JPH0235408A - Microscope - Google Patents

Microscope

Info

Publication number
JPH0235408A
JPH0235408A JP18662288A JP18662288A JPH0235408A JP H0235408 A JPH0235408 A JP H0235408A JP 18662288 A JP18662288 A JP 18662288A JP 18662288 A JP18662288 A JP 18662288A JP H0235408 A JPH0235408 A JP H0235408A
Authority
JP
Japan
Prior art keywords
optical axis
aperture
modulator
constitution
openings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18662288A
Other languages
Japanese (ja)
Other versions
JP2834741B2 (en
Inventor
Yoshihiro Kono
芳弘 河野
Tadashi Fujiwara
藤原 忠史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP63186622A priority Critical patent/JP2834741B2/en
Publication of JPH0235408A publication Critical patent/JPH0235408A/en
Application granted granted Critical
Publication of JP2834741B2 publication Critical patent/JP2834741B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

PURPOSE:To obtain images with proper contrast with respect to various objects by arranging an opening slit having plural openings in positions apart from an optical axis and arranging a modulator having optical control areas corresponding to the openings. CONSTITUTION:The opening slit 13 has the openings 13a and 13b in the positions apart from the optical axis O, and the modulator 17 has the optical control areas 17a and 17b corresponding to the openings 13a and 13b respectively and both areas consist of three areas which are different from each other in transmissivity. Therefore in the constitution where the openings 13a and 13b are positioned apart from the optical axis, an opening area becomes larger than the opening area in constitution where the opening areas are positioned on the optical axis O, if both types of constitution are NA. Consequently an obtained image in the former constitution is brighter even if the focus depth in the former constitution is the same as that in the latter constitution. Besides, if both openings 13a and 13b are used, an image is obserbed in twice brightness, however the focus depth becomes shallow compared with the case in which only one opening is used. In this case, the directivity of modulation contrast effect is eased, and as a result, images with proper contrast with respect to many objects are obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、透明物体を可視化するS!lI微鏡例えば変
調コントラスト顕微鏡及び位相差顕微鏡に関するもので
ある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides an S! II microscopy, such as modulation contrast microscopy and phase contrast microscopy.

〔従来の技術〕[Conventional technology]

この種従来の変調コントラスト顕微鏡としては、例えば
特開昭51−128548号公報、特開昭57−178
212号公報及び米国特許第4407569号明細書に
記載のものがある。
Conventional modulation contrast microscopes of this type include, for example, Japanese Patent Laid-Open Nos. 51-128548 and 57-178.
No. 212 and US Pat. No. 4,407,569.

これらの光学系は何れも第6図に示した基本構成を有し
ている。
All of these optical systems have the basic configuration shown in FIG.

即ち、第6図において、lは光源、2はリレーレンズ、
3は開口を有する開口スリット、4はコンデンサーレン
ズ、5は透明物体(標本)  6は対物レンズ、7は複
数の異なった濃度領域を有していて透明物体5の光学的
位相傾斜(屈折力)に変調コントラスト効果をつける変
調器、8は結像面であって、光源lのリレーレンズ2に
よる像がコンデンサーレンズ4の前側焦点位置又はその
近傍に結像し、この光源像の位置に開口スリット3を設
け、変調器7は対物レンズ6の射出瞳面上即ちフーリエ
変換面上に位置するように構成されている。そして、光
Stを発し開口スリット3の開口で絞られた光束はコン
デンサーレンズ4により物体5に照射され、物体5を透
過した光束は対物レンズ6によりその射出瞳位置即ち変
調器7上に開口像を形成し、そこで変調コントラスト効
果がつけられて透明物体5の像が可視像として眼8に結
像せしめられるようになっている。
That is, in FIG. 6, l is a light source, 2 is a relay lens,
3 is an aperture slit having an aperture, 4 is a condenser lens, 5 is a transparent object (specimen), 6 is an objective lens, and 7 is an optical phase gradient (refractive power) having a plurality of different density regions. A modulator 8 is an imaging plane, on which the image of the light source 1 formed by the relay lens 2 is formed at or near the front focal point of the condenser lens 4, and an aperture slit is formed at the position of the light source image. 3, and the modulator 7 is configured to be located on the exit pupil plane of the objective lens 6, that is, on the Fourier transform plane. Then, the light St is emitted and the light flux condensed by the aperture of the aperture slit 3 is irradiated onto the object 5 by the condenser lens 4, and the light flux transmitted through the object 5 is transferred to the exit pupil position, that is, the aperture image on the modulator 7 by the objective lens 6. is formed, and a modulation contrast effect is applied thereto so that the image of the transparent object 5 is formed as a visible image on the eye 8.

具体的には、特開昭51−128548号公報に記載の
ものは、第7図(A)に示した如く長方形の開口3aを
中央部に有する開口スリット3と、第7図(B)に示し
た如<i3過率が夫々大、中。
Specifically, the one described in JP-A-51-128548 has an opening slit 3 having a rectangular opening 3a in the center as shown in FIG. 7(A), and a rectangular opening 3a in the center as shown in FIG. As shown, the i3 error rate is high and medium, respectively.

小(例えば100%、is%、5%)の領域7a。Small (eg 100%, is%, 5%) area 7a.

7b、7cを有する変調器7とを有している。又、特開
昭57−178212号公報に記載のものは、第8図(
A)に示した如く長方形の開口3aを左方に形成した開
口スリット3と、第8図(B)に示した如く第7図(B
)と同じ領域?a、7b7Cが右方に寄っている変調器
7とを有している。
7b and 7c. Also, the one described in Japanese Patent Application Laid-Open No. 178212/1983 is shown in Fig. 8 (
The opening slit 3 with the rectangular opening 3a formed on the left side as shown in FIG. 8(B) and the opening slit 3 in FIG.
) in the same area? a, 7b and 7C have a modulator 7 located on the right side.

又、米国特許第4407569号明細書に記載のものは
、第9図(A)に示した如く弧状の開口3aを左方に形
成した開口スリット3と、第9図(B)に示した如く領
域7a、7b、7cを多重環状に形成した変調器7とを
有している。
Moreover, the one described in US Pat. No. 4,407,569 has an opening slit 3 with an arc-shaped opening 3a formed on the left side as shown in FIG. 9(A), and an opening slit 3 as shown in FIG. 9(B). The modulator 7 has regions 7a, 7b, and 7c formed into multiple annular shapes.

そして、例えば第7図(A)、(B)に示した如き開口
スリット3と変調器7を備えた第6図に示した顕微鏡に
より第1O図に示した如き台形状の透明物体5を観察し
た場合について説明すれば、物体5の屈折率がn+  
(>1)、媒質の屈折率がnt  (”1)であり、矢
印a方向の光線が物体5の下面に垂直に入射した後傾斜
した側面に入射角(π/2−〇、)で入射輪、入射光軸
0となす角がθ、で即ち矢印す方向の光線として射出し
て行くとすれば、 n1sin θ、=n、5in(θa+θb)パ・  
θb  =sin  −’  (sin  θa ) 
−〇。
For example, a trapezoidal transparent object 5 as shown in FIG. 1O is observed using the microscope shown in FIG. 6, which is equipped with the aperture slit 3 and modulator 7 as shown in FIGS. To explain the case where the refractive index of the object 5 is n+
(>1), the refractive index of the medium is nt ("1), and the light ray in the direction of arrow a enters the bottom surface of the object 5 perpendicularly and then enters the inclined side surface at an incident angle of (π/2-〇,) If the angle between the ring and the incident optical axis 0 is θ, that is, it exits as a ray in the direction of the arrow, then n1sin θ, = n, 5in (θa + θb) pa.
θb = sin −' (sin θa)
−〇.

z となる。z becomes.

従って、第11図(A)に示した如く台形物体5の左側
面(斜面)を観察した場合、光線が変調器7の領域7C
(i33過率%)を通るので暗い像となり、第11図(
B)に示した如く台形物体5の中央部を観察した場合、
光線が変調器7の領域7b(透過率15%)を通るので
灰色の像となり、第11図(C)に示した如く台形物体
5の右側面(斜面)を観察した場合、光線が変調器7の
領域7a(透過率100%)を通るので明るい像となる
Therefore, when observing the left side (slope) of the trapezoidal object 5 as shown in FIG.
(i33 pass rate %), it becomes a dark image, and as shown in Figure 11 (
When observing the central part of the trapezoidal object 5 as shown in B),
Since the light ray passes through the region 7b (transmittance 15%) of the modulator 7, it becomes a gray image, and when observing the right side (slope) of the trapezoidal object 5 as shown in FIG. 11(C), the light ray passes through the modulator 7. Since the light passes through the region 7a (transmittance 100%) of No. 7, it becomes a bright image.

尚、特開昭57−178212号公報に記載のもののよ
うに第8図(A)及び(B)に示した開口スリット3及
び変調器7を有する場合、物体5を射出する光線と光軸
のなす角(θ、)と光線の強度との関係は第12閏に示
した如くになる。
Incidentally, when the aperture slit 3 and the modulator 7 shown in FIGS. 8(A) and (B) are provided as in the one described in Japanese Patent Application Laid-Open No. 57-178212, the light beam exiting the object 5 and the optical axis are The relationship between the angle (θ,) formed and the intensity of the light beam is as shown in the 12th leap.

即ち、開口3aを通って物体に射出された光が大きく屈
折されて全て変調器の領域7cを通る場合は、結像面の
明るさは最小(sin )となるが、屈折率が小さくな
って来ると、物体からの光は領域7bと7Cの境界を越
えて両領域にまたがるようになる。領域7bの透過率は
7cよりも大きいので、θ、が減少するにつれて像面の
明るさは漸増する。物体5を通過した光が領域?a、7
b両方にまたがると、領域7aと7bの透過率の差と領
域7bと70の透過率の差とが異なることによりθbの
変化と傷内の明るさの変化の割合が変わるため、明るさ
の像増加曲線には段かつ(。物体5からの光が全て領域
7aを通る状態で像面の明るさが最大(Ilax )と
なる。
That is, if the light emitted to the object through the aperture 3a is largely refracted and all passes through the modulator region 7c, the brightness of the imaging plane will be minimum (sin), but the refractive index will be small. Then, the light from the object crosses the boundary between regions 7b and 7C and spans both regions. Since the transmittance of region 7b is greater than that of region 7c, the brightness of the image plane gradually increases as θ decreases. Is the light that passed through object 5 a region? a, 7
When spanning both b, the difference in transmittance between regions 7a and 7b and the difference in transmittance between regions 7b and 70 will change the ratio of change in θb and change in brightness within the scratch, so the brightness will change. The image increase curve has a step and (.) The brightness of the image plane is maximum (Ilax) when all the light from the object 5 passes through the region 7a.

かくして、フーリエ変換面上にある変調器7によって、
物体5の透過光をフーリエ変換したものの強度が変調さ
れて、像面8に可視像が形成される。
Thus, by the modulator 7 on the Fourier transform plane,
The intensity of the Fourier-transformed light transmitted through the object 5 is modulated, and a visible image is formed on the image plane 8.

これは特開昭51−29147号公報に記載の変調コン
トラスト顕微鏡の基本原理である。
This is the basic principle of the modulation contrast microscope described in Japanese Patent Application Laid-Open No. 51-29147.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、上記従来の変調コントラスト顕微鏡は、コン
デンサーレンズ4の前側焦点位置に小さな開口3aが設
けであるので、コンデンサーレンズ4の物体側NAが小
さくなり、焦点深度は深まるが像が−暗くなってしまう
という欠点があった。
However, since the conventional modulation contrast microscope described above is provided with a small aperture 3a at the front focal position of the condenser lens 4, the object-side NA of the condenser lens 4 becomes small, and although the depth of focus becomes deeper, the image becomes darker. There was a drawback.

又、上記変調コントラスト顕微鏡は変調コントラスト効
果の感度を変化させることができなかったため、物体5
によっては適正なコントラストの像が得られないという
欠点があった。又、上記変調コントラスト顕微鏡におい
て開口3aの位置を光軸0から離した場合変調コントラ
スト効果に方向性が生じ、而も開口3aの位置が固定さ
れていたため、物体5の屈折作用の方向に応じて物体5
を回転させて観察しなければならず、操作が非常に煩わ
しかった。
In addition, since the modulation contrast microscope described above could not change the sensitivity of the modulation contrast effect, the object 5
In some cases, the disadvantage is that images with appropriate contrast cannot be obtained. Furthermore, when the position of the aperture 3a in the modulation contrast microscope is moved away from the optical axis 0, directionality occurs in the modulation contrast effect, and since the position of the aperture 3a is fixed, it changes depending on the direction of the refraction of the object 5. Object 5
had to be rotated to observe it, which was very cumbersome to operate.

本発明は、上記問題点に漏み、明るい像が得られ、種々
の物体に対して常に適正なコントラストの像が得られ、
操作も容易である顕微鏡を提供することを目的としてい
る。
The present invention addresses the above problems, provides bright images, and provides images with appropriate contrast for various objects.
The objective is to provide a microscope that is easy to operate.

〔課題を解決するための手段及び作用〕本発明による顕
微鏡の一つは、光軸上に光源とコンデンサーレンズを含
む照明系と、該照明系と共軸に配置された対物レンズを
含む結像系とを備えた’itR6’ft、 knにおい
て、前記コンデンサーレンズの入射瞳位置又はその近傍
若しくはそれらと共役な前記照明系内の位置に、光軸と
直交する異なる線分上にあって光軸から離れた位置に夫
々形成された複数個の開口を有する開口スリットを配置
すると共に、前記対物レンズの射出瞳位置又はその近傍
若しくはそれらと共役な前記結像系内の位置に、前記開
口に対応する光制御領域を有する変調器を配置している
。従って、開口が光軸から離れて位置するので、光軸上
に開口が位置する場合に比べて同じNAであるならば開
口面積が大となり、その結果焦点深度が同じでも明るい
像が得られ、更に複数個の開口が光軸と直交する異なる
線分上に夫々存在するので、変調コントラスト効果の方
向性が緩和され、その結果多くの種類の物体に対して適
正なコントラストの像が得られる。
[Means and effects for solving the problems] One of the microscopes according to the present invention includes an illumination system including a light source and a condenser lens on the optical axis, and an imaging system including an objective lens disposed coaxially with the illumination system. 'itR6'ft, kn, which is located at or near the entrance pupil position of the condenser lens, or at a position within the illumination system conjugate thereto, on a different line segment orthogonal to the optical axis, aperture slits each having a plurality of apertures formed at positions apart from the objective lens, and corresponding to the apertures at or near the exit pupil position of the objective lens, or at a position in the imaging system that is conjugate thereto; A modulator having a light control region is arranged. Therefore, since the aperture is located away from the optical axis, the aperture area is larger for the same NA than when the aperture is located on the optical axis, and as a result, a brighter image can be obtained even if the depth of focus is the same. Furthermore, since the plurality of apertures are located on different line segments perpendicular to the optical axis, the directionality of the modulation contrast effect is relaxed, and as a result, images with appropriate contrast can be obtained for many types of objects.

又、本発明による顕微鏡の他の一つは、上記複数の開口
の少なくとも一部の開口と他の一部の開口とを切替えて
遮蔽する手段を備えている。従って、変調コントラスト
効果の方向を切替えることができるので、物体の屈折作
用の方向に応じていちいち物体を回転させる必要はなく
、操作が容易である。更に各開口の幅が異なるようにす
れば、開口の切替えにより物体の位相傾斜(屈折力)に
対する変調感度を変化させることができ、物体の位相傾
斜の小さな部分から大きな部分まで又細かい物体から大
きな物体まで観察することができる。
Another microscope according to the present invention includes means for switching and shielding at least some of the plurality of apertures and the other part of the apertures. Therefore, since the direction of the modulation contrast effect can be switched, there is no need to rotate the object each time depending on the direction of the refraction effect of the object, and the operation is easy. Furthermore, by making the width of each aperture different, it is possible to change the modulation sensitivity to the phase tilt (refracting power) of an object by switching the aperture, and it is possible to change the modulation sensitivity to the phase tilt (refracting power) of the object from a small part to a large part, and from a small object to a large one. You can even observe objects.

又、本発明による顕微鏡の更に他の一つは、光軸上に光
源とコンデンサーレンズを含む照明系と、該照明系と共
軸に配置された対物レンズを含む結像系とを備えた¥[
k鏡において、前記コンデンサーレンズの入射瞳位置又
はその近傍若しくはそれらと共役な前記照明系内の位置
に、光軸に近い部分の幅よりも光軸から遠い部分の幅が
広(なっている開口を有する開ロスリフトを配置すると
共に、前記対物レンズの射出瞳位置又はその近傍若しく
はそれらと共役な前記結像系内の位置に、前記開口に対
応する光制御領域を有する変調器を配置している。従っ
て、物体の位相傾斜に対する変調感度特性がなだらかな
特性になるので、高い屈折力を持つ物体も観察するこ七
ができる。
Still another microscope according to the present invention includes an illumination system including a light source and a condenser lens on the optical axis, and an imaging system including an objective lens disposed coaxially with the illumination system. [
In the k-mirror, at the entrance pupil position of the condenser lens, or at a position in the illumination system that is conjugate thereto, there is an aperture whose width is wider in a part farther from the optical axis than in a part nearer to the optical axis. A modulator having a light control region corresponding to the aperture is disposed at or near the exit pupil position of the objective lens, or at a position in the imaging system that is conjugate thereto. Therefore, since the modulation sensitivity characteristic with respect to the phase inclination of the object becomes a gentle characteristic, it is possible to observe objects with high refractive power.

〔実施例〕〔Example〕

以下、図示した実施例に基づき本発明の詳細な説明する
Hereinafter, the present invention will be described in detail based on the illustrated embodiments.

l±l亙亘 本実施例の光学系の基本構成は第6図と同じなので、そ
の説明は省略する。
Since the basic configuration of the optical system of this embodiment is the same as that shown in FIG. 6, its explanation will be omitted.

第1図(A)及び(B)は夫々本実施例の開口スリット
13及び変調器17を示しており、開口スリット13は
光軸Oから離れた図面左方位置及び図面上方位置に径方
向幅が同一の開口13a及び13bを夫々有し、炭団器
17は該開口13a及び13bに夫々対応し且つ何れも
透過率の異なる3つの領域から成る光制御領域17a及
び17bを有している。
1(A) and (B) respectively show the aperture slit 13 and the modulator 17 of this embodiment, and the aperture slit 13 has a radial width at a position on the left side of the drawing and at a position on the top of the drawing, which is away from the optical axis O. have the same openings 13a and 13b, respectively, and the charcoal lumper 17 has light control areas 17a and 17b each corresponding to the openings 13a and 13b and consisting of three areas each having a different transmittance.

従って、本実施例によれば、開口13a及び13bが光
軸Oから離れて位置するので、光軸0上に開口が位置す
る場合に比べて同じNAであるならば開口面積が大とな
り、その結果焦点深度が同じでも明るい像が得られる。
Therefore, according to this embodiment, since the apertures 13a and 13b are located away from the optical axis O, the aperture area is larger for the same NA compared to the case where the apertures are located on the optical axis 0; As a result, a bright image can be obtained even if the depth of focus is the same.

又、開口13a及び13bの両方を用いれば、物体5を
射出する光線と光軸Oのなす角と光線の強度との関係は
第1図(C)の如くになり、焦点深度は浅くなるが像が
2倍の明るさで観察できる。この場合、開口13a及び
13bが光軸0と直交する異なる線分上に夫々存在する
ので、変調コントラスト効果の方向性が緩和され、その
結果多くの種類の物体に対して適正なコントラストの像
が得られる。
Furthermore, if both the apertures 13a and 13b are used, the relationship between the angle formed by the light beam exiting the object 5 and the optical axis O and the intensity of the light beam will be as shown in FIG. 1(C), and the depth of focus will be shallower. Images can be observed with twice the brightness. In this case, since the apertures 13a and 13b are located on different line segments perpendicular to the optical axis 0, the directionality of the modulation contrast effect is relaxed, and as a result, images with appropriate contrast can be obtained for many types of objects. can get.

又、本実施例において、開口13aと13bとを切替え
て遮蔽すれば、変調コントラスト効果の方向が切替えら
れる。従って、物体5の屈折作用の方向に応じていちい
ち物体5を回転させる必要はなく、操作が容易である。
Furthermore, in this embodiment, if the apertures 13a and 13b are switched and shielded, the direction of the modulation contrast effect can be switched. Therefore, there is no need to rotate the object 5 each time depending on the direction of the refraction effect of the object 5, and the operation is easy.

ゑ11皇■ 本実施例の光学系の基本構成は第6図と同じなので、そ
の説明は省略する。
E11 Empress ■ The basic configuration of the optical system of this embodiment is the same as that shown in FIG. 6, so its explanation will be omitted.

第2図(A)及び(B)は夫々本実施例の開口スリット
23及び変調器27を示しており、開口スリット23は
光軸Oから離れた図面左方位置及び図面上方位置に径方
向幅が異なる開口23a及び23bを夫々有し、変調器
27は該開口23a及び23bに夫々対応し且つ何れも
透過率の異なる3つの領域から成る光制御領域27a及
び27bを有している。そして、開口23aと23bと
を切替えて遮蔽し得るようになっている。
2(A) and (B) respectively show the aperture slit 23 and the modulator 27 of this embodiment, and the aperture slit 23 has a radial width at a position on the left side of the drawing and at a position on the top of the drawing, which is away from the optical axis O. The modulator 27 has light control regions 27a and 27b, which correspond to the apertures 23a and 23b, respectively, and are composed of three regions having different transmittances. The openings 23a and 23b can be switched to be shielded.

従って、本実施例によれば、開口23aを用いて照明し
た場合は、これに対応する光制御領域27aの幅が広い
ので、物体5の位相傾斜に対する変調感度は第2図(C
)の曲線aで示した如くあまり高くならない。一方開口
23bを用いて照明した場合は、これに対応する光制御
領域27bの幅が狭いので、物体5の位相傾斜に対する
変調感度は第2図(C)の曲線すで示した如く高くなる
Therefore, according to this embodiment, when the aperture 23a is used for illumination, the width of the corresponding light control region 27a is wide, so that the modulation sensitivity to the phase inclination of the object 5 is reduced as shown in FIG.
), it does not become very high as shown by curve a. On the other hand, when illumination is performed using the aperture 23b, the width of the corresponding light control region 27b is narrow, so the modulation sensitivity to the phase tilt of the object 5 becomes high as already shown by the curve in FIG. 2(C).

従って、物体5の位相傾斜の大きな部分から小さな部分
まで又細かい物体から大きな物体まで観察することがで
きる。
Therefore, it is possible to observe everything from parts of the object 5 with large to small phase inclinations, and from fine objects to large objects.

尚、両方の開口23a、23bで同時に照明した場合は
、第1実施例と同様に明るい像が観察できることは言う
までもない。
It goes without saying that when both apertures 23a and 23b are illuminated at the same time, a bright image can be observed as in the first embodiment.

見工夫東員 本実施例の光学系の基本構成は第6図と同じなので、そ
の説明は省略する。
Since the basic configuration of the optical system of this embodiment is the same as that shown in FIG. 6, its explanation will be omitted.

第3図(A)及び(B)は夫々本実施例の開口スリット
33及び変調器37を示しており、開口スリット33は
光軸Oに近い部分の幅よりも光軸Oから遠い部分の幅が
広くなっている階段状の開口33aを有し、変調器37
は該開口33aに対応する光制御領域37aを有してい
る。その結果、本実施例における物体」の位相傾斜に対
する変調感度特性が第3図(C)の曲線の如くなだらか
になる。従って、高い屈折力を持つ物体を観察すること
ができる。
3(A) and (B) respectively show the aperture slit 33 and the modulator 37 of this embodiment, and the aperture slit 33 has a width at a portion farther from the optical axis O than a width at a portion closer to the optical axis O. The modulator 37 has a stepped opening 33a with a wide
has a light control region 37a corresponding to the opening 33a. As a result, the modulation sensitivity characteristic with respect to the phase inclination of the object in this embodiment becomes gentle as shown by the curve in FIG. 3(C). Therefore, objects with high refractive power can be observed.

尚、開口形状は、光軸0に近い部分の幅よりも光軸Oか
ら遠い部分の幅が広くなっており、物体5の屈折力に合
うものであれば、三角形、クローバ−形等種々の形状に
設計できる。
The aperture shape is wider in the part far from the optical axis O than in the part close to the optical axis 0, and can be of various shapes, such as a triangle or a clover, as long as it matches the refractive power of the object 5. Can be designed into any shape.

見土IL且 第4図及び第5図は夫々第4実施例の光学系及びその要
部を示しており、43は第1図(A)の開口スリットI
3と同じ構造の開口スリットの二つの開口部に偏光方向
が互いに直交する偏光板43a及び43bを夫々取付け
て成る開口スリット、44は光源1と開口スリット43
との間に光軸Oの周りに回転可能に配置された偏光板で
ある。
4 and 5 respectively show the optical system and its main parts in the fourth embodiment, and 43 is the aperture slit I in FIG. 1(A).
The aperture slit has the same structure as 3, and polarizing plates 43a and 43b whose polarization directions are orthogonal to each other are respectively attached to the two apertures of the aperture slit. 44 is the light source 1 and the aperture slit 43.
This is a polarizing plate rotatably arranged around the optical axis O between the two.

従って、本実施例によれば、偏光板44を回転せしめる
ことにより光(偏光)が通過する開口即ち照明する開口
を切替えることができ、その結果変調コントラストの方
向を切替えることができる。
Therefore, according to this embodiment, by rotating the polarizing plate 44, the aperture through which light (polarized light) passes, that is, the aperture that illuminates, can be changed, and as a result, the direction of modulation contrast can be changed.

尚、物体5を偏光した光で照明したくない場合は、各開
口部において偏光板43a、43bの物体5側面に偏光
解消板を設ければ良い。
Note that if it is not desired to illuminate the object 5 with polarized light, a depolarization plate may be provided on the side surface of the object 5 of the polarizing plates 43a and 43b at each opening.

尚、上記各実施例において、上記濃度変調器を位相差変
調器に変えれば、位相差顕微鏡となることは言うまでも
ない。又、開口スリット及び変調器の各近傍に微分干渉
用プリズムを夫々配置すれば、微分干渉”;tR倣鏡に
なることは言うまでもない。
It goes without saying that in each of the above embodiments, if the density modulator is replaced with a phase difference modulator, a phase contrast microscope can be obtained. Furthermore, it goes without saying that if a differential interference prism is placed near each of the aperture slit and the modulator, a differential interference mirror can be obtained.

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明による顕微鏡は、焦点深度が同じで
も明るい像が得られ、種々の位相傾斜の物体に対して常
に適正なコントラストの像が得られ、操作も容易である
という実用上重要な利点を有している。
As mentioned above, the microscope according to the present invention has the following practical advantages: it can obtain bright images even when the depth of focus is the same, it can always obtain images with appropriate contrast for objects with various phase tilts, and it is easy to operate. It has advantages.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)、(B)及び(C)は夫々本発明による顕
微鏡の第1実施例の開ロスリフト、変調器及び変調感度
特性を示す図、第2図(A)(B)及び(C)は夫々第
2実施例の開ロスリフト、変調器及び変調感度特性を示
す図、第3図(A)、CB)及び(C)は夫々第3実施
例の開口スリット、変調器及び変調感度特性を示す図、
第4図及び第5図は夫々第4実施例の光学系及びその要
部を示す図、第6図は従来例の光学系の基本構成を示す
図、第7図、第8図、第9図は夫々各従来例の開口スリ
ット及び変iJl器を示す図、第10図はある透明物体
での光の屈折の様子を示す図、第11図は変調コントラ
スト効果を生み出す原理の説明図、第12図は第8図に
示した従来例の変調感度特性を示す図である。 l・・・・光源、2・・・・リレーレンズ、13.23
33.43・・・・開口スリット、4・・・・コンデン
サーレンズ、5・・・・物体、6・・・・対物レンズ、
1727.37・・・・変調器、8・・・・観察者の眼
、44・・・・偏光板。 (C) 1?4図 第2図 才5図 化軸ev#T111Jt 1?6図 第11図 ′jpio図
Figures 1 (A), (B) and (C) are diagrams showing the open loss lift, modulator and modulation sensitivity characteristics of the first embodiment of the microscope according to the present invention, and Figures 2 (A), (B) and ( C) is a diagram showing the open loss lift, modulator and modulation sensitivity characteristics of the second embodiment, respectively, and FIGS. 3(A), CB) and (C) are diagrams showing the aperture slit, modulator and modulation sensitivity of the third embodiment, respectively. A diagram showing the characteristics,
4 and 5 are diagrams showing the optical system of the fourth embodiment and its main parts, respectively, FIG. 6 is a diagram showing the basic configuration of the optical system of the conventional example, and FIGS. 7, 8, and 9 The figures show the aperture slit and iJl device of each conventional example, Fig. 10 shows how light is refracted by a certain transparent object, Fig. 11 is an explanatory diagram of the principle of producing the modulation contrast effect, and Fig. FIG. 12 is a diagram showing the modulation sensitivity characteristics of the conventional example shown in FIG. l...Light source, 2...Relay lens, 13.23
33.43...Aperture slit, 4...Condenser lens, 5...Object, 6...Objective lens,
1727.37...Modulator, 8...Observer's eye, 44...Polarizing plate. (C) Figure 1-4 Figure 2 Figure 5 Axis ev#T111Jt Figure 1-6 Figure 11 'jpio diagram

Claims (3)

【特許請求の範囲】[Claims] (1)光軸上に光源とコンデンサーレンズを含む照明系
と、該照明系と共軸に配置された対物レンズを含む結像
系とを備えた顕微鏡において、該コンデンサーレンズの
入射瞳位置又はその近傍若しくはそれらと共役な前記照
明系内の位置に、光軸と直交する異なる線分上にあって
光軸から離れた位置に夫々形成された複数個の開口を有
する開口スリットを配置すると共に、前記対物レンズの
射出瞳位置又はその近傍若しくはそれらと共役な前記結
像系内の位置に、前記開口に対応する光制御領域を有す
る変調器を配置したことを特徴とする顕微鏡。
(1) In a microscope equipped with an illumination system including a light source and a condenser lens on the optical axis, and an imaging system including an objective lens arranged coaxially with the illumination system, the entrance pupil position of the condenser lens or Arranging aperture slits each having a plurality of apertures formed on different line segments orthogonal to the optical axis and away from the optical axis at positions in the illumination system near or conjugate thereto; A microscope characterized in that a modulator having a light control region corresponding to the aperture is disposed at or near the exit pupil position of the objective lens, or at a position in the imaging system that is conjugate thereto.
(2)前記複数の開口の少なくとも一部の開口と他の一
部の開口とを切替えて遮蔽する手段を備えていることを
特徴とする請求項(1)に記載の顕微鏡。
(2) The microscope according to claim (1), further comprising means for switching and shielding at least some of the plurality of apertures and other part of the apertures.
(3)光軸上に光源とコンデンサーレンズを含む照明系
と、該照明系と共軸に配置された対物レンズを含む結像
系とを備えた顕微鏡において、前記コンデンサーレンズ
の入射瞳位置又はその近傍若しくはそれらと共役な前記
照明系内の位置に、光軸に近い部分の幅よりも光軸から
遠い部分の幅が広くなっている開口を有する開口スリッ
トを配置すると共に、前記対物レンズの射出瞳位置又は
その近傍若しくはそれらと共役な前記結像系内の位置に
、前記開口に対応する光制御領域を有する変調器を配置
したことを特徴とする顕微鏡。
(3) In a microscope equipped with an illumination system including a light source and a condenser lens on the optical axis, and an imaging system including an objective lens disposed coaxially with the illumination system, the entrance pupil position of the condenser lens or An aperture slit having an aperture whose width is wider at a portion far from the optical axis than at a portion close to the optical axis is disposed in the vicinity or at a position in the illumination system that is conjugate thereto, and an aperture slit having an aperture whose width is wider at a portion far from the optical axis than at a portion close to the optical axis; A microscope characterized in that a modulator having a light control region corresponding to the aperture is disposed at a pupil position, near the pupil position, or at a position in the imaging system conjugate thereto.
JP63186622A 1988-07-26 1988-07-26 microscope Expired - Fee Related JP2834741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63186622A JP2834741B2 (en) 1988-07-26 1988-07-26 microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63186622A JP2834741B2 (en) 1988-07-26 1988-07-26 microscope

Publications (2)

Publication Number Publication Date
JPH0235408A true JPH0235408A (en) 1990-02-06
JP2834741B2 JP2834741B2 (en) 1998-12-14

Family

ID=16191803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63186622A Expired - Fee Related JP2834741B2 (en) 1988-07-26 1988-07-26 microscope

Country Status (1)

Country Link
JP (1) JP2834741B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004126590A (en) * 2002-10-02 2004-04-22 Leica Microsystems Wetzler Gmbh Phase shift method and device for realizing phase difference observation or modulation contrast observation in microscope
WO2007137598A1 (en) * 2006-05-26 2007-12-06 Leica Microsystems Cms Gmbh Inverse microscope
JP2008064880A (en) * 2006-09-05 2008-03-21 Nikon Corp Modulation contrast microscope
WO2009066650A1 (en) * 2007-11-19 2009-05-28 Nikon Corporation Modulation contrast microscope
US8446668B2 (en) * 2006-07-04 2013-05-21 Nikon Corporation Microscope apparatus
CN103460110A (en) * 2011-04-12 2013-12-18 株式会社尼康 Microscope system, server, and program
WO2014112324A1 (en) * 2013-01-18 2014-07-24 Canon Kabushiki Kaisha Image pickup apparatus, image pickup system, and image processing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57178211A (en) * 1981-04-27 1982-11-02 Nippon Kogaku Kk <Nikon> Microscope optical system
JPS5990813A (en) * 1982-11-15 1984-05-25 Nippon Kogaku Kk <Nikon> Projection type microscope

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57178211A (en) * 1981-04-27 1982-11-02 Nippon Kogaku Kk <Nikon> Microscope optical system
JPS5990813A (en) * 1982-11-15 1984-05-25 Nippon Kogaku Kk <Nikon> Projection type microscope

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004126590A (en) * 2002-10-02 2004-04-22 Leica Microsystems Wetzler Gmbh Phase shift method and device for realizing phase difference observation or modulation contrast observation in microscope
WO2007137598A1 (en) * 2006-05-26 2007-12-06 Leica Microsystems Cms Gmbh Inverse microscope
US8228600B2 (en) 2006-05-26 2012-07-24 Leica Microsystems Cms Gmbh Inverted microscope for high-contrast imaging
US8446668B2 (en) * 2006-07-04 2013-05-21 Nikon Corporation Microscope apparatus
JP2008064880A (en) * 2006-09-05 2008-03-21 Nikon Corp Modulation contrast microscope
WO2009066650A1 (en) * 2007-11-19 2009-05-28 Nikon Corporation Modulation contrast microscope
JP5338677B2 (en) * 2007-11-19 2013-11-13 株式会社ニコン Modulation contrast microscope and modulation contrast microscope for microinsemination
US8599479B2 (en) 2007-11-19 2013-12-03 Nikon Corporation Modulation contrast microscope
CN103460110A (en) * 2011-04-12 2013-12-18 株式会社尼康 Microscope system, server, and program
WO2014112324A1 (en) * 2013-01-18 2014-07-24 Canon Kabushiki Kaisha Image pickup apparatus, image pickup system, and image processing method
JP2014137558A (en) * 2013-01-18 2014-07-28 Canon Inc Imaging device, imaging system and image processing method
US9904046B2 (en) 2013-01-18 2018-02-27 Canon Kabushiki Kaisha Image pickup apparatus, image pickup system, and image processing method

Also Published As

Publication number Publication date
JP2834741B2 (en) 1998-12-14

Similar Documents

Publication Publication Date Title
JPH0241604Y2 (en)
JP3699761B2 (en) Epifluorescence microscope
US5345333A (en) Illumination system and method for a high definition light microscope
US7547874B2 (en) Single axis illumination for multi-axis imaging system
US4255014A (en) Edge enhancement of phase phenomena
JPH10268197A (en) Optical microscope with optical control member
JPS61120110A (en) Lighting apparatus for bright and dark field microscope
US5592328A (en) Illumination system and method for a high definition light microscope
US4062619A (en) Variable background intensity apparatus for imaging systems
Otaki Artifact halo reduction in phase contrast microscopy using apodization
JPS61133918A (en) Photometer
US4200354A (en) Microscopy systems with rectangular illumination particularly adapted for viewing transparent objects
JPS61193136A (en) Multiple focal length fresnel lens for focal plate of camera
JPH01255818A (en) Reflection illuminating device
JPH0289016A (en) Scanning type microscope
JPH0235408A (en) Microscope
US5305139A (en) Illumination system and method for a high definition 3-D light microscope
JPS58211731A (en) Conoscope optical system of polarization microscope
JPS6063514A (en) Projecting microscope for dark field of view
JP3395351B2 (en) Lighting equipment for microscope
US5566019A (en) Bright-field transmitted-light lighting device for microscopes
US5731894A (en) Multi-purpose microscope objective
JP4054424B2 (en) Method and apparatus for Fourier manipulation in an optical lens or mirror train
JP2966026B2 (en) microscope
JP2004318185A (en) Optical microscope having light control member

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees