y/z1.1
を満すことが必要で、Y軸に長径の気泡群の集合
体でなければならないことが分る。 実施例 3 実施例1〜2と同様のスチレン樹脂を使い、同
様の押出成形装置と方法を繰返して、同一断面の
押圧加工用素材発泡体を2種類製造した。各々密
度Dが27Kg/m3、50Kg/m3、Y方向の気泡径yが
0.61mm、0.11mm、気泡形状y/x及びy/zが
各々1.20と1.15及び1.25と1.20のものであつた。 これらの素材を第9図に示す押圧装置で本文記
載の製造方法に準じて、初めにX方向、次いでZ
方向に押圧加工した。この際第表に示す押圧加
工条件の中、圧縮率と、加工回数のみを適宜選択
し他は同一条件で行い、発泡体X軸、Z軸方向の
破断伸び率Ex、Ez、それらの比率Ex/Ey、
Ez/Ey及びY軸方向の水蒸気透過率の影響を検
討するための評価素材を製造した。 比較のために、未加工のもの(実験No.113)及
び、X方向のみ加工したもの(実験No.124〜127)
とZ方向のみ加工したもの(実験No.115〜118)も
製造した。 各々の発泡体について、本文記載の方法で、密
度D、気泡径y、気泡形状y/x及びy/z、
X、Z及びY方向の各々の破断伸び率Ex、Ez、
EyX方向とY方向の破断伸び率の比Ex/Ey及び
Z方向とY方向の破断伸び率の比、Ez/Ey及び
Y方向の水蒸気透過率Py〔g/m2・hr〕を測定し、
更に本文記載の評価特性、即ち、X及びZ方向の
破断伸び率Ex、Ezのバラツキ、Y方向の熱伝導
率の経時変化率、X及びZ方向の−160℃と−196
℃における各々の極低温抵抗性に着目して本文記
載の方法と基準で評価し、各々の結果とそれらを
総合評価した結果を第表に示した。 即ち、第表の結果の理解を深めるために、た
て軸にZ方向に測つた破断伸び率Ez〔%〕を、よ
こ軸には、X軸方向に測つた破断伸び率Ex〔%〕
を目盛り、本発明の目的を満すもの(〇印)、最
高水準を満すもの(◎印)、満さないもの(×印)
に区分してプロツトし、各々の発泡体の破断伸び
の方向性を表現したのが第6図である。又、たて
軸にZ方向とY方向の破断伸び率の比、Ez/Ey
を、よこ軸には、X方向とY方向の破断伸び率の
比、Ex/Eyを目盛り、本発明の目的を満すもの
(〇印)最高水準のもの(◎印)満さないもの
(×印)に区分してプロツトし、よく伸びる方向
X、Z方向と伸びが非常に少い方向Yの伸び率の
分布の関係を表現したのが第7図である。 第6図の結果によると、本発明の目的を満す発
泡体は、X軸方向の破断伸び率ExとZ方向の破
断伸び率Ezとの関係が少くとも (8−Ex−56)Ez(1/8Ex+7)かつ Ez(90−Ex)でありEz、Exは各々60Ez
860Ez8〔%〕の値の範囲に分布しているこ
とが分る。 座標点(X軸方向破断伸び率Ex、Z軸方向の
破断伸び率Ez)の関係で示すと、(8、8)、
(60、14.5)、(60、30)、(30、60)及び(14.5、
60)を直線で結ぶ五角形の範囲内でなければなら
ない。 更に極低温断熱材としての機能をより高め、−
196℃の液体窒素の保冷材として考え、他の特性
も最高水準にある本発明の発泡体では、Ex、Ey
が各々40Ex12かつ40Ex12の範囲でEz
(52−Ex)の関係を満すものでなければならず、
これを同様に座標点で示すと(12、12)、(40、
12)及び(12、40)を直線で結んだ三角形の線上
を含む範囲内にある。 一方、3軸方向X、Y、Z軸間の破断伸び率
Ex、Ey、Ezの分布の関係を示す第7図の結果に
よると、本発明の目的を満す発泡体は、上述の条
件を満した上で各々の破断伸び率の比Ex/Ey、
Ez/Eyが、各々8.3>Ex/Ey>1.8、8.3>Ez/
Ey>1.8及びEx+Ez<12Eyの関係を満すもので
なければならない。即ち、座標点(Ex/Ey、Ez/Ey) で示すと、(1.8、1.8)、(8.3、1.8)、(8.3、3.3)

(3.3、8.3)及び(1.8、8.3)を直線で結ぶ五角形
の中にあることが分かる。 更に、第3表の評価項目であるY軸方向の水蒸
気透過率Py〔g/m2hr〕について述べると本発明
の目的を達成する発泡体は、断熱体の長期使用中
の劣化を押えるために、この値が少くとも1.5以
下である必要が分かる。 長期的な断熱性能の維持を重視するならば、
Pyの値は1.0以下であれば更によい。 第3表の結果である第6図、第7図及びY軸方
向の水蒸気透過率Py〔g/m2・hr〕の結果を総合
すると、本発明を達成するための発泡体は、上述
の第1表及び第2表の結果を充分満すものであつ
ても、X、Y及びZ軸の破断伸び率Ex、Ey、Ez
が各々60Ex8〔%〕、60Ez8〔%〕の範囲
で (8Ex−56)Ez(1/8Ex+7)及び Ez(90−Ez)の範囲にありかつ8.3>Ex/Ey
>1.8、8.3>Ez/Ey>1.8及びEx+Ez<12Eyの関
係を満し、X軸方向の水蒸気透過率Py〔g/m2
hr〕が1.5以下であらねばならない。 本発明の発泡体が、荷化窒素の極低温にも耐え
かつ長期的な断熱性能の維持も重視した最高水準
の目的を達成するには、第1表〜第2表の結果を
満すと同時に、Ex、Ey及びEzが、40Ex12
〔%〕、40Ez12〔%〕及びEz(52−Ex)の
範囲を満しかつ、8.3>Ex/Ey>1.8、8.3>Ez/
Ey>1.8及びEx+Ez<12Eyでかこまれる範囲に
3軸(X、Y、Z)間の破断伸び率の分布があ
り、かつX軸方向の水蒸気透過率Py〔g/m2・hr〕
が1.0以下であれば、より好ましいことが分る。 第1,2,3図は、本発明でいう二軸方向に伸
び特性が大きい発泡体気泡構造の代表例示で、実
験No.90の発泡体を、第4図に示す概念に従つて、
X、Y、Z軸方向に直観した拡大写真図(50倍)
である。同第1図はX軸方向、第2図はY軸方
向、第3図はZ軸方向のそれを示す。第1図、2
図及び3図によると、本発明の発泡体の内部のシ
ワの状態をX、Y、Z軸の三方向から見て全体的
に表現すると、いずれの軸方向から見ても気壁に
シワが見えるが、そのシワの方向と存在する気泡
壁をよく観察すると、Z軸方向(第1及び2図)
とX軸方向(第2及び3図)の気泡壁には、多く
のシワが存在するが、Y軸方向(第1及び3図)
の気泡壁には、あまりシワが存在しないという、
気泡壁のシワに分布と方向性があることが分か
る。このシワの分布と方向性は、本発明の発泡体
の製造法によつて形成される特殊なシワと考えら
れ、更にこのシワそのものが、発泡体の密度、気
泡寸法、形状を相俟つて、上述したExとEzの関
係、ExとEy及びEzのEyの比率関係及び水蒸気透
過率との関連性を考慮すると、これらの諸特性
は、上記のシワの種類やシワの分布、方向及び量
の状態を示す本発明の発泡体の重要な構造指標に
なつていることが分かる。 実施例 4 実施例1〜3にかけて、発泡体密度DとY方向
気泡径yの関係、気泡形状y/xとy/z、Y方
向水蒸気透過率Pyと、3方向の破断伸び率Ex、
Ez及びEyの関係を個別に評価したので、これら
の客観性を高める意味で、本発明の発泡体と比較
発泡体について、本発明で具備すべきすべての特
性を総合評価した結果を次に示す。 即ち、使用するスチレン樹脂は、実施例1〜3
と同様のものを用い、素材発泡体密度は、約16、
23、27、50及び77Kg/m3、Y方向の気泡径yは約
0.1〜1.35mm、気泡形状y/xは約0.75〜1.25、
y/zは約0.75〜1.25の組合せで、素材発泡体を
製造した。 更にこの素材発泡体を本文記載の方法により、
第8表の主要加工条件の中で選び、比較発泡体と
してX軸又はZ軸のいずれか一方のみ押圧加工し
たもの(実験No.140〜141及びNo.144)全く押圧加
工しないもの(実験No.138〜139)も追加して、第
4表の発泡体構造及び特性項に示す評価用発泡体
を作成した。上記素材発泡体及び加工発泡体につ
いて、各々本文記載の方法で、本発明でいうすべ
ての評価特性を評価し、その結果を第4表に示し
た。 実用性を考慮して、第4表では、その総合評価
の基準は以下の通りとした。 ◎;すべての特性が〇のもの 〇;△があるが大部分が〇であるもの ×;×があるもの 第4表の結果によると、本発明の発泡体は本発
明の目標とする評価項目のほとんどすべてを高水
準で満足するものであるのに対し、比較のもの
は、本発明でいう構成要件のいずれかが欠如して
いるために、目標とする評価特性を満しきれない
発泡体となつていることが分かる。 この結果は、上述した第1〜第3表の結果と
は、全く矛盾がないことが分かる。 実施例 5 実施例3で押圧加工した本発明の発泡体の中か
ら5種及び比較のため本発明の目的を達成出来な
い2軸方向押圧加工発泡体1種及びX軸方向のみ
伸び特性の大きい1軸押圧加工発泡体3種類を用
いて、本発明の発泡体のパイプカバーや、円筒あ
るいは球面形状タンク等への応用適性を評価する
ため、パイプへの押圧曲げ加工性、パイプカバー
としての熱成形性、熱成形されたパイプカバーの
断熱性及びクラツク抵抗性について本文記載の方
法で実験、評価した。 使用した押圧加工済発泡体は、厚さ100mmを適
宜25mm、37.5mm、及び75mmにスライスし、保冷厚
さが合計75mmとなるような組合せを選択し、1
層、2層及び3層の構造とし、75mmの厚さ1層の
場合のみ1/2円弧をなすパイプカバーの長手及
び円周方向共に相決り加工を施したものを使つた
外は、平面のつき合せ目地とした。 実験の諸条件及び評価項目の結果及び総合評価
結果は第5表に示した。 第5表の結果によると、本発明の2軸方向に伸
び特性の大きい発泡体は、外径が114mmという細
いパイプにも、厚さと押圧曲げ加工する方向の伸
び特性を選択することにより、大きい力をかける
ことなく、押曲げ加工が容易に出来るし、必要に
応じて熱成形固定すれば、施工性にすぐれた成形
品が簡単に出来、−196℃に冷却されるパイプの保
冷材として応用しても75mmの厚さで全く表面結露
もしない断熱性を示し、全くクラツクが起らぬす
ぐれた極低温用の円形又は球形の断熱材であるこ
とが分かる。 1軸方向しか押圧されていないものは、押曲げ
加工性や熱成形性は満すが、パイプの長手方向に
相当するZ軸の伸びがないために、極低温下で発
生する材料内の熱応力を吸収出来ず、全部円周方
向のクラツクにより破断したり、対角線方向にも
クラツクが入つてしまい、断熱材としての機能を
満せないことが分かる。 実施例 6 発泡体原料としてはポリスチレン以外のポリ塩
化ビニル樹脂及びメチルメタクリル酸樹脂の発泡
体として次のものを使用した。塩化ビニル樹脂発
泡体としては市販の50mm×600mm×900mmのクレゲ
セル 〔鐘ケ淵化学(株)製;# 33〕、25mm×600mm×
900mmのロツクセルボード 〔フジ化学工業(株)
製;G500H〕及び50mm×300mm×900mmのメチル
メタクリル樹脂発泡板〔旭ダウ(株)製試作品〕を押
圧加工用素材とし第9図の押圧加工装置で第9表
の加工条件で加工して、評価用押圧加工発泡体4
種(実験No.166〜169)を得た。これらについて、
第4表に記載した物性項目と実用性と直結した試
験評価項を全部適用し、本文記載の方法と基準で
同様に評価し、その結果及びそれらの総合評価結
果を第6表に示した。 第6表の結果によると、塩ビ樹脂発泡体(実験
No.166&No.167)、塩ビ樹脂と無機物のブレンド発
泡体(実験No.168)及びメチルメタクリル酸樹脂
発泡体共に本発明の発泡体の必要条件を満す発泡
体が得られることが判る。 実施例 7 密度が11.6Kg/m3のポリスチレンの予備発泡
粒子をモールド内に充填し、該モールド内に3
Kg/cm2Gのスチームを約40秒間導入して前記予
備発泡粒子を加熱して膨脹させると共に、粒子
を相互に融着させて発泡スチレン樹脂成形品と
なし、該発泡スチレン樹脂成形品をモールドよ
り脱型し、70℃で12時間熱成した。この時の成
形品の大きさは、1840mm×930mm×425mmであつ
た。次に上記発泡スチレン樹脂成形品を電熱線
切断機により内部より切断し、350mm×350mm×
350mmにした。この密度は10.9Kg/m3、X、Y及
びZ軸の気泡径は各々0.33mm、0.31mm、0.32mm
の平均値を示した。 このボード状発泡スチレン樹脂成形品を下面
プレス板77上に型枠73及び上部プレス板7
6に押圧部74を有する50トンプレス機72
(第33図に示す押圧装置)の型枠73内に上
記ボード状発泡スチレン樹脂成形品75を入
れ、40Kg/cm2の圧力でボード状発泡スチレン樹
脂成形品75を圧縮歪90%までX軸方向に圧縮
荷重をかけた後すぐに上面プレス板76を上げ
てこの操作を連続して6回行つた。X軸方向に
圧縮後得られた発泡スチレン樹脂成形品の大き
さは、350mm×350mm×262mmで密度が14.5Kg/m3
であつた。 で得られた圧縮前の発泡スチレン樹脂成形
品を電熱線切断機により切断して、350mm×350
mm×350mmの大きさのボード状発泡スチレン樹
脂成形品とし、型枠及び押圧部を有する50トン
プレス機の型枠内に上記ボード状発泡スチレン
樹脂成形品を入れ40Kg/cm2の圧力でボード状発
泡スチレン樹脂成形品を圧縮歪80%まで先ずX
軸方向に圧縮荷重をかけた後すぐに上面プレス
板を上げ、この操作を連続して3回行いさらに
ボード状発泡スチレン樹脂成形品のZ軸方向面
にも前記条件で、同様の圧縮を行い、得られた
発泡スチレン樹脂成形品の大きさは、324mm×
350mm×324mmで、密度が13.6Kg/m3であつた。 で得られた圧縮前の発泡スチレン樹脂成形
品を、と同様の大きさ、方法でX軸、Z軸を
圧縮したものを次に同様の条件でY軸も圧縮を
行い、得られた発泡スチレン樹脂成形品の大き
さは、324mm×324mm×324mmで、密度が14.7Kg/
m3であつた。 実施例6の及びで得た圧縮済の材料を用
いて本発明の発泡体に適用した本文記載の方法
で、気泡径y、気泡形状y/x及びy/z、X、
Z及びY方向の破断伸び率Ex、Ez、Ey、X方向
とY方向の破断伸び率の比Ex/Ey及びZ方向と
Y方向の破断伸び率の比Ez/Ey及びY方向の水
蒸気透過率Pyを測定し、更に実施例4で使つた
すべての本文記載の評価特性について評価しその
結果と総合評価結果を第7表に示した。本発明の
発泡体の必要要件である、密度D、気泡径y、気
泡形状y/x、y/z、三方向の破断伸び率Ex、
Ey、Ez三方向の破断伸び率の比Ex/Ey、Ez/
Ey及び水蒸気透過率Pyについて検討してみると、
本発明の発泡体の要件のいずれかが欠けているた
めに目的を達成していないことが分かる。
[Table] The measurement method for the typical characteristics of the styrene resin used in the Examples and Comparative Examples for producing the foam of the present invention is described below. Polymer viscosity The intrinsic viscosity of toluene at 30°C was approximately 0.83. Styrene monomer The amount was determined by gas chromatography (detector FID) and was 0.20% by weight.Styrene trimer The polymer was dissolved in methyl ethyl ketone, and methanol was added to precipitate the polymer content.
The supernatant liquid was collected using silicone DC-410/Chromosorb.
-The value was determined by gas chromatography filled with W (detector FID) and was 0.87% by weight. Example 1 A styrene resin containing a styrene monomer content of 0.20% by weight and a styrene trimer content of 0.80% by weight was produced using a screw type extruder, a blowing agent injection mixer, a cooling machine, and a die for forming a plate-like object. Foaming was performed using an extrusion foaming device. 100 parts by weight of polymer, 2 parts by weight of flame retardant, nucleating agent
A raw material consisting of 0.03 to 0.1 parts by weight is continuously fed to the screw hopper section of the extruder, and a mixed blowing agent consisting of dichlorodifluoromethane and methyl chloride (1:1) is added in a blowing agent injection mixer of 12 to 17 parts by weight. was injected under pressure. The resulting mixture was then mixed and cooled under pressure in a cooler, and the resin temperature was finally adjusted to 90 to 118°C. Subsequently, the foaming agent-mixed resin was extruded from a die under atmospheric pressure, and at the same time a foamed material for press processing was obtained. At this time, the bubble shapes y/x and y/z consisting of the bubble diameters x, y, and z are 1.1 to 1.25 and 1.1 to 1.25, respectively.
1.17, the cross-sectional size was kept constant at approximately 110 mm x 350 mm, the manufacturing conditions were adjusted, and the bubble diameter y
and density D are adjusted respectively, 0.07 to 1.6 mm, approximately 2.15
Foams ranging from ~77Kg/ cm2 were obtained. For those with a density of 21, Kg/ m3 or less, an additional 2
Secondary foaming with steam at 100℃ for ~6 minutes, approx.
The density was adjusted to 15.5-20Kg/m 3 to create a special low-density material. From these extruded plate-like bodies, the cross section shown in FIG.
A material for press processing of 100mm x 300mm x 2000mm was manufactured. These materials were pressed in the X direction and then in the Z axis direction using the mechanical pressing device shown in FIG. 9 according to the manufacturing method described in the text. In particular, the main conditions at this time were as shown in Table 8. Cell shape of product after pressing process y/x, y/
z was almost constant in the range of 1.2 to 1.4. The density, the cell diameter y in the D and Y directions, and the cell shapes y/x and y/z of the foams after the pressing process were measured by the methods described in the text. Furthermore, the compressive strength (Y direction), tensile strength (X and Z directions), and variation in tensile strength (X and Z directions) of these foams were investigated.
direction) and thermal conductivity (Y direction) were measured by the method described in the text and the evaluation results are shown in Table 1. That is, based on the overall results in Table 1, those that satisfy the purpose of the present invention (marked with ○), those that are most preferable (marked with ◎),
Those that do not meet the criteria (x mark) are classified, and the evaluation results are plotted with the density (D) [Kg/m 3 ] on the vertical axis and the cell diameter (y) in the Y-axis direction of the foam on the horizontal axis. The results of plotting on a graph and analyzing the distribution state are shown in FIG. According to the results shown in FIG. 5, the foam that satisfies the purpose of the present invention is expressed by coordinate points (bubble diameter y, density D):
(1.0, 55), (0.25, 100), (0.05, 100), (0.05
,
26.5) and (1.0, 20) with a straight line, more preferably (0.8, 55), (0.25,
93), (0.07, 93), (0.07, 28.5) and (0.8, 23.5
)
must be within the pentagonal range connected by straight lines. In other words, the foam of the present invention has a density D [Kg/m 3 ] of about 20 to 100 and a cell diameter y [mm] measured in the Y direction of about 0.05 to 1. The relationship between y and D is (-75log y+55)D(-5log y+20), and more preferably, the density D [Kg/m 3 ]
It is necessary that the bubble diameter y [mm] is in the range of 0.07 to 0.8, and that the relationship between y and D is (-75log y+48)D(-5log y+23). I understand. Table 8 Processing conditions Aging days until processing: 1 day Processing thickness: 100mm Processing speed (inlet belt): 12m/sec Compression ratio (inlet/outlet belt speed ratio): 22/21 to 28/21 Pressing distance (inlet, outlet) Distance between belt axes): 200 mm Pressure fixing time: 3.6 seconds Number of processing: 1 to 3 times Example 2 Styrene resin similar to Example 1 (styrene monomer: 0.20% by weight) (styrene trimer: 0.80% by weight) )
Using the same equipment and method, a material for pressing was manufactured. At this time, the material density was adjusted to about 21 to 55 Kg/m 3 and the bubble diameter y in the Y direction was adjusted to 0.1 to 0.75 mm, within the preferred value range of Example 1, and the bubble shape y/x, y/z
In order to study the influence of the . By combining these materials with the main processing conditions listed in Table 8 and the above materials using the mechanical pressing device shown in Figure 9 according to the manufacturing method described in the text, the bubble shapes y/x and y/z are formed. Biaxially pressed foams for evaluation were produced with values ranging from 0.8 to 3.25. In FIG. 5, which plots the results of Example 1, the obtained pressed foam has the most desirable range in terms of the relationship between the density D and the cell diameter y in the Y direction, that is, the coordinate points (0.8, 55), ( 0.25, 93), (0.07, 93)
,
It existed within a pentagon connecting (0.07, 28.5) and (0.08, 23.5) with a straight line. Table 2 shows the results of evaluating these foams in terms of cell shape y/x and y/z using the same evaluation items and criteria as in Example 1 according to the method described in the text. From the results in Table 2, it can be seen that the density D that satisfies the purpose of the present invention
[Kg/m 3 ] is about 20 to 100 Kg/m 3 and the bubble diameter y [mm] measured in the Y-axis direction is in the range of 0.05 to 1, and between y and D, (-75log y + 55)D (- 5log y + 20), the dimensions and shapes of the bubbles y/x and y/z are y/x1.05 and y/z, respectively.
Must be 1.05. In order to achieve a higher level of all the above evaluation characteristics, the bubble size and shape should be y/x1.10,
It can be seen that y/z is preferably 1.10. That is, the foam that achieves the object of the present invention to the highest level has a density D [Kg/m 3 ] of about 23 to 93 and a cell diameter y [mm].
is 0.07 to 0.8, and the relationship between the density D and the bubble diameter y in the Y direction satisfies (-75log y+48)D>(-5log y+23), and the bubble shape y/x1.1, y/z1.1
It can be seen that it is necessary to satisfy the following, and that it must be an aggregate of bubbles with a long diameter on the Y axis. Example 3 Using the same styrene resin as in Examples 1 and 2, the same extrusion molding apparatus and method were repeated to produce two types of material foams for press processing with the same cross section. The density D is 27Kg/m 3 and 50Kg/m 3 respectively, and the bubble diameter y in the Y direction is
They were 0.61 mm, 0.11 mm, and the bubble shapes y/x and y/z were 1.20 and 1.15, and 1.25 and 1.20, respectively. These materials are first pressed in the X direction and then in the Z direction using the pressing device shown in Fig. 9 according to the manufacturing method described in the text.
It was pressed in the direction. At this time, among the pressing processing conditions shown in the table, only the compression ratio and the number of processing times were selected as appropriate, and the other conditions were the same. /Ey,
An evaluation material was manufactured to examine the influence of Ez/Ey and water vapor transmission rate in the Y-axis direction. For comparison, the unprocessed one (experiment No. 113) and the one processed only in the X direction (experiment Nos. 124 to 127)
and those processed only in the Z direction (experiment Nos. 115 to 118) were also manufactured. For each foam, density D, cell diameter y, cell shape y/x and y/z,
Elongation at break in each of the X, Z and Y directions Ex, Ez,
Ey Measure the ratio of elongation at break in the X direction and the Y direction Ex/Ey, the ratio of the elongation at break in the Z direction and the Y direction, Ez/Ey, and the water vapor permeability Py in the Y direction [g/m 2 hr],
Furthermore, the evaluation characteristics described in the main text, namely, the variation in elongation at break Ex and Ez in the X and Z directions, the rate of change over time of thermal conductivity in the Y direction, and -160°C and -196 in the X and Z directions.
Focusing on the cryogenic resistance of each material at .degree. C., the material was evaluated using the method and criteria described in the text, and the results of each material and the comprehensive evaluation thereof are shown in Table 1. That is, in order to better understand the results in the table, the vertical axis shows the elongation at break Ez [%] measured in the Z direction, and the horizontal axis shows the elongation at break Ex [%] measured in the X direction.
On the scale, those that meet the purpose of the present invention (○ mark), those that meet the highest standards (◎ mark), and those that do not meet (x mark)
Figure 6 shows the directionality of elongation at break of each foam. In addition, the ratio of the elongation at break in the Z direction and the Y direction, Ez/Ey, is shown on the vertical axis.
On the horizontal axis, the ratio of the elongation at break in the X direction and the Y direction, Ex/Ey, is scaled. Those that meet the purpose of the present invention (○ mark), those that meet the highest standards (◎ mark), and those that do not meet ( Fig. 7 shows the relationship between the elongation rate distribution in the X and Z directions, where the elongation is good, and the Y direction, where the elongation is very small. According to the results shown in FIG. 6, the foam that satisfies the object of the present invention has a relationship between the elongation at break Ex in the X-axis direction and the elongation at break Ez in the Z direction at least (8-Ex-56)Ez( 1/8Ex+7) and Ez(90−Ex), and Ez and Ex are each 60Ez
It can be seen that the values are distributed in the range of 860Ez8 [%]. When shown in terms of the relationship between the coordinate points (X-axis direction elongation at break Ex, Z-axis elongation at break Ez), (8, 8),
(60, 14.5), (60, 30), (30, 60) and (14.5,
60) must be within the range of a pentagon connected by a straight line. Furthermore, it further enhances its function as a cryogenic insulation material, -
The foam of the present invention, which is considered as a cold insulator for liquid nitrogen at 196°C and has other properties of the highest standard, has Ex, Ey
are respectively 40Ex12 and Ez in the range of 40Ex12
It must satisfy the relationship (52−Ex),
Similarly, if we show this using coordinate points, (12, 12), (40,
12) and (12, 40) with a straight line. On the other hand, the elongation at break between the three axes X, Y, and Z axes
According to the results shown in FIG. 7, which shows the relationships among the distributions of Ex, Ey, and Ez, a foam that satisfies the purpose of the present invention can satisfy the above-mentioned conditions and has a ratio of elongation at break of Ex/Ey,
Ez/Ey is 8.3>Ex/Ey>1.8, 8.3>Ez/
It must satisfy the following relationships: Ey>1.8 and Ex+Ez<12Ey. In other words, when expressed as coordinate points (Ex/Ey, Ez/Ey), (1.8, 1.8), (8.3, 1.8), (8.3, 3.3)
,
It can be seen that it is inside a pentagon connecting (3.3, 8.3) and (1.8, 8.3) with a straight line. Furthermore, regarding the water vapor permeability Py [g/m 2 hr] in the Y-axis direction, which is an evaluation item in Table 3, the foam that achieves the purpose of the present invention has a foam that suppresses deterioration of the heat insulator during long-term use. It can be seen that this value needs to be at least 1.5 or less. If you place importance on maintaining long-term insulation performance,
It is even better if the value of Py is 1.0 or less. Combining the results of Figures 6 and 7, which are the results of Table 3, and the results of the water vapor permeability Py [g/m 2 hr] in the Y-axis direction, the foam for achieving the present invention can be Even if the results in Tables 1 and 2 are fully satisfied, the elongation at break on the X, Y and Z axes Ex, Ey, Ez
are in the range of 60Ex8 [%] and 60Ez8 [%], respectively, and are in the range of (8Ex - 56) Ez (1/8 Ex + 7) and Ez (90 - Ez), and 8.3 > Ex / Ey
>1.8, 8.3>Ez/Ey>1.8 and Ex+Ez<12Ey, and the water vapor permeability in the X-axis direction Py [g/m 2
hr] must be 1.5 or less. In order for the foam of the present invention to withstand the extremely low temperatures of charged nitrogen and to achieve the objectives of the highest standard, which emphasizes maintaining long-term insulation performance, it is necessary to satisfy the results shown in Tables 1 and 2. At the same time, Ex, Ey and Ez are 40Ex12
[%], 40Ez12 [%] and Ez (52-Ex), and 8.3>Ex/Ey>1.8, 8.3>Ez/
There is a distribution of elongation at break among the three axes (X, Y, Z) in the range enclosed by Ey > 1.8 and Ex + Ez < 12Ey, and the water vapor permeability in the X-axis direction Py [g/m 2 hr]
It turns out that it is more preferable if is 1.0 or less. Figures 1, 2, and 3 are representative examples of the foam cell structure with high elongation characteristics in the biaxial direction as used in the present invention.
Enlarged photograph viewed in the X, Y, and Z axis directions (50x)
It is. 1 shows the X-axis direction, FIG. 2 the Y-axis direction, and FIG. 3 the Z-axis direction. Figures 1 and 2
According to Figures 3 and 3, when the state of the wrinkles inside the foam of the present invention is expressed as a whole when viewed from the three directions of the X, Y, and Z axes, the air walls are wrinkled when viewed from any axis. However, if you carefully observe the direction of the wrinkles and the existing bubble walls, you will notice that they are in the Z-axis direction (Figures 1 and 2).
There are many wrinkles on the cell wall in the X-axis direction (Figs. 2 and 3), but there are many wrinkles in the Y-axis direction (Figs. 1 and 3).
It is said that there are not many wrinkles on the bubble walls of
It can be seen that the wrinkles on the bubble wall have a distribution and directionality. The distribution and directionality of these wrinkles are considered to be special wrinkles formed by the foam manufacturing method of the present invention, and furthermore, the wrinkles themselves are caused by the density, cell size, and shape of the foam, Considering the relationship between Ex and Ez, the ratio relationship between Ex and Ey and Ez and Ey, and the relationship with water vapor transmission rate, these characteristics are related to the type of wrinkles and the distribution, direction, and amount of wrinkles described above. It can be seen that this is an important structural indicator of the foam of the present invention that indicates the condition. Example 4 In Examples 1 to 3, the relationship between the foam density D and the cell diameter y in the Y direction, the cell shapes y/x and y/z, the water vapor permeability Py in the Y direction, and the elongation at break in three directions Ex,
Since the relationship between Ez and Ey was evaluated individually, in order to improve the objectivity of these, the results of comprehensive evaluation of all the characteristics that the present invention should have for the foam of the present invention and the comparative foam are shown below. . That is, the styrene resins used are those of Examples 1 to 3.
Using the same material, the material foam density is approximately 16,
23, 27, 50 and 77Kg/m 3 , the bubble diameter y in the Y direction is approximately
0.1~1.35mm, bubble shape y/x approximately 0.75~1.25,
Material foams were produced using a combination of y/z of approximately 0.75 to 1.25. Furthermore, this material foam is processed by the method described in the text.
Selected from the main processing conditions in Table 8, comparison foams were press-processed only on either the .138 to 139) were added to prepare foams for evaluation shown in the foam structure and characteristics section of Table 4. All of the evaluation characteristics referred to in the present invention were evaluated for the above material foam and processed foam by the methods described in the text, and the results are shown in Table 4. Considering practicality, the criteria for comprehensive evaluation in Table 4 are as follows. ◎; All properties are ○; ○; △, but most of them are ○; ×; ×, according to the results in Table 4. In contrast, the comparison foam fails to meet the target evaluation characteristics because it lacks one of the constituent requirements of the present invention. You can see that it is. It can be seen that this result is completely consistent with the results shown in Tables 1 to 3 above. Example 5 Five types of foams of the present invention press-processed in Example 3, one type of biaxially press-processed foam that cannot achieve the purpose of the present invention for comparison, and one type that has high elongation properties only in the X-axis direction In order to evaluate the suitability of the foam of the present invention for application to pipe covers, cylindrical or spherical tanks, etc., three types of uniaxially pressed foams were used. The moldability, heat insulation properties, and crack resistance of the thermoformed pipe cover were tested and evaluated using the methods described in the text. The pressed foam used was sliced 100 mm thick into 25 mm, 37.5 mm, and 75 mm, and a combination was selected so that the total cold insulation thickness was 75 mm.
The pipe cover has a 1/2 arc-shaped pipe cover with a 1/2-arc shape and is machined in both the longitudinal and circumferential directions. It was used as a butting joint. The conditions of the experiment, the results of the evaluation items, and the overall evaluation results are shown in Table 5. According to the results in Table 5, the foam of the present invention, which has high elongation properties in the biaxial directions, can be applied to pipes as narrow as 114 mm by selecting the thickness and the elongation properties in the direction of pressure bending. It can be easily pressed and bent without applying any force, and if necessary, it can be thermoformed and fixed to easily create molded products with excellent workability.It is used as a cold insulator for pipes that are cooled to -196℃. Even with a thickness of 75 mm, it shows no surface condensation and is an excellent circular or spherical heat insulating material for extremely low temperatures that does not cause any cracks. Items that are pressed only in one axis satisfy the bending workability and thermoformability, but because there is no Z-axis elongation corresponding to the longitudinal direction of the pipe, the heat generated in the material at extremely low temperatures It can be seen that it cannot absorb stress and breaks due to cracks in the circumferential direction, or cracks occur in the diagonal direction as well, so it cannot fulfill its function as a heat insulator. Example 6 The following foam raw materials were used as foams made of polyvinyl chloride resin other than polystyrene and methyl methacrylic acid resin. Commercially available 50 mm x 600 mm x 900 mm Kregesel [manufactured by Kanegafuchi Chemical Co., Ltd.; #33] and 25 mm x 600 mm x vinyl chloride resin foam were used.
900mm Roxel board [Fuji Chemical Industry Co., Ltd.]
G500H] and a 50 mm x 300 mm x 900 mm methyl methacrylic resin foam board [prototype manufactured by Asahi Dow Co., Ltd.] were used as press processing materials and processed using the press processing device shown in Fig. 9 under the processing conditions shown in Table 9. , Pressed foam for evaluation 4
Seeds (Experiment No. 166-169) were obtained. Regarding these,
All the physical property items listed in Table 4 and the test evaluation items directly related to practicality were applied, and evaluations were made in the same manner using the methods and criteria described in the text, and the results and overall evaluation results are shown in Table 6. According to the results in Table 6, PVC foam (experimental
No. 166 & No. 167), a blend foam of vinyl chloride resin and an inorganic material (Experiment No. 168), and a methyl methacrylic acid resin foam can all be obtained to meet the requirements of the foam of the present invention. Example 7 Pre-expanded polystyrene particles with a density of 11.6 Kg/m 3 were filled into a mold, and 3
Steam of Kg/cm 2 G is introduced for about 40 seconds to heat and expand the pre-expanded particles, and the particles are fused together to form a foamed styrene resin molded product, and the foamed styrene resin molded product is molded. The mold was removed from the mold and heat formed at 70°C for 12 hours. The size of the molded product at this time was 1840 mm x 930 mm x 425 mm. Next, the above-mentioned foamed styrene resin molded product was cut from the inside using a heating wire cutting machine.
I set it to 350mm. The density is 10.9Kg/m 3 , and the bubble diameters on the X, Y, and Z axes are 0.33mm, 0.31mm, and 0.32mm, respectively.
The average value is shown. This board-like foamed styrene resin molded product is placed on the lower press plate 77 and the formwork 73 and the upper press plate 7.
50 ton press machine 72 having a pressing part 74 at 6
The board-like foamed styrene resin molded product 75 is placed in the formwork 73 of the (pressing device shown in FIG. 33), and the board-like foamed styrene resin molded product 75 is compressed to a compressive strain of 90% on the X axis under a pressure of 40 kg/cm 2 . Immediately after applying a compressive load in the direction, the upper press plate 76 was raised and this operation was repeated six times in succession. The size of the expanded styrene resin molded product obtained after compression in the X-axis direction is 350 mm x 350 mm x 262 mm, and the density is 14.5 Kg/m 3
It was hot. The pre-compressed expanded styrene resin molded product obtained was cut using a heating wire cutting machine to form a 350mm x 350mm
A board-shaped styrene foam resin molded product with a size of mm x 350 mm was made, and the board-shaped styrene foam resin molded product was placed in the mold of a 50-ton press machine having a mold and a pressing part, and the board was pressed at a pressure of 40 kg/cm 2 . Firstly, the molded styrene foam resin is compressed to a compressive strain of 80%.
Immediately after applying a compressive load in the axial direction, the upper press plate was raised, and this operation was repeated three times in succession. Furthermore, the same compression was performed on the Z-axis direction surface of the board-shaped styrene foam molded product under the above conditions. The size of the obtained expanded styrene resin molded product is 324 mm ×
It was 350mm x 324mm and had a density of 13.6Kg/m 3 . The expanded styrene resin molded product obtained before compression was compressed on the X-axis and Z-axis using the same size and method as before, and then the Y-axis was also compressed under the same conditions. The size of the resin molded product is 324mm x 324mm x 324mm, and the density is 14.7Kg/
It was m3 . By the method described in the text applied to the foam of the present invention using the compressed materials obtained in Example 6 and, the cell diameter y, cell shape y/x and y/z,
Elongation at break in Z and Y directions Ex, Ez, Ey, ratio of elongation at break in X and Y directions Ex/Ey, ratio of elongation at break in Z and Y directions Ez/Ey, and water vapor transmission rate in Y direction Py was measured, and all evaluation characteristics described in the text used in Example 4 were evaluated, and the results and overall evaluation results are shown in Table 7. Necessary requirements for the foam of the present invention are density D, cell diameter y, cell shape y/x, y/z, elongation at break in three directions Ex,
Ey, Ez Ratio of elongation at break in three directions Ex/Ey, Ez/
Considering Ey and water vapor transmission rate Py,
It can be seen that the foam of the present invention lacks any of the requirements and thus fails to achieve its purpose.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図は本発明の発泡体粒子
構造の顕微鏡拡大(50倍)写真で、各々X軸方
向、Y軸方向、Z軸方向から見た粒子構造の代表
写真図、第4図は上記X、Y、Z軸方向及び各々
の気泡寸法の測定方向(x、y、z)の表現の理
解を深める意味での概念図、第5図は、Y軸方向
の気泡径yと本発明発泡体密度Dの関係を示すグ
ラフ、第6図は、X軸方向の破断伸び率ExとZ
軸方向の破断伸び率Ezとの関係を示すグラフ、
第7図は、Y軸方向の破断伸び率Eyに対するX
軸方向の破断伸び率Exの比Ex/EyとY軸方向の
破断伸び率Eyに対するZ軸方向の破断伸び率Ez
の比Ez/Eyの関係を示すグラフ、第8図は、上
下前後に一対づつのロールから成る一軸方向に発
泡体を押圧する装置の原理図、第9図は、本発明
の発泡体を製造するのに用いた上下、前後に一対
づつのベルトによる狭持部から成る一軸方向に発
泡体を押圧する装置の原理図、第10図は、素材
となる発泡体(気泡径0.6mm、伸び率Ex、Ezが
各々20%、16%)の気泡形状y/xと最終発泡体
が示す水蒸気透過率Pyとの関係を示すグラフ、
第11図は、素材発泡体の発泡成形後押圧加工
(伸び率Ex、Ezは各々20%、16%、製品厚さ25
mm)されるまでの経過日数と得られた発泡体が示
す水蒸気透過率Pyの関係を示すグラフ、第12
図は素材発泡体の押圧加工までの同じ経過日数と
得られた発泡体のX軸方向破断伸び率Ex(機械的
圧縮率はX軸、Z軸共に37%×1回)を発泡体厚
さ25mmと100mmで区分したグラフ、第13図は押
圧加工前発泡体素材の厚みと加工による厚さの減
少量を加工装置による関連で示すグラフで△印は
第8図装置の製造例、〇印は第9図装置の製造
例、第14図は第9図の加工装置の押圧距離と得
られた発泡体のX方向破断伸び率Exのバラツキ
(標準偏差)の関係を示すグラフ(機械内の圧縮
率20%、X軸方向破断伸び率≒20%、Z軸方向の
破断伸び率≒16%)、第15図は第12図の装置
を用いて、出口側の狭持ベルト間での発泡体の圧
縮固定時間と得られる発泡体のX軸方向の破断伸
び率Exとの関係を示すグラフ(機械的圧縮率=
37%、Z軸方向の伸び率Ez=20〜28%)、第16
図は第9図の装置を用いた押圧加工順位(X軸が
先か後か)によるZ軸方向破断伸び率Ezのバラ
ツキの変化を示すグラフ、第17図は押出成形装
置から成形された発泡体の原板の形状と表皮を含
む不均一層を切削仕上した後との寸法関係を示す
概念図、第18図〜第21図までは、発泡体の性
能評価のためのサンプリング位置と寸法を示す図
で、第18図は密度と圧縮強度用のもの、第19
図は気泡径x、y、z用のもの、第20図は引張
強度と破断伸び率及びそれらのバラツキ用のも
の、第21図は熱伝導率及び熱伝導率の経時変化
用のもの、第22図は熱伝導率の経時変化特性を
評価するための加速吸湿させるための装置の原理
図、第23図は水蒸気透過率Py測定用、第24
図は発泡体の極低温抵抗性評価用パネル素材のサ
ンプリング位置と寸法を示す図で、第25図は、
極低温抵抗性評価用パネルを示す図で、第26図
と第27図はパネルでの極低温抵抗性を評価する
ための装置の原理図で、第26図は約マイナス
160℃のふん囲気でのテスト装置用、第27図は
液体窒素中への浸漬テスト装置用を示し、第28
図はパイプカバー成形性評価用及び熱成形用サン
プリング位置と寸法を示し、第29図はパイプカ
バー押曲加工性評価用治具の原理図を示し、第3
0図はパイプカバー熱成形用固定治具の原理図を
示し、第31図はパイプカバー極低温配管施工テ
ストの施工断面の一例図を示し、第32図はパイ
プカバー極低温配管施工テスト装置の原理図と施
工配管長さ方向断面を示す図で、第33図は上下
方向に作動する圧縮加工機の原理を示す図であ
る。 1…入口側上部駆動ロール、2…入口側下部駆
動ロール、3…出口側上部駆動ロール、4…出口
側下部駆動ロール、5,6…挾圧装置、7…未加
工発泡板、8…押圧加工済発泡板、9…入口側上
部ベルト式挾持体、10…入口側下部ベルト式挾
持体、11…出口側上部ベルト式挾持体、12…
出口側下部ベルト式挾持体、13,14…挾圧装
置、15,16,17,18;補助ロール群、1
9,20,21,22;挾持用ベルト、23…未
加工発泡板、24…押圧加工済発泡板、25…断
熱材、26…容器、27…温度調節機、28…
水、29…試験片、30…パツキン、31,3
2;循環水出、入口、33…冷却板、34…極低
温抵抗性試験パネル、35…試験発泡体、36…
ウレタン系極低温用接着剤層、37,38;合
板、39…極低温槽、40…液体窒素ボンベ、4
1…液体窒素配管、42…流量自動調節弁、43
…液体窒素噴出ノズル、44…有孔ジヤマ板、4
5…温度計、46…窒素ガス排出口、47…断熱
材、48…液体窒素浸漬試験装置、49…深底ト
レー、50…液体窒素、51…液体窒素導入弁、
52…鉄製重錘、53…パイプカバー加工性評価
用試験片、54…ステンレス304製パイプ、55
…亜鉛メツキ鉄板、56…押曲げた試験発泡体、
57…緊張用鉄製バンド、58,59…成形用パ
イプと成形体のすき間、60…パイプ施工断面構
造体、61,62…第1層用1/2円弧成形パイ
プカバー、63…長さ方向目地部、64,65…
第2層用1/2円弧成形パイプカバー、66…防
湿層、67…極低温実用配管試験装置、68…液
体窒素排出弁、69…円周方向目地部、70…仕
切フランジ、71…パイプカバーと仕切フランジ
部の接着剤層、72…50トンプレス機、73…型
枠、74…押圧部、75…ビーズ製ボード状発泡
スチレン樹脂成型品、76…上面プレス板、77
…下面プレス板。
Figures 1, 2, and 3 are microscopically enlarged (50x) photographs of the foam particle structure of the present invention, and are representative photographs of the particle structure viewed from the X-axis direction, Y-axis direction, and Z-axis direction, respectively. , Fig. 4 is a conceptual diagram to deepen the understanding of the expression of the above-mentioned X, Y, and Z axis directions and the measurement directions (x, y, z) of each bubble size, and Fig. 5 is a conceptual diagram of the bubbles in the Y-axis direction. A graph showing the relationship between the diameter y and the density D of the foam of the present invention, Figure 6, shows the relationship between the elongation at break Ex in the X-axis direction and Z
A graph showing the relationship with the axial elongation at break Ez,
Figure 7 shows the X
Ratio of elongation at break Ex in the axial direction Ex/Ey and elongation at break Ez in the Z-axis direction to elongation at break Ey in the Y-axis direction
Graph showing the relationship between the ratio Ez/Ey, FIG. 8 is a principle diagram of a device that presses a foam in the uniaxial direction, which consists of a pair of upper and lower rolls, and FIG. 9 is a graph showing the relationship between the ratio Ez/Ey. Figure 10 shows the principle of the device used to press the foam in the uniaxial direction, which consists of a pair of upper and lower belts and a pair of front and rear belts. A graph showing the relationship between the bubble shape y/x and the water vapor permeability Py of the final foam (Ex, Ez are 20% and 16%, respectively),
Figure 11 shows the press processing after foam molding of the material foam (elongation Ex and Ez are 20% and 16%, respectively, product thickness 25%).
mm) Graph showing the relationship between the number of days elapsed and the water vapor permeability Py of the obtained foam, 12th
The figure shows the elapsed elongation rate in the X-axis direction Ex (mechanical compression rate is 37% on both the X-axis and Z-axis x 1 time) for the same number of days until the pressing process of the foam material and the thickness of the foam. A graph divided into 25mm and 100mm, Figure 13 is a graph showing the thickness of the foam material before pressing and the amount of thickness reduction due to processing in relation to the processing equipment, △ mark is a manufacturing example of the equipment in Figure 8, ○ mark Figure 9 shows an example of manufacturing the equipment, and Figure 14 is a graph showing the relationship between the pressing distance of the processing equipment shown in Figure 9 and the variation (standard deviation) of the X-direction elongation at break of the resulting foam. Compression rate: 20%, elongation at break in the X-axis direction ≒ 20%, elongation at break in the Z-axis direction ≒ 16%), Figure 15 shows foaming between the sandwiching belts on the outlet side using the device shown in Figure 12. Graph showing the relationship between the compression and fixation time of the body and the fracture elongation Ex in the X-axis direction of the obtained foam (mechanical compression ratio =
37%, elongation rate in Z-axis direction Ez = 20-28%), 16th
The figure is a graph showing the variation in the Z-axis fracture elongation Ez depending on the pressing order (X-axis first or second) using the apparatus in Figure 9. Figure 17 is a graph showing the variation in the elongation at break Ez in the Z-axis direction using the extrusion molding apparatus. A conceptual diagram showing the dimensional relationship between the shape of the original plate of the body and the shape after cutting and finishing the heterogeneous layer including the epidermis. Figures 18 to 21 show the sampling positions and dimensions for evaluating the performance of the foam. In the figure, Figure 18 is for density and compressive strength, Figure 19 is for density and compressive strength.
The figures are for bubble diameters x, y, and z; Figure 20 is for tensile strength, elongation at break, and their variation; Figure 21 is for thermal conductivity and changes in thermal conductivity over time; Figure 22 is a principle diagram of the device for accelerated moisture absorption to evaluate the temporal change characteristics of thermal conductivity, Figure 23 is for measuring water vapor permeability Py, and Figure 24 is
The figure shows the sampling position and dimensions of the panel material for evaluating the cryogenic resistance of foam.
This is a diagram showing a panel for evaluating cryogenic resistance. Figures 26 and 27 are diagrams of the principle of the device for evaluating cryogenic resistance in the panel. Figure 26 is approximately negative.
Figure 27 shows the test equipment for immersion in liquid nitrogen;
The figure shows sampling positions and dimensions for pipe cover formability evaluation and thermoforming.
Figure 0 shows the principle diagram of the pipe cover thermoforming fixing jig, Figure 31 shows an example of the construction cross section of the pipe cover cryogenic piping construction test, and Figure 32 shows the pipe cover cryogenic piping construction test equipment. FIG. 33 is a diagram showing the principle and a cross section in the longitudinal direction of the construction pipe, and FIG. 33 is a diagram showing the principle of a compression processing machine that operates in the vertical direction. 1... Inlet side upper drive roll, 2... Inlet side lower drive roll, 3... Outlet side upper drive roll, 4... Outlet side lower drive roll, 5, 6... Clamping device, 7... Unprocessed foam board, 8... Pressing Processed foam board, 9... Inlet side upper belt type clamping body, 10... Inlet side lower belt type clamping body, 11... Outlet side upper belt type clamping body, 12...
Outlet side lower belt type clamping body, 13, 14... clamping pressure device, 15, 16, 17, 18; auxiliary roll group, 1
9, 20, 21, 22; Clamping belt, 23... Unprocessed foam board, 24... Pressed foam board, 25... Heat insulating material, 26... Container, 27... Temperature controller, 28...
Water, 29...Test piece, 30...Patzkin, 31,3
2; Circulating water outlet, inlet, 33...Cooling plate, 34...Cryogenic resistance test panel, 35...Test foam, 36...
Urethane cryogenic adhesive layer, 37, 38; plywood, 39... cryogenic tank, 40... liquid nitrogen cylinder, 4
1...Liquid nitrogen piping, 42...Flow rate automatic control valve, 43
...Liquid nitrogen jet nozzle, 44...Perforated jammer plate, 4
5...Thermometer, 46...Nitrogen gas outlet, 47...Insulating material, 48...Liquid nitrogen immersion test device, 49...Deep tray, 50...Liquid nitrogen, 51...Liquid nitrogen introduction valve,
52... Iron weight, 53... Test piece for pipe cover workability evaluation, 54... Stainless steel 304 pipe, 55
... Galvanized iron plate, 56 ... Pressed and bent test foam,
57... Iron band for tensioning, 58, 59... Gap between forming pipe and formed body, 60... Pipe construction cross-sectional structure, 61, 62... 1/2 arc formed pipe cover for first layer, 63... Length direction joint Department, 64, 65...
1/2 arc molded pipe cover for second layer, 66... Moisture barrier layer, 67... Cryogenic practical piping test device, 68... Liquid nitrogen discharge valve, 69... Circumferential joint part, 70... Partition flange, 71... Pipe cover and adhesive layer of partition flange part, 72...50 ton press machine, 73... Formwork, 74... Pressing part, 75... Board-shaped foamed styrene resin molded product made of beads, 76... Top press plate, 77
...Bottom press plate.

Claims (1)

【特許請求の範囲】 1 気泡壁にシワを有した独立気泡構造の直方体
様の発泡体であつて、該気泡を互に直交する三軸
(X、Y、Z軸)方向に測定した各々の平均気泡
径(x、y、z)〔mm〕が、該発泡体密度(D)〔Kg/
m3〕(約20〜100Kg/m3)との間で、0.05y1.0
〔mm〕、y/x1.05、y/z1.05の範囲におい
て (−75log y+55)D(−5log y+20) の関係を満し、Y軸方向の水蒸気透過率Py〔g/
m2・hr〕が1.5以下の値を満し、更にこの発泡体
をX、Y、Zの軸方向に各々引伸ばしたときに、
各々の方向の破断伸び率Ex、Ey、Zy〔%〕の間
に60Ex8、60Ez8の範囲において
(8Ex−56)Ez(1/8Ex+7)かつ(90− Ex)Ez但し8.3>Ex/Ey>1.8、8.3>Ez/Ey>1.8か つEx+Ey<12Eyの関係の伸び特性を有すること
を特徴とする合成樹脂発泡体。
[Scope of Claims] 1. A rectangular parallelepiped-like foam having a closed cell structure with wrinkles on the cell walls, each of which is measured along three axes (X, Y, and Z axes) perpendicular to each other. The average cell diameter (x, y, z) [mm] is the foam density (D) [Kg/
m 3 ] (approximately 20 to 100Kg/m 3 ), 0.05y1.0
[mm], y/x1.05, y/z1.05 satisfies the relationship (-75log y+55)D(-5log y+20), and the water vapor permeability in the Y-axis direction Py[g/
m2・hr] satisfies a value of 1.5 or less, and when this foam is further stretched in the X, Y, and Z axis directions,
Between the elongation at break Ex, Ey, and Zy [%] in each direction, in the range of 60Ex8 and 60Ez8, (8Ex-56) Ez (1/8 Ex + 7) and (90- Ex) Ez, where 8.3>Ex/Ey>1.8 , 8.3>Ez/Ey>1.8 and Ex+Ey<12Ey.
JP56152125A 1981-04-15 1981-09-28 Synthetic resin expansion body Granted JPS5853422A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP56152125A JPS5853422A (en) 1981-09-28 1981-09-28 Synthetic resin expansion body
AU82282/82A AU553465B2 (en) 1981-04-15 1982-04-02 Thermoplastic insulation
NZ200225A NZ200225A (en) 1981-04-15 1982-04-02 Directional flexibilisation of expanded thermoplastic foam sheet
CA000400837A CA1179463A (en) 1981-04-15 1982-04-13 Directionally flexibilized expanded thermoplastic foam sheet for low temperature insulation
ES511420A ES511420A0 (en) 1981-04-15 1982-04-14 "IMPROVEMENTS IN A PROCEDURE TO FLEXIBILIZE A SPONGE SHEET OF RIGID PLASTIC MATERIAL, OF SUBSTANTIALLY CLOSED CELLS".
NO821219A NO163903C (en) 1981-04-15 1982-04-14 FLEXIBILIZED FOAM PLATE PLATE AND PROCEDURE FOR FLEXIBILIZATION OF SUCH PLATE.
GB8210938A GB2096616B (en) 1981-04-15 1982-04-15 Directional flexibilization of expanded thermoplastic foam sheet
KR8201657A KR880001770B1 (en) 1981-04-15 1982-04-15 Directionally flexibilized exponded thermoplastic foam sheet for low temperature insulation
SG695/86A SG69586G (en) 1981-04-15 1986-08-25 Directional flexibilization of expanded thermoplastic foam sheet for low temperature insulation
HK996/86A HK99686A (en) 1981-04-15 1986-12-18 Directional flexibilization of expanded thermoplastic foam sheet for low temperature insulation
MY101/87A MY8700101A (en) 1981-04-15 1987-12-30 Directional flexibilization of expanded thermoplastic foam sheet for low temperature insulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56152125A JPS5853422A (en) 1981-09-28 1981-09-28 Synthetic resin expansion body

Publications (2)

Publication Number Publication Date
JPS5853422A JPS5853422A (en) 1983-03-30
JPH0235664B2 true JPH0235664B2 (en) 1990-08-13

Family

ID=15533604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56152125A Granted JPS5853422A (en) 1981-04-15 1981-09-28 Synthetic resin expansion body

Country Status (1)

Country Link
JP (1) JPS5853422A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0624775B2 (en) * 1989-11-13 1994-04-06 積水化成品工業株式会社 Leather-like thermoplastic polyester resin sheet and method for producing the same
JP2010059373A (en) * 2008-09-05 2010-03-18 Kaneka Corp Styrene-based resin foaming body and laminated panel having facing laminated and adhered on the foaming body
JP5436024B2 (en) * 2009-04-27 2014-03-05 ダウ化工株式会社 Styrenic resin foam
JP6851421B2 (en) * 2019-05-22 2021-03-31 本田技研工業株式会社 Machining management system, machining management method, and program

Also Published As

Publication number Publication date
JPS5853422A (en) 1983-03-30

Similar Documents

Publication Publication Date Title
US4005919A (en) Refrigerator construction
EP2318208B1 (en) Multilayer thermoplastic sheet materials and thermoformed articles prepared therefrom
US4510268A (en) Directional flexibilization of expanded thermoplastic foam sheet for low temperature insulation
US7951449B2 (en) Polyester core materials and structural sandwich composites thereof
US3467569A (en) Resin foam-metal laminate composites
EP0185661B1 (en) Heat insulating structures for low-temperature or cryogenic pipings
KR880001770B1 (en) Directionally flexibilized exponded thermoplastic foam sheet for low temperature insulation
WO2007056629A2 (en) Structural insulation sheathing
US10201951B2 (en) Rigid thermoplastic foam densification process and composite structures incorporating the densified rigid thermoplastic foam
Kasemphaibulsuk et al. Foam injection molding of glass fiber reinforced polypropylene composites with laminate skins
JPH0235664B2 (en)
JP2003193586A (en) Heat insulation material for construction formed of polystyrene resin extrusion foamed body
US20050019549A1 (en) Recyclable reinforced polymer foam composition
JPS6056096B2 (en) Styrenic resin foam
EP1355103B1 (en) Preinsulated pipe
EP4140723A2 (en) Shipping container
CN212603855U (en) Air-conditioning fresh-keeping storehouse door plate
JP2016150561A (en) Fiber-reinforced composite body and method for producing fiber-reinforced composite body
Nemati et al. Effects of cold joints on the structural behaviour of polyurethane rigid foam panels
JPH0247348B2 (en)
JPH0346304B2 (en)
JPH0247346B2 (en)
JPS6222833A (en) High-strength polyether imide foam board
JP2022041783A (en) Flexible synthetic resin foam board and method for producing the same
JP3231240U (en) Flexible synthetic resin foam board and its manufacturing method