JP2016150561A - Fiber-reinforced composite body and method for producing fiber-reinforced composite body - Google Patents

Fiber-reinforced composite body and method for producing fiber-reinforced composite body Download PDF

Info

Publication number
JP2016150561A
JP2016150561A JP2015030491A JP2015030491A JP2016150561A JP 2016150561 A JP2016150561 A JP 2016150561A JP 2015030491 A JP2015030491 A JP 2015030491A JP 2015030491 A JP2015030491 A JP 2015030491A JP 2016150561 A JP2016150561 A JP 2016150561A
Authority
JP
Japan
Prior art keywords
resin
fiber
layer portion
reinforced composite
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015030491A
Other languages
Japanese (ja)
Inventor
一迅 人見
Kazutoki Hitomi
一迅 人見
佑輔 桑原
Yusuke Kuwahara
佑輔 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2015030491A priority Critical patent/JP2016150561A/en
Publication of JP2016150561A publication Critical patent/JP2016150561A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fiber-reinforced composite body excellent in lightweight properties and strength; and a method for producing the same.SOLUTION: A fiber-reinforced composite body has an intermediate layer portion 13 which is harder than a resin foam that constitutes a core material portion 11 inside of a surface layer portion 12 formed of a fiber-reinforced resin material. The intermediate layer portion 13 is a low foamed portion having a lower foaming magnification ratio than that of an extruded and foamed sheet 11 or a non-foamed portion. The resin sheet 13 and the extruded and foamed sheet are laminated and integrated with each other by any one of a heat lamination method, an extrusion lamination method and a coextrusion method. The intermediate layer portion 13 is a non-foamed resin layer laminated on the surface of the resin foam which constitutes the core material portion 11, and is a non-foamed resin layer which includes any one of an epoxy-based resin, a polyester-based resin and an acrylic resin and has an average thickness of 0.01-2 mm.SELECTED DRAWING: Figure 1

Description

本発明は、繊維強化複合体、及び、繊維強化複合体の製造方法に関する。   The present invention relates to a fiber reinforced composite and a method for producing the fiber reinforced composite.

近年、FRPなどと呼ばれるシート状の繊維強化樹脂材で樹脂発泡成形体を覆ってFRPで表層部に優れた強度を発揮させるとともに芯材部を樹脂発泡成形体とすることで軽量性を発揮させた繊維強化複合体が各種用途に用いられている(例えば、下記特許文献1参照)。
この種の繊維強化複合体は、軽量で且つ高い機械的強度を有していることから、自動車分野、船舶分野、航空機分野などのにおいて需要を拡大させている。
この自動車、船舶、航空機などの輸送機器の中でも特に自動車分野においては、その構成用部材が軽量で、高い強度を有することが強く求められている。
In recent years, the resin foam molded body is covered with a sheet-like fiber reinforced resin material called FRP, etc., and the FRP exhibits excellent strength in the surface layer portion and the core material portion is made into a resin foam molded body, thereby exhibiting light weight. Fiber reinforced composites are used in various applications (for example, see Patent Document 1 below).
Since this type of fiber reinforced composite is lightweight and has high mechanical strength, demand is expanding in the automotive field, the marine field, the aircraft field, and the like.
Among the transportation equipment such as automobiles, ships, and airplanes, particularly in the automobile field, it is strongly required that the structural members are lightweight and have high strength.

特開2013−188953号公報JP 2013-188953 A

前記のような繊維強化複合体は、芯材部を構成する樹脂発泡体の発泡倍率を向上させるほど軽量性の面での利得が大きくなる。
また、繊維強化樹脂材に強化用繊維として広く利用されているガラス繊維や炭素繊維は、一般的な樹脂に比べて高比重であるため繊維強化複合体は、当該繊維強化樹脂材によって形成させる表層部の厚みや繊維密度を小さくするほど軽量性の面での利得が大きくなる。
一方で、表層部を背面側から支持する樹脂発泡体を高発泡化させたり、表層部を薄肉化したりすると表層部の厚み方向に局所的な力が外側から加えられた際に表層部に撓みが生じ易く、場合によっては表層部に割れを生じさせてしまうおそれを有する。
In the fiber reinforced composite as described above, the gain in terms of lightness increases as the expansion ratio of the resin foam constituting the core material portion is improved.
In addition, since glass fibers and carbon fibers that are widely used as reinforcing fibers in fiber reinforced resin materials have a higher specific gravity than general resins, the fiber reinforced composite is formed by the fiber reinforced resin material. The gain in terms of lightness increases as the thickness of the part and the fiber density are reduced.
On the other hand, if the resin foam that supports the surface layer part from the back side is made highly foamed or the surface layer part is thinned, the surface layer part bends when a local force is applied from the outside in the thickness direction of the surface layer part. Is likely to occur, and in some cases, the surface layer may be cracked.

そのため、従来、繊維強化複合体は、強度低下を抑制しつつ軽量性をさらに向上させることが困難になっている。
本発明は、このような状況に鑑みてなされたものであって、軽量性と強度とに優れた繊維強化複合体及びその製造方法を提供することを課題としている。
Therefore, conventionally, it is difficult for the fiber-reinforced composite to further improve the light weight while suppressing the strength reduction.
This invention is made | formed in view of such a condition, Comprising: It aims at providing the fiber reinforced composite_body | complex excellent in the lightness and intensity | strength, and its manufacturing method.

上記課題を解決すべく本発明者が鋭意検討を行ったところ表層部の内側に中層部を設け、当該中層部を芯材部よりも硬質なものとすることで表層部を薄肉化するなどしても撓みや割れを生じ難くさせ得ることを見出して本発明を完成させるに至ったものである。
なお、本明細書において「硬質」とは、JIS K6253−3「加硫ゴム及び熱可塑性ゴム−硬さの求め方−第3部:デュロメータ硬さ」に定められたデュロメータ硬さの値が高いことを意味し、常温(例えば、23℃)において測定したデュロメータ硬さ(瞬時値)の値が高いことを意味する。
As a result of extensive studies by the inventor in order to solve the above problems, an intermediate layer portion is provided inside the surface layer portion, and the surface layer portion is thinned by making the intermediate layer portion harder than the core material portion. However, the present invention has been completed by finding out that bending and cracking can be hardly caused.
In this specification, “hard” means a high value of durometer hardness defined in JIS K6253-3 “vulcanized rubber and thermoplastic rubber—how to obtain hardness—part 3: durometer hardness”. This means that the durometer hardness (instantaneous value) measured at normal temperature (for example, 23 ° C.) is high.

前記課題を解決するための繊維強化複合体に係る本発明は、芯材部と、該芯材部を覆う表層部とを備えた複合構造を有し、前記芯材部が樹脂発泡体で、前記表層部が繊維と樹脂とを含む繊維強化樹脂材で形成されている繊維強化複合体であって、前記表層部と前記芯材部との間に前記表層部に内側から接する中層部がさらに備えられ、該中層部が前記芯材部よりも硬質なものとなっている。   The present invention relating to a fiber-reinforced composite for solving the above problems has a composite structure comprising a core part and a surface layer part covering the core part, the core part being a resin foam, The surface layer portion is a fiber reinforced composite formed of a fiber reinforced resin material including fibers and a resin, and an intermediate layer portion in contact with the surface layer portion from the inside is further interposed between the surface layer portion and the core material portion. Provided, and the middle layer portion is harder than the core portion.

また、前記課題を解決するための繊維強化複合体の製造方法に係る本発明は、芯材部と、該芯材部を覆う表層部とを備えた複合構造を有し、前記芯材部が樹脂発泡体で、前記表層部が繊維と樹脂とを含む繊維強化樹脂材で形成されている繊維強化複合体を製造する繊維強化複合体の製造方法であって、前記表層部と前記芯材部との間に前記表層部に内側から接する中層部をさらに備えさせ、該中層部を前記芯材部よりも硬質に形成させるものである。   In addition, the present invention according to a method for manufacturing a fiber-reinforced composite for solving the above problems has a composite structure including a core material part and a surface layer part covering the core material part, and the core material part is A method of manufacturing a fiber reinforced composite, which is a resin foam, and wherein the surface layer portion is formed of a fiber reinforced resin material including a fiber and a resin, the surface layer portion and the core material portion Further, an intermediate layer portion in contact with the surface layer portion from the inside is further provided, and the intermediate layer portion is formed to be harder than the core material portion.

本発明の繊維強化複合体は、芯材部よりも硬質な中層部が表層部の内側に設けられているために表層部の厚み方向に外力が加えられた場合でも、表層部の撓みを前記中層部によって抑制させ得る。
従って、本発明によれば、表層部の薄肉化や表層部の繊維密度の低減を図ることができ、軽量性と強度とに優れた繊維強化複合体及びその製造方法が提供され得る。
The fiber reinforced composite of the present invention has the intermediate layer portion harder than the core portion provided on the inner side of the surface layer portion, so even when an external force is applied in the thickness direction of the surface layer portion, It can be suppressed by the middle layer.
Therefore, according to the present invention, the surface layer portion can be thinned and the fiber density of the surface layer portion can be reduced, and a fiber-reinforced composite excellent in lightness and strength and a method for producing the same can be provided.

一態様の繊維強化複合体の断面構造を示した概略断面図。The schematic sectional drawing which showed the cross-section of the fiber reinforced composite of one aspect.

以下に本発明の実施の形態について、図1に示すように繊維強化複合体が5層構造である場合を例に説明する。
本実施形態の繊維強化複合体に係る概略断面図である図1にも示されているように本発明の繊維強化複合体1は、板状形状を有し、5つの層が厚み方向に積層された構造を有している。
該繊維強化複合体1は、厚み方向中央部に芯材部11を備え、該芯材部11を表裏両方から覆う表層部12をさらに備えた複合構造を有している。
また、本実施形態の繊維強化複合体1は、芯材部11と各表層部12との間に中層部13が備えられている。
In the following, an embodiment of the present invention will be described by taking as an example the case where the fiber-reinforced composite has a five-layer structure as shown in FIG.
As shown also in FIG. 1 which is a schematic cross-sectional view relating to the fiber-reinforced composite of the present embodiment, the fiber-reinforced composite 1 of the present invention has a plate shape, and five layers are laminated in the thickness direction. Has a structured.
The fiber reinforced composite 1 has a composite structure that includes a core part 11 at the center in the thickness direction and further includes a surface layer part 12 that covers the core part 11 from both the front and back sides.
Further, the fiber reinforced composite 1 of the present embodiment includes an intermediate layer portion 13 between the core material portion 11 and each surface layer portion 12.

即ち、本実施形態の繊維強化複合体1は、2つの表層部12がそれぞれ両表面を構成しており、該表層部12にそれぞれ内側から接する2つの中層部13を備えているとともに前記芯材部11の両面をそれぞれ各中層部12の内側に当接させている。   That is, the fiber reinforced composite 1 according to the present embodiment includes two surface layer portions 12 constituting both surfaces, two surface layer portions 12 in contact with the surface layer portion 12 from the inside, and the core material. Both surfaces of the portion 11 are in contact with the inside of each middle layer portion 12.

本実施形態の前記芯材部11は、樹脂発泡体で形成されている。
前記表層部12は、繊維と樹脂とを含む繊維強化樹脂材で形成されている。
なお、本実施形態においては、芯材部11を構成する板状の樹脂発泡体をその一面側から覆う第1の表層部12と他面側から覆う第2の表層部12とは、必ずしも同じ材質のもので形成させる必要はなく、含有させる樹脂や繊維の種類、これらの配合割合等が異なっていても良い。
この表層部12と前記芯材部11との間に設けられた前記中層部13は、芯材部11よりも硬質なものとなっている。
前記の第1の表層部12と芯材部11との間に設けられた第1の中層部12、及び、前記の第2の表層部12と芯材部11との間に設けられた第2の中層部12は、互いに厚みや材質を共通させていていても良く、異ならせていても良い。
The core part 11 of the present embodiment is formed of a resin foam.
The said surface layer part 12 is formed with the fiber reinforced resin material containing a fiber and resin.
In the present embodiment, the first surface layer portion 12 covering the plate-like resin foam constituting the core portion 11 from the one surface side and the second surface layer portion 12 covering the other surface side are not necessarily the same. It is not necessary to form with the thing of a material, The kind of resin and fiber to contain, These compounding ratios, etc. may differ.
The middle layer portion 13 provided between the surface layer portion 12 and the core material portion 11 is harder than the core material portion 11.
The first middle layer portion 12 provided between the first surface layer portion 12 and the core material portion 11 and the second middle layer portion 12 provided between the second surface layer portion 12 and the core material portion 11. The two middle layer portions 12 may have the same thickness or material, or may be different.

前記芯材部11を構成する樹脂発泡体は、例えば、押出成形されてなるものや樹脂発泡ビーズが型内成形されてなるものを採用することができる。
また、樹脂発泡体は、塊状重合された樹脂成形体を発泡させて得られるものを採用することができる。
即ち、芯材部11を構成する樹脂発泡体としては、例えば、重合性単量体と、該単量体を重合させてなるポリマーの軟化温度以上においてガスを発生する発泡剤と、連鎖移動剤、還元剤、還元型の重合開始剤などの添加剤とを含む重合性溶液を調製し、該重合性溶液を重合させて得られた重合体を加熱、発泡させて得られるものを採用してもよい。
As the resin foam constituting the core material portion 11, for example, one obtained by extrusion molding or one obtained by molding resin foam beads in a mold can be employed.
In addition, as the resin foam, a resin foam obtained by foaming a bulk polymerized resin molded body can be adopted.
That is, as the resin foam constituting the core part 11, for example, a polymerizable monomer, a foaming agent that generates a gas above the softening temperature of a polymer obtained by polymerizing the monomer, and a chain transfer agent A polymerizable solution containing an additive such as a reducing agent and a reducing polymerization initiator, and a polymer obtained by polymerizing the polymerizable solution is heated and foamed. Also good.

該樹脂発泡体の主成分となる樹脂は、例えば、ポリエチレンテレフタレート樹脂などの熱可塑性ポリエステル樹脂、ポリカーボネート樹脂、アクリル系樹脂、ポリフェニレンエーテル系樹脂、ポリメタクリルイミド樹脂、ポリオレフィン系樹脂、ポリスチレン系樹脂、ポリアミド系樹脂などが挙げられる。   The resin that is the main component of the resin foam is, for example, thermoplastic polyester resin such as polyethylene terephthalate resin, polycarbonate resin, acrylic resin, polyphenylene ether resin, polymethacrylimide resin, polyolefin resin, polystyrene resin, polyamide. Based resins and the like.

芯材部11を構成する樹脂発泡体は、概ねその厚みを1〜10mmとすることが好ましく、1〜5mmとすることがより好ましく、1〜3mmとすることが特に好ましい。
また、樹脂発泡体は、高い発泡倍率を有する方が繊維強化複合体に優れた軽量性を発揮させる上において有利である一方で過度に高発泡倍率とすると繊維強化複合体に十分優れた機械的強度を発揮させることが難しくなるおそれを有する。
従って、樹脂発泡体は、見掛け密度が0.05〜1.2g/cmであることが好ましく、0.08〜0.9g/cmの見掛け密度であることがより好ましい。
なお、樹脂発泡体の見掛け密度は、JIS K7222:1999「発泡プラスチック及びゴム−見掛け密度の測定」に準拠して求めることができる。
The thickness of the resin foam constituting the core member 11 is preferably approximately 1 to 10 mm, more preferably 1 to 5 mm, and particularly preferably 1 to 3 mm.
In addition, a resin foam having a high expansion ratio is advantageous to exhibit excellent lightness in the fiber reinforced composite, while an excessively high expansion ratio is sufficiently excellent in the fiber reinforced composite. There is a risk that it will be difficult to exert strength.
Therefore, the resin foam preferably has an apparent density of 0.05 to 1.2 g / cm 3 , and more preferably 0.08 to 0.9 g / cm 3 .
The apparent density of the resin foam can be determined according to JIS K7222: 1999 “Foamed plastics and rubbers—Measurement of apparent density”.

前記表層部12については、前記繊維として、例えば、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維及び金属繊維等を含有させることができる。
これらの繊維の中で前記表層部12に含有させる繊維は、炭素繊維、ガラス繊維又はアラミド繊維であることが好ましく、これらの中でも軽量性と強度とをバランス良く備えた炭素繊維がより好ましい。
該繊維は、連続繊維を経糸や緯糸などに採用してこれらを平織りや綾織りにて織製したクロス、連続繊維を一方向に引き揃えてなるシート体(Uni Directional材、以下「UD材」ともいう)、短繊維をシート状に押し固めたマット、或いは、短繊維を分散状態のままで表層部12に含有させることができる。
About the said surface layer part 12, carbon fiber, glass fiber, an aramid fiber, a boron fiber, a metal fiber etc. can be contained as said fiber, for example.
Among these fibers, the fiber contained in the surface layer portion 12 is preferably carbon fiber, glass fiber, or aramid fiber, and among these, carbon fiber having a good balance between lightness and strength is more preferable.
The fiber is a cloth in which continuous fibers are used for warp or weft, and these are woven by plain weave or twill weave, and a sheet body (Uni Directional material, hereinafter referred to as “UD material”) in which continuous fibers are aligned in one direction. Also, a mat formed by pressing short fibers into a sheet shape, or short fibers can be contained in the surface layer portion 12 in a dispersed state.

なかでも外力に対する優れた抵抗力を前記表層部12に付与する上において当該表層部12は、前記繊維をクロスやUD材の状態で備えていることが好ましい。
また、表層部12は、クロスやUD材を複数備え、当該表層部12の厚み方向にクロスやUD材を積層させた状態で備えていることが好ましい。
なお、前記例示の繊維の中でも比較的低密度な炭素繊維であっても、通常、1.6g/cm〜1.8g/cmの密度を有しており、一般的な樹脂よりも密度の値が高い。
そのため、前記表層部12は、クロスやUD材を過度に多層化させると繊維強化複合体に十分な軽量性を発揮させることが困難になるおそれがある。
したがって、前記表層部12におけるクロスやUD材の積層数は、8層以下であることが好ましく、4層以下であることがより好ましい。
In particular, when the surface layer portion 12 is provided with excellent resistance to external force, the surface layer portion 12 preferably includes the fibers in a state of cloth or UD material.
Moreover, it is preferable that the surface layer portion 12 includes a plurality of cloths and UD materials, and is provided in a state where the cloth and UD materials are laminated in the thickness direction of the surface layer portion 12.
Density Incidentally, the even at relatively low density carbon fiber Among exemplary fibers, typically have a density of 1.6g / cm 3 ~1.8g / cm 3 , than general resin The value of is high.
Therefore, when the surface layer portion 12 is excessively multi-layered with cloth or UD material, it may be difficult to make the fiber-reinforced composite exhibit sufficient lightness.
Accordingly, the number of cross layers and UD materials stacked in the surface layer portion 12 is preferably 8 layers or less, and more preferably 4 layers or less.

該繊維とともに表層部12を形成する樹脂は、熱硬化性樹脂であっても熱可塑性樹脂であってもよい。
この内、熱硬化性樹脂としては、特に限定されず、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、メラミン樹脂、ポリウレタン樹脂、シリコーン樹脂、マレイミド樹脂、ビニルエステル樹脂、シアン酸エステル樹脂、並びにマレイミド樹脂とシアン酸エステル樹脂を予備重合させた樹脂等が挙げられる。
これらの熱硬化性樹脂の中で前記表層部12に含有させる樹脂としては、耐熱性、弾性率及び耐薬品性に優れていることから、エポキシ樹脂かビニルエステル樹脂かの何れかであることが好ましい。
The resin that forms the surface layer portion 12 together with the fibers may be a thermosetting resin or a thermoplastic resin.
Among these, the thermosetting resin is not particularly limited, and is an epoxy resin, unsaturated polyester resin, phenol resin, melamine resin, polyurethane resin, silicone resin, maleimide resin, vinyl ester resin, cyanate ester resin, and maleimide resin. And a resin obtained by prepolymerizing cyanate ester resin.
Among these thermosetting resins, the resin to be contained in the surface layer portion 12 is excellent in heat resistance, elastic modulus and chemical resistance, and therefore may be either an epoxy resin or a vinyl ester resin. preferable.

上記熱可塑性樹脂としては、特に限定されず、ポリオレフィン系樹脂、ポリエステル系樹脂、熱可塑性エポキシ樹脂、ポリアミド系樹脂、熱可塑性ポリウレタン樹脂、サルファイド系樹脂、アクリル系樹脂などが挙げられる。
これらの熱可塑性樹脂の中で前記表層部12に含有させる樹脂は、繊維との接着性や強度に優れていることからポリエステル系樹脂や熱可塑性エポキシ樹脂であることが好ましい。
The thermoplastic resin is not particularly limited, and examples thereof include polyolefin resins, polyester resins, thermoplastic epoxy resins, polyamide resins, thermoplastic polyurethane resins, sulfide resins, and acrylic resins.
Among these thermoplastic resins, the resin to be contained in the surface layer portion 12 is preferably a polyester resin or a thermoplastic epoxy resin because it is excellent in adhesion to fibers and strength.

前記表層部12は、樹脂の含有量が過少であると、強化繊維どうしの結着性や中層部13との接着性が不十分となるおそれがあるとともに樹脂の含有量が多すぎる場合も、当該表層部自体に優れた機械的強度を発揮させることが難しくなる。
従って、前記表層部12における樹脂の含有量は、20〜70質量%が好ましく、30〜60質量%がより好ましい。
When the surface layer portion 12 has an excessive resin content, the binding property between the reinforcing fibers and the adhesiveness with the middle layer portion 13 may be insufficient and the resin content is too large. It becomes difficult for the surface layer itself to exhibit excellent mechanical strength.
Therefore, the content of the resin in the surface layer portion 12 is preferably 20 to 70% by mass, and more preferably 30 to 60% by mass.

前記表層部12の厚みは、0.02〜2mmが好ましく、0.05〜1mmがより好ましく前記表層部12の目付は、50〜4000g/mであることが好ましく、100〜1000g/mであることがより好ましい。 The thickness of the surface layer portion 12 is preferably 0.02 to 2 mm, more preferably 0.05 to 1 mm, and the basis weight of the surface layer portion 12 is preferably 50 to 4000 g / m 2 , and preferably 100 to 1000 g / m 2. It is more preferable that

前記中層部13は、金属シートやセラミックスシートなどの無機シートによって形成させることも可能ではあるが、繊維強化複合体の軽量性を考慮すると樹脂層とすることが好ましい。
本実施形態における前記中層部13は、前記芯材部11を構成する樹脂発泡体よりも発泡倍率の低い低発泡樹脂層又は非発泡樹脂層である。
該中層部13を形成する樹脂としては、単に硬質であるばかりでなく、芯材部11を構成する樹脂発泡体や表層部12を構成する繊維強化樹脂材との接着性に優れたものであることが好ましい。
硬質で且つ多くの種類の樹脂に対して優れた接着性を示す樹脂で、前記中層部13を形成するのに好ましい樹脂としては、例えば、エポキシ系樹脂、ポリエステル系樹脂、アクリル系樹脂などが挙げられる。
The middle layer portion 13 can be formed of an inorganic sheet such as a metal sheet or a ceramic sheet, but is preferably a resin layer in consideration of the lightweight property of the fiber-reinforced composite.
The middle layer portion 13 in the present embodiment is a low foamed resin layer or a non-foamed resin layer having a lower foaming ratio than the resin foam constituting the core material portion 11.
The resin forming the middle layer portion 13 is not only hard, but also has excellent adhesion to the resin foam constituting the core material portion 11 and the fiber reinforced resin material constituting the surface layer portion 12. It is preferable.
Examples of resins that are hard and exhibit excellent adhesion to many types of resins and that are preferable for forming the middle layer 13 include epoxy resins, polyester resins, and acrylic resins. It is done.

該中層部13は、通常、芯材部11を構成する樹脂発泡体よりも高密度なものとなるため繊維強化複合体の軽量性を考えると厚みが薄い方が好ましい。
一方で表層部12に外力が加わった際の撓みを抑制して表層部12に割れが生じることを防ぐ上においては中層部13に一定以上の厚みを持たせることが好ましい。
このようなことから中層部13は、0.01mm以上2mm以下の平均厚みを有することが好ましく、0.02mm以上1.0mm以下の平均厚みを有することがより好ましく、0.02mm以上0.7mm以下の平均厚みを有することが特に好ましい。
なお、この「平均厚み」とは、単位面積当たりの中層部13の体積を求め、この体積を前記の単位面積で除した値を意味する。
また、中層部13は、芯材部11に比べて高い硬度を有することが好ましく非発泡樹脂層となっていることが好ましい。
Since the middle layer portion 13 usually has a higher density than the resin foam constituting the core material portion 11, it is preferable that the thickness is thinner in view of the lightweight property of the fiber-reinforced composite.
On the other hand, in order to prevent the surface layer portion 12 from cracking when an external force is applied to the surface layer portion 12 and prevent the surface layer portion 12 from cracking, it is preferable that the middle layer portion 13 has a certain thickness or more.
Therefore, the middle layer portion 13 preferably has an average thickness of 0.01 mm to 2 mm, more preferably 0.02 mm to 1.0 mm, and more preferably 0.02 mm to 0.7 mm. It is particularly preferable to have the following average thickness:
The “average thickness” means a value obtained by calculating the volume of the middle layer portion 13 per unit area and dividing the volume by the unit area.
The middle layer portion 13 preferably has a higher hardness than the core material portion 11 and is preferably a non-foamed resin layer.

該中層部13及び前記芯材部11の硬さについては、JIS K6253−3「加硫ゴム及び熱可塑性ゴム−硬さの求め方−第3部:デュロメータ硬さ」に準拠して作製された市販のデュロメータ硬度計によって測定することができる。
なお、中層部13や芯材部11の厚みが同規格に定められた試験片を採取するのには薄過ぎる場合、複数の試料を重ね合わせて試験片を構成させてもよく、中層部13や芯材部11と同じ配合内容の樹脂組成物で中層部13や芯材部11と同じ密度を有する厚手のシート体を別途作製し、このシート体から硬さ測定用試験片を採取するようにしてもよい。
この中層部13や芯材部11の硬さ測定は、JISの標準状態(23℃±1℃、50%±2%RH)において実施すればよく、それぞれの硬さは瞬時値によって求めることができる。
また、単に中層部13が芯材部11よりも硬質であることを確認するだけであれば、繊維強化複合体から表層部12を取り除いて中層部13を表面露出させた状態でデュロメータ硬さを測定し、次いで、中層部13を取り除いて芯材部11を表面露出させた状態でデュロメータ硬さを再び測定し、デュロメータ硬度計の押針を中層部13に衝突させる形で行った前者の測定値が後者の測定値を上回っていることによって確認することができる。
About the hardness of this intermediate | middle layer part 13 and the said core material part 11, it produced based on JISK6253-3 "vulcanized rubber and thermoplastic rubber-how to obtain | require hardness-3rd part: durometer hardness". It can be measured by a commercially available durometer hardness meter.
In addition, when the thickness of the middle layer part 13 or the core part 11 is too thin to collect a test piece defined in the same standard, a plurality of samples may be stacked to form a test piece. A thick sheet body having the same density as that of the middle layer section 13 and the core section 11 is separately prepared from the resin composition having the same composition as that of the core section 11 and the hardness measurement test piece is collected from this sheet body. It may be.
The hardness measurement of the middle layer portion 13 and the core material portion 11 may be performed in the standard state of JIS (23 ° C. ± 1 ° C., 50% ± 2% RH), and the hardness of each may be obtained by an instantaneous value. it can.
Moreover, if it is only confirmed that the middle layer part 13 is harder than the core part 11, the surface layer part 12 is removed from the fiber reinforced composite, and the durometer hardness is set with the middle layer part 13 exposed on the surface. Then, the durometer hardness is measured again in a state where the middle layer portion 13 is removed and the core material portion 11 is exposed, and the former measurement is performed in such a manner that the push needle of the durometer hardness meter collides with the middle layer portion 13. This can be confirmed by the fact that the value exceeds the latter measured value.

なお、中層部13、芯材部11、及び、表層部12に関し、中層部13を一定以上厚くすることによって繊維強化複合体の強度を向上させることができる。
また、中層部13は、その厚みが薄くなりすぎると表層部12の変形を抑制する効果や接着性についての機能を十分に発揮させることが難しくなる。
しかしながら繊維強化複合体は、該中層部13を一定以上の厚みとすると重量増加に見合う強度向上効果が得られ難くなる。
従って、繊維強化複合体を軽量性と強度とに特に優れたものにする観点からは、中層部13、芯材部11、及び、表層部12は、芯材部11の厚みが中層部13や表層部12の厚みよりも厚いことが好ましく、前記表層部12の厚みが前記中層部13の厚みよりも厚いことが好ましい。
即ち、中層部13、芯材部11、及び、表層部12は、[芯材部>表層部>中層部]の順に厚みが厚いことが好ましい。
また、表層部に十分な強度を発現させ、繊維強化複合体全体としての強度を十分優れたものにするためには、芯材部の硬度(タイプDデュロメータ硬さ)は、5以上が好ましく、7以上がさらに好ましく、9以上が特に好ましい。
一方で中層部の硬度は、18以上が好ましく、25以上がさらに好ましく、35以上が特に好ましい。
中層部の硬度は、芯材部より10以上高いことが好ましく、20以上高いことがより好ましい。
即ち、表層部12に外力が加わった際の撓みを抑制して表層部12に割れが生じることを防ぎ、繊維強化複合体に高い強度を発現させるという効果をより確実に発揮させる上において中層部が上記のような硬度を有していることが好ましい。
In addition, regarding the middle layer part 13, the core material part 11, and the surface layer part 12, the strength of the fiber reinforced composite can be improved by making the middle layer part 13 thicker than a certain thickness.
Moreover, when the thickness of the middle layer portion 13 becomes too thin, it becomes difficult to sufficiently exhibit the effect of suppressing the deformation of the surface layer portion 12 and the function of adhesiveness.
However, in the fiber reinforced composite, when the middle layer portion 13 has a thickness of a certain level or more, it is difficult to obtain a strength improvement effect commensurate with an increase in weight.
Therefore, from the viewpoint of making the fiber reinforced composite particularly excellent in lightness and strength, the middle layer portion 13, the core material portion 11, and the surface layer portion 12 have the thickness of the core material portion 11 as the middle layer portion 13 or The thickness of the surface layer portion 12 is preferably thicker, and the thickness of the surface layer portion 12 is preferably thicker than the thickness of the middle layer portion 13.
That is, the middle layer portion 13, the core material portion 11, and the surface layer portion 12 are preferably thicker in the order of [core material portion> surface layer portion> middle layer portion].
Moreover, in order to express sufficient strength in the surface layer portion and to make the strength of the entire fiber-reinforced composite sufficiently excellent, the hardness of the core portion (type D durometer hardness) is preferably 5 or more, 7 or more is more preferable, and 9 or more is particularly preferable.
On the other hand, the hardness of the middle layer portion is preferably 18 or more, more preferably 25 or more, and particularly preferably 35 or more.
The middle layer portion preferably has a hardness of 10 or more, more preferably 20 or more, higher than that of the core material portion.
That is, in order to prevent the occurrence of cracks in the surface layer portion 12 by suppressing the bending when an external force is applied to the surface layer portion 12, and to exhibit the effect that the fiber-reinforced composite exhibits high strength more reliably, the middle layer portion Preferably has the hardness as described above.

本実施形態の前記中層部13は、その厚みを均質なものとする上において、液体やペーストなどの流動性の高いものではなく樹脂シートなどによって形成させることが好ましい。
また、該中層部13と前記芯材部11との積層を簡便に実施する上において、前記繊維強化複合体1は、前記芯材部11を構成する樹脂発泡体が押出発泡シートで、且つ、前記中層部13を形成する前記樹脂シートと前記押出発泡シートとが、熱ラミネート法、押出ラミネート法、又は、共押出法の何れかによって積層一体化されていることが好ましい。
In order to make the thickness of the middle layer portion 13 of this embodiment uniform, it is preferable that the middle layer portion 13 be formed of a resin sheet or the like rather than a highly fluid material such as a liquid or a paste.
Moreover, in carrying out the lamination of the middle layer portion 13 and the core material portion 11 simply, the fiber reinforced composite 1 is such that the resin foam constituting the core material portion 11 is an extruded foam sheet, and It is preferable that the resin sheet forming the middle layer portion 13 and the extruded foam sheet are laminated and integrated by any one of a heat laminating method, an extrusion laminating method, and a coextrusion method.

前記熱ラミネート法は、例えば、中層部13を形成させるための2枚の非発泡樹脂シートを用意し、これらの樹脂シートの間に前記押出発泡シートを挟んで積層体を形成させ、該積層体の自然厚みよりも狭い間隙を設けた1対の加熱ローラーの間に前記積層体を通して樹脂シートと押出発泡シートとを熱融着させる方法などにより実施可能である。
前記押出ラミネート法については、サーキュラーダイやフラットダイを装着した押出機を使って押出発泡を実施し、帯状の押出発泡シートを連続的に作製しつつフラットダイを装着した押出機を使って前記押出発泡シートの片面又は両面に中層部13を形成させるための樹脂シートを溶融状態で単に積層させる方法や、さらに前記積層後に厚み矯正ローラーの間を通過させて厚み調整された中層部13を形成させる工程を付加するなどして実施可能である。
さらに、共押出法においては、2層同時押出し、又は、3層同時押出しを実施して、芯材部11を構成する押出発泡シートの片面又は両面に中層部13を形成させることができる。
In the thermal laminating method, for example, two non-foamed resin sheets for forming the middle layer portion 13 are prepared, and a laminate is formed by sandwiching the extruded foam sheet between these resin sheets. It can be carried out by a method in which the resin sheet and the extruded foam sheet are heat-sealed through the laminated body between a pair of heating rollers provided with a gap narrower than the natural thickness.
As for the extrusion laminating method, extrusion foaming is performed using an extruder equipped with a circular die or a flat die, and the extrusion using an extruder equipped with a flat die while continuously producing a strip-like extruded foam sheet. A method of simply laminating a resin sheet for forming the middle layer portion 13 on one side or both sides of the foamed sheet in a molten state, and further, forming the middle layer portion 13 having a thickness adjusted by passing between thickness correcting rollers after the lamination. It can be implemented by adding a process.
Furthermore, in the coextrusion method, two-layer coextrusion or three-layer coextrusion can be performed to form the middle layer portion 13 on one or both sides of the extruded foam sheet constituting the core material portion 11.

なお、要すれば、芯材部11を構成する樹脂発泡体、表層部12を構成する繊維強化樹脂材、及び、中層部13を形成する樹脂シートを個別に作製した後で前記の熱ラミネート法のような方法を採用して繊維強化複合体を形成させてもよい。
即ち、クロスやUD材に樹脂を含浸させてなる繊維強化樹脂シートと樹脂発泡シートとの間に非発泡樹脂シートを挟んで積層体を作製し、これを1対の加熱ローラーの間に通し、前記非発泡樹脂シートの厚み方向に前記積層体を加圧するとともに前記積層体を加熱して前記繊維強化樹脂シート、前記非発泡樹脂シート、及び、前記樹脂発泡体を熱融着一体化させて繊維強化複合体を形成させてもよい。
当該繊維強化複合体の製造方法においては、一度の工程で繊維強化複合体を得ることができ、前記繊維強化樹脂シートによって前記表層部12を形成させ、前記非発泡樹脂シートによって前記中層部13を形成させるとともに前記樹脂発泡体によって前記芯材部11を形成させることができる。
また、このとき加熱ローラーに代えて一般的な熱プレスを用いて繊維強化複合体を形成させてもよい。
さらに、熱プレス機に成形型をセットして繊維強化複合体を形成させる場合であれば、芯材部11は、板状の樹脂発泡体ではなく3次元的な構造を有する樹脂発泡体であっても良い。
In addition, if necessary, after the resin foam forming the core part 11, the fiber reinforced resin material forming the surface layer part 12, and the resin sheet forming the middle layer part 13 are individually manufactured, the thermal laminating method described above is used. Such a method may be adopted to form a fiber reinforced composite.
That is, a non-foamed resin sheet is sandwiched between a fiber reinforced resin sheet obtained by impregnating a cloth or UD material with a resin and a resin foam sheet, and this is passed between a pair of heating rollers. The laminated body is pressurized in the thickness direction of the non-foamed resin sheet and the laminated body is heated so that the fiber-reinforced resin sheet, the non-foamed resin sheet, and the resin foam are integrated by heat fusion. A reinforced composite may be formed.
In the method for producing a fiber reinforced composite, a fiber reinforced composite can be obtained in a single step, the surface layer portion 12 is formed by the fiber reinforced resin sheet, and the middle layer portion 13 is formed by the non-foamed resin sheet. The core material portion 11 can be formed by the resin foam while being formed.
At this time, a fiber reinforced composite may be formed using a general hot press instead of the heating roller.
Furthermore, in the case of forming a fiber-reinforced composite by setting a molding die in a hot press machine, the core part 11 is not a plate-like resin foam but a resin foam having a three-dimensional structure. May be.

熱プレス機を利用する場合、例えば、非発泡樹脂シートの使用を省略し、一旦熱プレス機で樹脂発泡体の表層部位を選択的に圧縮して当該部位を樹脂発泡体の中心部よりも高密度化させ、該高密度化によって形成された高密度部の内側に該高密度部よりも密度の低い低密度部を備えた樹脂発泡体を得、この低密度部によって前記芯材部11を形成させるとともに前記高密度部によって前記中層部12を形成させることもできる。   When using a hot press machine, for example, the use of a non-foamed resin sheet is omitted, and once the surface layer part of the resin foam is selectively compressed with a hot press machine, the part is made higher than the center part of the resin foam. Densified to obtain a resin foam having a low-density part having a lower density than the high-density part inside the high-density part formed by the densification, and the core part 11 is formed by the low-density part. The middle layer portion 12 may be formed by the high density portion while being formed.

また、非発泡樹脂シートの使用を省略して中層部を形成させる方法としては、例えば、芯材部11を構成する押出発泡シートを作製する際に、ダイから押出された直後の押出発泡シートに対して強い冷却を施し、押出発泡シートの表層部位の発泡を選択的に抑制させて押出発泡シートの厚み方向中央部を樹脂発泡シートの状態にするとともに前記の表層部位を非発泡樹脂シートの状態にし、該表層部位を中層部の形成に利用する方法が挙げられる。   In addition, as a method of forming the middle layer portion by omitting the use of the non-foamed resin sheet, for example, when producing the extruded foam sheet constituting the core material portion 11, the extruded foam sheet immediately after being extruded from the die is used. Strong cooling is applied to the surface of the extruded foamed sheet to selectively suppress foaming of the extruded foamed sheet so that the central portion in the thickness direction of the extruded foamed sheet is in the state of the resin foamed sheet, and the surface layer is in the state of the non-foamed resin sheet. And a method of using the surface layer portion for forming the middle layer portion.

押出発泡シートの冷却は、押出発泡シートの表裏の全面をほぼ均一に冷却するために、冷却手段として、エアーリングを用いることが好ましい。
そして、例えば、10〜20℃のエアーをエアーリングから押出直後の押出発泡シートに吹き付けて冷却を行う場合、吹出口から押出発泡シートの表面に吹き付ける量は、外表面1mあたり0.005〜0.6Nm/mの範囲内とするのが好ましい。
なお、エアーの温度及び量はエアーリング1の吹出口から3mm以内の位置で、温度計、風速計を用いて確認することができる。
For cooling the extruded foam sheet, it is preferable to use an air ring as a cooling means in order to cool the entire front and back surfaces of the extruded foam sheet substantially uniformly.
For example, when cooling is performed by blowing air at 10 to 20 ° C. from the air ring to the extruded foam sheet immediately after extrusion, the amount blown from the outlet to the surface of the extruded foam sheet is 0.005 per 1 m 2 of the outer surface. It is preferable to be within the range of 0.6 Nm 3 / m 2 .
The temperature and amount of air can be confirmed using a thermometer and anemometer at a position within 3 mm from the air outlet of the air ring 1.

このような強冷却を行う方法によれば、例えば、前記押出発泡に際して炭化水素系の発泡剤(プロパン、ブタン、ペンタン、ヘキサンなど)を押出発泡シートに多く残存させることができる。
この残存させた発泡剤は、押出発泡シートに優れた2次発泡性を発揮させる。
従って、上記のように発泡剤を残存させた押出発泡シートは、繊維強化樹脂材を貼り合わせるべくを加熱するなどした際に発泡剤の作用によってその厚みが増大し、この発泡剤による膨張力を繊維強化樹脂材との貼り合わせ力に転用することができる。
According to such a method of strong cooling, for example, a large amount of hydrocarbon-based foaming agent (propane, butane, pentane, hexane, etc.) can remain in the extruded foam sheet during the extrusion foaming.
This remaining foaming agent exhibits excellent secondary foamability in the extruded foam sheet.
Therefore, the extruded foam sheet in which the foaming agent remains as described above is increased in thickness by the action of the foaming agent when heated to bond the fiber reinforced resin material, and the expansion force by the foaming agent is increased. It can be diverted to the bonding force with the fiber reinforced resin material.

このことから繊維強化樹脂材を貼り合わせる前の押出発泡シートは、ブタンなどの発泡剤を1質量%〜10質量%含んでいることが好ましく、2質量%〜5質量%含んでいることがより好ましい。
なお、押出発泡シートの発泡剤含有量は下記のようにして求めることができる。
From this, the extruded foam sheet before bonding the fiber reinforced resin material preferably contains 1% by mass to 10% by mass of a foaming agent such as butane, and more preferably contains 2% by mass to 5% by mass. preferable.
The foaming agent content of the extruded foam sheet can be determined as follows.

(発泡剤含有量)
先ず、押出発泡シートから採取した試料の質量W1を測定する。
次に、押出発泡シートに含まれる発泡剤の質量W2を測定する。
発泡剤の質量(W2)は、ガスクロマトグラフを用いて測定することができ、具体的には、下記要領にて測定することができる。
(Foaming agent content)
First, the mass W1 of the sample collected from the extruded foam sheet is measured.
Next, the mass W2 of the foaming agent contained in the extruded foam sheet is measured.
The mass (W2) of the foaming agent can be measured using a gas chromatograph, and specifically can be measured as follows.

押出発泡シートから10〜30mgの試料を採取し、20mLバイアル瓶に入れて精秤し、バイアル瓶を密閉してオートサンプラー付ガスクロマトグラフにセットし、バイアル瓶を210℃で20分間に亘って加熱した後、バイアル瓶の上部空間の気体をMHE(Multiple Headspace Extraction)法にて定量分析し、含まれている発泡剤の質量W2を測定する。   A sample of 10 to 30 mg is taken from the extruded foam sheet, placed in a 20 mL vial, precisely weighed, the vial is sealed and set in a gas chromatograph with an autosampler, and the vial is heated at 210 ° C. for 20 minutes. After that, the gas in the upper space of the vial is quantitatively analyzed by the MHE (Multiple Headspace Extraction) method, and the mass W2 of the foaming agent contained is measured.

ここでいうMHE法とは、気固平衡にある気相ガスの放出を繰り返すことで得られるピーク面積の減衰を利用する定量方法である。
〔GC測定条件〕
測定装置:ガスクロマトグラフ Clarus500(Perkin−Elmer社製)
カラム:DB−1(1.0μm×0.25mmφ×60m:J&W社製)
検出器:FID
GCオーブン昇温条件:初期温度50℃(6分)
昇温速度:40℃/分(250℃まで)
最終温度:250℃(1.5分)
キャリアーガス(He),注入口温度:230℃,検出温度:310℃
レンジ:20
ベントガス 30mL/分(He)、追加ガス 5mL/分(He)
ガス圧力:初期圧力18psi(10分),昇圧速度:0.5psi/min(24psiまで)
〔HS測定条件〕
測定装置:HSオートサンプラーTurboMatrix HS40(Perkin−Elmer社製)
加熱温度:210℃,加熱時間:20分,加圧ガス圧:25psi,加圧時間:1分,
ニードル温度:210℃,トランスファーライン温度:210℃,試料導入時間:0.08分
〔算出条件〕
検量線用標準ガス:混合ガス(ジーエルサイエンス社製)
混合ガス含有量:i−ブタン 約1質量%,n−ブタン 約1質量%,バランス 窒素
算出方法:MHE法により試料中の発泡剤量を算出する。結果は全てi−ブタン換算量とする。
The MHE method referred to here is a quantitative method that utilizes the attenuation of the peak area obtained by repeating the release of gas phase gas in gas-solid equilibrium.
[GC measurement conditions]
Measuring apparatus: Gas chromatograph Clarus500 (manufactured by Perkin-Elmer)
Column: DB-1 (1.0 μm × 0.25 mmφ × 60 m: manufactured by J & W)
Detector: FID
GC oven temperature rising condition: initial temperature 50 ° C. (6 minutes)
Temperature increase rate: 40 ° C / min (up to 250 ° C)
Final temperature: 250 ° C (1.5 minutes)
Carrier gas (He), inlet temperature: 230 ° C, detection temperature: 310 ° C
Range: 20
Vent gas 30 mL / min (He), additional gas 5 mL / min (He)
Gas pressure: Initial pressure 18 psi (10 minutes), Pressure increase rate: 0.5 psi / min (up to 24 psi)
[HS measurement conditions]
Measuring apparatus: HS autosampler TurboMatrix HS40 (manufactured by Perkin-Elmer)
Heating temperature: 210 ° C., heating time: 20 minutes, pressurized gas pressure: 25 psi, pressurized time: 1 minute,
Needle temperature: 210 ° C, transfer line temperature: 210 ° C, sample introduction time: 0.08 minutes [Calculation conditions]
Standard gas for calibration curve: Gas mixture (manufactured by GL Sciences Inc.)
Mixed gas content: i-butane about 1% by mass, n-butane about 1% by mass, balance nitrogen Calculation method: The amount of blowing agent in the sample is calculated by the MHE method. All results are in i-butane equivalent.

押出発泡シートにおける発泡剤含有量は下記式に基づいて算出することできる。

押出発泡シートにおける発泡剤含有量(質量%)=100×W2/W1
The foaming agent content in the extruded foam sheet can be calculated based on the following formula.

Foaming agent content (% by mass) in extruded foam sheet = 100 × W2 / W1

なお、このような押出発泡シートに繊維強化樹脂材を積層して繊維強化複合体を作製する方法としては公知の熱成形法を採用することができる。
該熱成形としては、例えば、真空成形法、圧空成形法、圧縮成形法などが挙げられる。
真空成形法、圧空成形法及び圧縮成形法を応用した熱成形方法としては、例えば、ストレート成形法、ドレープ成形法、プラグアシスト成形法、プラグアシスト・リバースドロー成形法、エアスリップ成形法、スナップバック成形法、リバースドロー成形法、プラグアシスト・エアスリップ成形法、マッチモールド成形法、プレス成形法、SMC成形法及び、これらの成形法を組み合わせた熱成形方法が挙げられ、成形性に乏しい繊維強化樹脂材を使用しても外観の良好な繊維強化複合体を得ることができるので、プレス成形法、マッチモールド成形法が好ましい。
A known thermoforming method can be adopted as a method for producing a fiber reinforced composite by laminating a fiber reinforced resin material on such an extruded foam sheet.
Examples of the thermoforming include vacuum forming, pressure forming, and compression forming.
Examples of thermoforming methods that apply vacuum forming, pressure forming, and compression forming include straight forming, drape forming, plug assist forming, plug assist reverse draw forming, air slip forming, and snapback. Examples include molding methods, reverse draw molding methods, plug assist / air slip molding methods, match molding methods, press molding methods, SMC molding methods, and thermoforming methods that combine these molding methods. Since a fiber-reinforced composite having a good appearance can be obtained even if a resin material is used, a press molding method and a match molding method are preferable.

このようにして得られる繊維強化複合体は、圧縮強度、曲げ強度などの機械的強度及び軽量性に優れているため、自動車、航空機、鉄道車輛又は船舶などの輸送機器分野、家電分野、情報端末分野、風力発電用部材分野、産業機械分野、医療機器分野、家具の分野などの広範な用途に用いることができ、特に自動車部品(天井パネル、ボンネット、アンダーカバー、床パネル、ドアパネルなど)、家電機器用部品(筺体など)として好適に用いることができる。   Since the fiber reinforced composite obtained in this way is excellent in mechanical strength and lightness such as compressive strength and bending strength, it is in the field of transportation equipment such as automobiles, aircraft, railway vehicles or ships, home appliances field, information terminals. It can be used for a wide range of applications such as fields, components for wind power generation, industrial machinery, medical equipment, and furniture, especially automobile parts (ceiling panels, bonnets, undercovers, floor panels, door panels, etc.), home appliances It can be suitably used as a device part (such as a housing).

なお、本実施形態に係る繊維強化複合体の形状は、特に限定されるものではない。
本実施形態に係る繊維強化複合体は、その用途などにおいて求められる種々の形態とすることができる。
The shape of the fiber reinforced composite according to this embodiment is not particularly limited.
The fiber-reinforced composite according to the present embodiment can be in various forms required for its use.

なお、ここではこれ以上詳細な説明を行わないが、本発明の繊維強化複合体は、上記例示に限定されるものではなく、繊維強化複合体について従来公知の技術事項についてはこれを適宜採用することが可能なものである。   Although no further detailed description will be given here, the fiber-reinforced composite of the present invention is not limited to the above examples, and this is appropriately adopted for conventionally known technical matters regarding the fiber-reinforced composite. Is possible.

以下に実施例を示して、本発明をさらに詳細に説明するが、本発明はこれらの例示に限定されるものでもない。
(実施例1)
ポリエチレンテレフタレート(PET、東洋紡績社製 商品名「CH−611」、ガラス転移温度Tg:79℃、融点:249℃、IV値:1.0)100質量部、タルク0.72質量部、及び、無水ピロメリット酸0.2質量部を含むポリエステル系樹脂組成物を口径が65mmで且つL/D比が35の単軸押出機に供給して290℃にて溶融混練した。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.
Example 1
100 parts by mass of polyethylene terephthalate (PET, trade name “CH-611” manufactured by Toyobo Co., Ltd., glass transition temperature Tg: 79 ° C., melting point: 249 ° C., IV value: 1.0), 0.72 parts by mass of talc, and A polyester resin composition containing 0.2 parts by mass of pyromellitic anhydride was supplied to a single screw extruder having a diameter of 65 mm and an L / D ratio of 35, and melt kneaded at 290 ° C.

次に、押出機の途中から、イソブタン35質量%及びノルマルブタン65質量%を含むブタンをポリエチレンテレフタレート100質量部に対して1.5質量部となるように押出機に圧入して溶融状態のポリエステル系樹脂中に均一に分散させた。   Next, from the middle of the extruder, butane containing 35% by mass of isobutane and 65% by mass of normal butane is press-fitted into the extruder so as to be 1.5 parts by mass with respect to 100 parts by mass of polyethylene terephthalate. The resin was uniformly dispersed in the resin.

しかる後、押出機の前端部において、溶融状態のポリエステル系樹脂組成物を220℃に冷却した後、押出機の前端に取り付けたサーキュラダイから円筒状に押出発泡させて円筒状体を製造し、所定の厚みとなるような速度にて、この円筒状体を徐々に拡径した上で冷却マンドレル(冷却マンドレル温度15±10℃)に供給して表面を冷却した後、もう一方の面も同じくして、エアーリングにて冷却(エアー温度15±10℃、風量0.9Nm/分)し、円筒状体をその押出方向に連続的に内外冷却し周面間に亘って切断し切り開いて展開することによってポリエチレンテレフタレート樹脂発泡シートを製造した。 Thereafter, at the front end of the extruder, the polyester resin composition in a molten state is cooled to 220 ° C., and then extruded and foamed in a cylindrical shape from a circular die attached to the front end of the extruder to produce a cylindrical body. After gradually increasing the diameter of this cylindrical body at a speed that achieves a predetermined thickness and supplying it to a cooling mandrel (cooling mandrel temperature 15 ± 10 ° C.) to cool the surface, the other surface is also the same Then, it is cooled by an air ring (air temperature 15 ± 10 ° C., air volume 0.9 Nm 3 / min), and the cylindrical body is continuously cooled in and out in the direction of extrusion, and is cut and cut between the peripheral surfaces. A polyethylene terephthalate resin foam sheet was produced by unfolding.

これに対し繊維強化樹脂材として、炭素繊維からなる綾織の織物に樹脂含浸されている面材(三菱レイヨン社製 商品名「パイロフィルプリプレグ TR3523−395GMP」、目付:200g/m2、厚み:0.23mm)を2枚用意した。
面材は、一辺250mmの平面正方形状であった。
また、面材には、熱硬化性樹脂として未硬化のエポキシ樹脂が40質量%含有されていた。
On the other hand, as a fiber reinforced resin material, a face material in which a twill weave made of carbon fiber is impregnated with a resin (trade name “Pyrofil Prepreg TR3523-395GMP” manufactured by Mitsubishi Rayon Co., Ltd., basis weight: 200 g / m 2, thickness: 0.00. 23 mm) were prepared.
The face material had a planar square shape with a side of 250 mm.
Further, the face material contained 40% by mass of an uncured epoxy resin as a thermosetting resin.

2枚の面材をそれらの経糸の長さ方向が互いに90°の角度をなすように重ね合わせて多層面材とした。
また、ポリエチレンテレフタレート樹脂発泡シートと多層面材との間にエポキシ系接着フィルム(住友スリーエム社「AF191」、厚み0.06mm)を介在させ積層体を作製した。
Two face materials were overlapped so that the warp yarns were 90 ° in length direction to form a multilayer face material.
Further, an epoxy adhesive film (Sumitomo 3M “AF191”, thickness 0.06 mm) was interposed between the polyethylene terephthalate resin foam sheet and the multilayer surface material to produce a laminate.

続いて、上記積層体を雌雄金型間に配設し、雌雄金型を型締めすることによって、プレス成形し、ポリエチレンテレフタレート樹脂発泡シートを平板形状に成形するとともに繊維強化樹脂材をエポキシ系接着フィルムを介してポリエチレンテレフタレート発泡シートに熱接着させ、前記ポリエチレンテレフタレート発泡シートからなる芯材部、前記エポキシ系接着フィルムからなる中層部、及び、前記多層面材からなる表層部を備えた繊維強化複合体を作製するようにした。   Subsequently, the laminate is disposed between male and female molds, and the male and female molds are clamped to press-mold, a polyethylene terephthalate resin foam sheet is formed into a flat plate shape, and a fiber reinforced resin material is bonded with epoxy. A fiber reinforced composite comprising a core part made of the polyethylene terephthalate foamed sheet, a middle part made of the epoxy-based adhesive film, and a surface layer part made of the multi-layered surface material. The body was made.

なお、プレス成形時には、積層体が145℃となるように保持し、繊維強化樹脂材に含まれているエポキシ樹脂が硬化することなく流動性を保持するように制御した。
プレス成形時、上記積層体の発泡シート厚み方向に膨張させて隆起部を形成させるとともにポリエチレンテレフタレート樹脂発泡シートを構成しているポリエチレンテレフタレートの結晶化度を上昇させた。
また、金型は、短冊状試料(横方向寸法が25mm、奥行き方向寸法が130mmの短冊状試料)を10個採取できる繊維強化複合体を作製可能なものとした。
During press molding, the laminate was held at 145 ° C., and the epoxy resin contained in the fiber reinforced resin material was controlled to maintain fluidity without being cured.
At the time of press molding, the laminate was expanded in the thickness direction of the foamed sheet to form a raised portion, and the crystallinity of polyethylene terephthalate constituting the polyethylene terephthalate resin foamed sheet was increased.
In addition, the mold was capable of producing a fiber-reinforced composite capable of collecting ten strip samples (strip samples having a lateral dimension of 25 mm and a depth dimension of 130 mm).

次に、積層体を145℃に5分間加熱し、繊維強化樹脂材に含有されている未硬化のエポキシ樹脂を硬化させて、繊維強化樹脂材の繊維どうしを硬化したエポキシ樹脂で結着、固定して繊維強化樹脂材をポリエチレンテレフタレート樹脂発泡シートの両面に積層一体化させて繊維強化複合体を製造した。   Next, the laminate is heated to 145 ° C. for 5 minutes, the uncured epoxy resin contained in the fiber reinforced resin material is cured, and the fibers of the fiber reinforced resin material are bonded and fixed with the cured epoxy resin. Then, the fiber reinforced resin material was laminated and integrated on both surfaces of the polyethylene terephthalate resin foamed sheet to produce a fiber reinforced composite.

しかる後、繊維強化複合体を30℃以下に冷却した後、雌雄金型を開いて繊維強化複合体を取り出して繊維強化複合体を得た。
得られた繊維強化複合体は、硬化した熱硬化性樹脂によって繊維どうしが結着され且つ雌雄金型に沿って所望形状に成形された表層部が前記中層部を介して芯材部の全面に密着した状態となって積層一体化されていた。
なお、ポリエチレンテレフタレート樹脂発泡シートは、押出後、室温25±5℃に48時間保管したものを使用した。
Thereafter, the fiber reinforced composite was cooled to 30 ° C. or lower, and then the male and female molds were opened to take out the fiber reinforced composite to obtain a fiber reinforced composite.
In the obtained fiber reinforced composite, the surface layer portion in which the fibers are bound by the cured thermosetting resin and formed into a desired shape along the male and female molds is formed on the entire surface of the core portion through the middle layer portion. The layers were in close contact and integrated.
The polyethylene terephthalate resin foamed sheet was stored for 48 hours at 25 ± 5 ° C. after extrusion.

(実施例2〜10、比較例1〜2)
下記の非発泡樹脂シートを中層部の形成材料とし、下記の樹脂発泡体を芯材部の形成材料として、表1に記載の通り繊維強化複合体を得た。
<非発泡樹脂シート>
EP:エポキシ系接着フィルム(Newport 102U、Newport Adhesives and Composites, Inc社製)を各厚み分積層したもの
ポリエステル:ポリエチレンテレフタレート(PET、東洋紡績社製 商品名「CH−611」を各厚みとなるように、単層押出(0.15mm以下)、或いは、積層押出(共押出)したもの
シリコン:KE42T(1液性硬化性シリコーン、信越シリコーン社製)
<樹脂発泡体>
フォーマック:発泡倍率10倍、積水化成品工業株式会社製、製品名「フォーマックHR #1000グレード」の各厚みスライス品
(Examples 2-10, Comparative Examples 1-2)
As shown in Table 1, fiber reinforced composites were obtained using the following non-foamed resin sheet as the forming material for the middle layer portion and the following resin foam as the forming material for the core material portion.
<Non-foamed resin sheet>
EP: Epoxy adhesive film (Newport 102U, Newport Adhesives and Composites, Inc.) laminated to each thickness Polyester: Polyethylene terephthalate (PET, trade name “CH-611” manufactured by Toyobo Co., Ltd.) And single layer extrusion (0.15 mm or less) or layer extrusion (coextrusion) Silicon: KE42T (one-component curable silicone, manufactured by Shin-Etsu Silicone)
<Resin foam>
Formac: 10 times foaming ratio, manufactured by Sekisui Plastics Co., Ltd., each slice of thickness of product name “Formac HR # 1000 Grade”

各実施例、比較例の繊維強化複合体について、前記短冊状試料(25mm×130mm)を用い、「最大点荷重」を測定し、この「最大点荷重」を試料の質量で除して「質量効率」を求めた。
(曲げ強度の測定)
繊維強化複合体の曲げ強度は、小型卓上試験機(日本電産シンポ社製 商品名「FGS−1000TV/1000N+FGP−100」)及び小型卓上試験機用ソフトウェア「FGS−TV Ver2」を用いて測定した。
また、冶具は日本電産シンポ社製の「FGTT−531」を用いた。
前記短冊状試料を支持台に載置し、ロードセル1000N、試験速度5mm/分、支持台の先端治具5R、開き幅100mmの条件下にて最大点荷重を測定し、最大点荷重を試験片の質量で除して得られた値を質量効率とした。
About the fiber reinforced composites of each Example and Comparative Example, using the strip sample (25 mm × 130 mm), the “maximum point load” is measured, and the “maximum point load” is divided by the mass of the sample to obtain “mass. "Efficiency" was sought.
(Measurement of bending strength)
The bending strength of the fiber reinforced composite was measured using a small tabletop testing machine (trade name “FGS-1000TV / 1000N + FGP-100” manufactured by Nidec Symposium) and software “FGS-TV Ver2” for a small tabletop testing machine. .
The jig used was “FGTT-531” manufactured by Nidec Sympos.
The strip-shaped sample is placed on a support base, the maximum point load is measured under the conditions of a load cell 1000N, a test speed of 5 mm / min, a support base end jig 5R, and an opening width of 100 mm. The value obtained by dividing by the mass was taken as mass efficiency.

(硬度の測定)
芯材部、及び、中層部(非発泡層)の硬度は、タイプDデュロメータ硬度計(テックロック社製、GS-720N)を用いて測定した。
なお、中層部については、単独ではデュロメータ硬さを測定するのが困難な厚みであるため、合計厚みが3mmを超えるのに必要な枚数の試料を採取し、この試料を積層して積層体を形成させ、厚み3mmの板状体を作製し、該板状体に対してデュロメータ硬さを測定した。
(Measurement of hardness)
The hardness of the core material portion and the middle layer portion (non-foamed layer) was measured using a type D durometer hardness meter (GS-720N, manufactured by Techlock Co., Ltd.).
For the middle layer, it is difficult to measure the durometer hardness by itself. Therefore, the number of samples required for the total thickness to exceed 3 mm are collected, and this sample is laminated to form a laminate. A plate-shaped body having a thickness of 3 mm was produced, and the durometer hardness was measured on the plate-shaped body.

Figure 2016150561
Figure 2016150561

以上のことからも本発明によれば軽量性と強度とに優れた繊維強化複合体が得られることがわかる。   From the above, it can be seen that according to the present invention, a fiber-reinforced composite excellent in lightness and strength can be obtained.

Claims (5)

芯材部と、該芯材部を覆う表層部とを備えた複合構造を有し、前記芯材部が樹脂発泡体で、前記表層部が繊維と樹脂とを含む繊維強化樹脂材で形成されている繊維強化複合体であって、
前記表層部と前記芯材部との間に前記表層部に内側から接する中層部がさらに備えられ、該中層部が前記芯材部よりも硬質である繊維強化複合体。
It has a composite structure including a core material part and a surface layer part covering the core material part, the core material part is formed of a resin foam, and the surface layer part is formed of a fiber reinforced resin material including a fiber and a resin. A fiber reinforced composite comprising:
A fiber-reinforced composite, further comprising an intermediate layer portion in contact with the surface layer portion from the inside between the surface layer portion and the core material portion, wherein the intermediate layer portion is harder than the core material portion.
前記芯材部を構成する樹脂発泡体が押出発泡シートで、
前記中層部が前記押出発泡シートよりも発泡倍率の低い低発泡又は非発泡な樹脂シートであり、
該樹脂シートと前記押出発泡シートとが、熱ラミネート法、押出ラミネート法、又は、共押出法の何れかによって積層一体化されている請求項1記載の繊維強化複合体。
The resin foam constituting the core part is an extruded foam sheet,
The middle layer is a low-foamed or non-foamed resin sheet having a lower foaming ratio than the extruded foam sheet,
The fiber reinforced composite according to claim 1, wherein the resin sheet and the extruded foam sheet are laminated and integrated by any one of a heat laminating method, an extrusion laminating method, and a coextrusion method.
前記中層部は、前記芯材部を構成する樹脂発泡体の表面に積層された非発泡樹脂層となっており、且つ、エポキシ系樹脂、ポリエステル系樹脂、及び、アクリル系樹脂の何れかを含む平均厚みが0.01mm以上2mm以下の非発泡樹脂層となっている請求項1又は2記載の繊維強化複合体。   The middle layer portion is a non-foamed resin layer laminated on the surface of the resin foam constituting the core material portion, and includes any one of an epoxy resin, a polyester resin, and an acrylic resin. The fiber-reinforced composite according to claim 1 or 2, wherein the non-foamed resin layer has an average thickness of 0.01 mm to 2 mm. 芯材部と、該芯材部を覆う表層部とを備えた複合構造を有し、前記芯材部が樹脂発泡体で、前記表層部が繊維と樹脂とを含む繊維強化樹脂材で形成されている繊維強化複合体を製造する繊維強化複合体の製造方法であって、
前記表層部と前記芯材部との間に前記表層部に内側から接する中層部をさらに備えさせ、該中層部を前記芯材部よりも硬質に形成させる繊維強化複合体の製造方法。
It has a composite structure including a core material part and a surface layer part covering the core material part, the core material part is formed of a resin foam, and the surface layer part is formed of a fiber reinforced resin material including a fiber and a resin. A fiber reinforced composite manufacturing method for manufacturing a fiber reinforced composite comprising:
A method for producing a fiber-reinforced composite, further comprising an intermediate layer portion in contact with the surface layer portion from the inside between the surface layer portion and the core material portion, wherein the intermediate layer portion is formed to be harder than the core material portion.
樹脂発泡体の表層部位を選択的に圧縮して高密度化させ、該高密度化によって形成された高密度部の内側に該高密度部よりも密度の低い低密度部を備えた樹脂発泡体を得、該低密度部によって前記芯材部を形成させるとともに前記高密度部によって前記中層部を形成させる請求項4記載の繊維強化複合体の製造方法。   A resin foam having a low-density portion having a lower density than the high-density portion inside a high-density portion formed by selectively compressing a surface layer portion of the resin foam to be highly densified. The method for producing a fiber-reinforced composite according to claim 4, wherein the core portion is formed by the low-density portion and the middle layer portion is formed by the high-density portion.
JP2015030491A 2015-02-19 2015-02-19 Fiber-reinforced composite body and method for producing fiber-reinforced composite body Pending JP2016150561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015030491A JP2016150561A (en) 2015-02-19 2015-02-19 Fiber-reinforced composite body and method for producing fiber-reinforced composite body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015030491A JP2016150561A (en) 2015-02-19 2015-02-19 Fiber-reinforced composite body and method for producing fiber-reinforced composite body

Publications (1)

Publication Number Publication Date
JP2016150561A true JP2016150561A (en) 2016-08-22

Family

ID=56695985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015030491A Pending JP2016150561A (en) 2015-02-19 2015-02-19 Fiber-reinforced composite body and method for producing fiber-reinforced composite body

Country Status (1)

Country Link
JP (1) JP2016150561A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019214141A (en) * 2018-06-11 2019-12-19 日産自動車株式会社 Composite material structure and method for forming the same
JP2020037264A (en) * 2018-08-31 2020-03-12 積水化成品工業株式会社 Resin composite
CN113954330A (en) * 2021-09-27 2022-01-21 安徽百维新材料有限公司 Heat-resistant flame-retardant gel heat-insulation board

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10311131A (en) * 1997-05-09 1998-11-24 Mitsui Chem Inc Tatami mat underlay component and tamami mat using this component
JP2000043796A (en) * 1998-07-30 2000-02-15 Japan Aircraft Development Corp Wing-shaped structure of composite material and molding method thereof
JP2001181428A (en) * 1999-12-24 2001-07-03 Sekisui Plastics Co Ltd Thermoplastic polyester resin foam and method for producing the same
JP2002011813A (en) * 2001-05-07 2002-01-15 Kawasaki Heavy Ind Ltd Sandwich structure
JP2003321566A (en) * 2002-04-26 2003-11-14 Kanegafuchi Chem Ind Co Ltd Method for producing extruded foamed sheet of polypropylene-based resin, extruded foamed sheet produced thereby, and molded product formed out of the foamed sheet
JP2004075720A (en) * 2002-08-09 2004-03-11 Sekisui Plastics Co Ltd Method for manufacturing styrenic resin foam sheet
JP2008023795A (en) * 2006-07-19 2008-02-07 Nissan Motor Co Ltd Sandwich structure and method for forming the same
JP2008207523A (en) * 2007-02-28 2008-09-11 Toray Ind Inc Panel for x-ray cassette
JP2014208418A (en) * 2013-03-29 2014-11-06 積水化成品工業株式会社 Fiber reinforced composite and method for producing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10311131A (en) * 1997-05-09 1998-11-24 Mitsui Chem Inc Tatami mat underlay component and tamami mat using this component
JP2000043796A (en) * 1998-07-30 2000-02-15 Japan Aircraft Development Corp Wing-shaped structure of composite material and molding method thereof
JP2001181428A (en) * 1999-12-24 2001-07-03 Sekisui Plastics Co Ltd Thermoplastic polyester resin foam and method for producing the same
JP2002011813A (en) * 2001-05-07 2002-01-15 Kawasaki Heavy Ind Ltd Sandwich structure
JP2003321566A (en) * 2002-04-26 2003-11-14 Kanegafuchi Chem Ind Co Ltd Method for producing extruded foamed sheet of polypropylene-based resin, extruded foamed sheet produced thereby, and molded product formed out of the foamed sheet
JP2004075720A (en) * 2002-08-09 2004-03-11 Sekisui Plastics Co Ltd Method for manufacturing styrenic resin foam sheet
JP2008023795A (en) * 2006-07-19 2008-02-07 Nissan Motor Co Ltd Sandwich structure and method for forming the same
JP2008207523A (en) * 2007-02-28 2008-09-11 Toray Ind Inc Panel for x-ray cassette
JP2014208418A (en) * 2013-03-29 2014-11-06 積水化成品工業株式会社 Fiber reinforced composite and method for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019214141A (en) * 2018-06-11 2019-12-19 日産自動車株式会社 Composite material structure and method for forming the same
JP7030622B2 (en) 2018-06-11 2022-03-07 日産自動車株式会社 Composite material structure and its formation method
JP2020037264A (en) * 2018-08-31 2020-03-12 積水化成品工業株式会社 Resin composite
JP7397600B2 (en) 2018-08-31 2023-12-13 積水化成品工業株式会社 Resin composite and method for manufacturing resin composite
CN113954330A (en) * 2021-09-27 2022-01-21 安徽百维新材料有限公司 Heat-resistant flame-retardant gel heat-insulation board

Similar Documents

Publication Publication Date Title
TWI577549B (en) Resin composite and method for producing resin composite
KR101968484B1 (en) Resin composite
JP6009399B2 (en) Fiber-reinforced composite and method for producing the same
EP3002119B1 (en) Resin composite and process for producing resin composite
JP6151962B2 (en) Fiber reinforced composite
JP6262053B2 (en) Foam sheet laminate, fiber-reinforced composite, and foam sheet laminate manufacturing method
WO2018003694A1 (en) Prepreg and production method therefor
US20210197519A1 (en) Method for producing a planar composite component and composite component produced thereby
JP2016150561A (en) Fiber-reinforced composite body and method for producing fiber-reinforced composite body
EP3647012A1 (en) Composite material production method and composite material
WO2022260186A1 (en) Laminate for pressing, and pressed laminate
JP6395896B2 (en) Foamed particles for in-mold foam molding, in-mold foam molded body and fiber reinforced composite
JP6067473B2 (en) Method for producing fiber reinforced composite and fiber reinforced composite
US11951724B2 (en) Fiber-reinforced resin article, method for manufacturing same, and laminate including same
JP2016151004A (en) Resin foam sheet and fiber reinforced composite
JP2019044105A (en) Foamed particle, foamed molding, fiber-reinforced composite body, method for producing the same, and automobile parts
JP6360766B2 (en) Damping structure and damping material
JP6161559B2 (en) MANUFACTURING METHOD FOR FIBER-REINFORCED COMPOSITE, MEMBER FOR TRANSPORTATION DEVICE, AND MEMBER FOR AUTOMOBILE
JP2020037263A (en) Resin composite
JP2002326327A (en) Method for manufacturing thermoplastic composite foam
EP4082787A1 (en) Multilayer body and method for producing same
JP2016068324A (en) Fiber-reinforced complex, and method for producing fiber-reinforced complex
US20120288702A1 (en) Adhesive for bonding polyimide resins
JPH04251715A (en) Manufacture of carbon fiber reinforced composite material
JP7427872B2 (en) Fiber reinforced composite material molded products

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180322

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180817